The disclosure herein relates to semiconductor devices, packaging and associated methods.
As integrated circuit (IC) chips such as system on chips (SoCs) become larger, the yields realized in manufacturing the chips become smaller. Decreasing yields for larger chips increases overall costs for chip manufacturers. To address the yield problem and also reduce costs, chiplet architectures have been proposed that favor a modular approach to SoCs. The solution employs smaller sub-processing chips, each containing a well-defined subset of functionality. Chiplets thus allow for dividing a complex design, such as a high-end processor or networking chip, into several small die instead of one large monolithic die.
In an effort to standardize die-to-die chiplet interfaces, a Universal Chiplet Interconnect express (UCIe) interface has been proposed. The interface generally provides a common die-to-die interconnect for chiplets that standardizes inter-die communication on-package. While beneficial in specifying a common die-to-die on-package interface, the existing standard leaves room for improvement in various areas.
Embodiments of the disclosure are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
Semiconductor devices, packaging architectures and associated methods are disclosed. In one embodiment, an integrated circuit (IC) chip is disclosed. The IC chip includes a mainband sub-interface for transferring mainband signals and a sideband sub-interface for transferring sideband signals along a first number of sideband signal paths. A bump interface includes a second number of sideband bumps, each of the sideband bumps for coupling to a signal link. The second number of sideband bumps is less than the first number of sideband signal paths. A converter circuit is disposed between the UCIe interface circuit and the bump interface. The converter circuit includes a receiver circuit to receive first sideband data from the sideband sub-interface. The receiver circuit includes local clock circuitry, oversampling circuitry, and majority detection circuitry to receive oversampled data and to resolve states of sideband data bits based on a majority voting process. By employing the local clock circuitry, oversampling circuitry, and majority detection circuitry in the receiver circuit, a reduction in the number of sideband links may be achieved which correspondingly reduces the number of bumps required for the bump interface.
Throughout the disclosure provided herein, the term multi-chip module (MCM) is used to represent a semiconductor device that incorporates multiple semiconductor die or sub-packages in a single unitary package. An MCM may also be referred to as a system in a package (SiP). With reference to
With continued reference to
Further referring to
For legacy situations involving direct UCIe-to-UCIe connections between chiplets, a given legacy chiplet generally employs a number of interface bumps that corresponds to the number of signal paths employed by the UCIe interface. With the UCIe standard specifying forty-four signaling paths for a two-cluster interface configuration, a legacy chiplet bump interface would interconnect to forty-four interface bumps that are formed on a mounting surface of a given IC chiplet. With surface area and overall footprint constraints, each bump on a given IC chiplet takes up valuable surface area. In many situations, reducing the number of links and corresponding bumps may provide significant improvements in bandwidth density for die-to-die connectivity with corresponding reductions in cost.
Further referring to
With continued reference to
Further referring to
With continued reference to
For the embodiment shown in
The embodiments of
Further referring to
Further referring to
While the embodiments described above relate to reducing UCIe signal paths associated with the UCIe sideband sub-interfaces 116 and 149, additional signal path reductions may be achieved through further techniques applied to the mainband sub-interfaces 114 and 147, as described below with respect to
Further referring to
Further referring to
With continued reference to
For some embodiments, the interface conversion circuitry 118 and 130 of
Further referring to
For one embodiment, the valid data signal MBVAL is coded into a multi-bit pattern of ones and zeros that indicates whether the accompanying data MBDATA is valid, and also includes a sufficient edge density to allow for phase tracking. For one specific embodiment, the VAT multi-bit pattern is realized as a 16-bit sequence that takes the form of 1111_1011_1011_1011 for valid data, and 0000_0100_0100_0100 for invalid data. Other patterns may be utilized that achieve similar results, depending on the application.
Further referring to
Further referring to
Similar to the discussion above with respect to
Further referring to
Those skilled in the art will appreciate that the various embodiments disclosed herein may be utilized separately or in various sub-combinations to reduce the number of bumps on a chiplet that employs a UCIe standardized interface. Reducing the number of bumps enhances bandwidth density for the chiplet packaging interface, resulting in lower costs and improved performance characteristics.
When received within a computer system via one or more computer-readable media, such data and/or instruction-based expressions of the above described circuits may be processed by a processing entity (e.g., one or more processors) within the computer system in conjunction with execution of one or more other computer programs including, without limitation, net-list generation programs, place and route programs and the like, to generate a representation or image of a physical manifestation of such circuits. Such representation or image may thereafter be used in device fabrication, for example, by enabling generation of one or more masks that are used to form various components of the circuits in a device fabrication process.
In the foregoing description and in the accompanying drawings, specific terminology and drawing symbols have been set forth to provide a thorough understanding of the present disclosure. In some instances, the terminology and symbols may imply specific details that are not required to practice aspects of the disclosure. For example, any of the specific numbers of bits, signal path widths, signaling or operating frequencies, component circuits or devices and the like may be different from those described above in alternative embodiments. Also, the interconnection between circuit elements or circuit blocks shown or described as multi-conductor signal links may alternatively be single-conductor signal links, and single conductor signal links may alternatively be multi-conductor signal links. Signals and signaling paths shown or described as being single-ended may also be differential, and vice-versa. Similarly, signals described or depicted as having active-high or active-low logic levels may have opposite logic levels in alternative embodiments. Component circuitry within integrated circuit devices may be implemented using metal oxide semiconductor (MOS) technology, bipolar technology or any other technology in which logical and analog circuits may be implemented. With respect to terminology, a signal is said to be “asserted” when the signal is driven to a low level for active-low signals or high logic level for active-hich signals (or discharged to low logic state or charged to a high logic state) to indicate a particular condition. Conversely, a signal is said to be “deasserted” to indicate that the signal is driven (or charged or discharged) to a state other than the asserted state (including a high or low logic state, or the floating state that may occur when the signal driving circuit is transitioned to a high impedance condition, such as an open drain or open collector condition). A signal driving circuit is said to “output” a signal to a signal receiving circuit when the signal driving circuit asserts (or deasserts, if explicitly stated or indicated by context) the signal on a signal line coupled between the signal driving and signal receiving circuits. A signal line is said to be “activated” when a signal is asserted on the signal line, and “deactivated” when the signal is deasserted. Additionally, the prefix symbol “/” attached to signal names indicates that the signal is an active low signal (i.e., the asserted state is a logic low state). A line over a signal name (e.g., ‘
While aspects of the disclosure have been described with reference to specific embodiments thereof, it will be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the disclosure. For example, features or aspects of any of the embodiments may be applied, at least where practicable, in combination with any other of the embodiments or in place of counterpart features or aspects thereof. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
This application is a Non-Provisional that claims priority to U.S. Provisional Application No. 63/346,298, filed May 26, 2022, entitled IMPROVEMENTS & OPTIMIZATIONS TO UNIVERSAL CHIPLET INTERCONNECT EXPRESS (UCIE), which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4334305 | Girardi | Jun 1982 | A |
5396581 | Mashiko | Mar 1995 | A |
5677569 | Choi | Oct 1997 | A |
5892287 | Hoffman | Apr 1999 | A |
5910010 | Nishizawa | Jun 1999 | A |
6031729 | Berkely | Feb 2000 | A |
6055235 | Blanc | Apr 2000 | A |
6417737 | Moloudi | Jul 2002 | B1 |
6690742 | Chan | Feb 2004 | B2 |
6721313 | Van Duyne | Apr 2004 | B1 |
6932618 | Nelson | Aug 2005 | B1 |
7027529 | Ohishi | Apr 2006 | B1 |
7248890 | Raghavan | Jul 2007 | B1 |
7269212 | Chau | Sep 2007 | B1 |
7477615 | Oshita | Jan 2009 | B2 |
7535958 | Best | May 2009 | B2 |
7701957 | Bicknell | Apr 2010 | B1 |
7907469 | Sohn et al. | Mar 2011 | B2 |
7978754 | Yeung | Jul 2011 | B2 |
8004330 | Acimovic | Aug 2011 | B1 |
8024142 | Gagnon | Sep 2011 | B1 |
8121541 | Rofougaran | Feb 2012 | B2 |
8176238 | Yu et al. | May 2012 | B2 |
8483579 | Fukuda | Jul 2013 | B2 |
8546955 | Wu | Oct 2013 | B1 |
8704364 | Banijamali et al. | Apr 2014 | B2 |
8861573 | Chu | Oct 2014 | B2 |
8948203 | Nolan | Feb 2015 | B1 |
8982905 | Kamble | Mar 2015 | B2 |
9088334 | Chakraborty | Jul 2015 | B2 |
9106229 | Hutton | Aug 2015 | B1 |
9129935 | Chandrasekar | Sep 2015 | B1 |
9294313 | Prokop | Mar 2016 | B2 |
9349707 | Sun | May 2016 | B1 |
9379878 | Lugthart | Jun 2016 | B1 |
9432298 | Smith | Aug 2016 | B1 |
9832006 | Bandi | Nov 2017 | B1 |
9842784 | Nasrullah | Dec 2017 | B2 |
9886275 | Carlson | Feb 2018 | B1 |
9961812 | Suorsa | May 2018 | B2 |
10171115 | Shirinfar | Jan 2019 | B1 |
10402363 | Long et al. | Sep 2019 | B2 |
10410694 | Arbel | Sep 2019 | B1 |
10439661 | Heydari | Oct 2019 | B1 |
10642767 | Farjadrad | May 2020 | B1 |
10678738 | Dai | Jun 2020 | B2 |
10735176 | Heydari | Aug 2020 | B1 |
10748852 | Sauter | Aug 2020 | B1 |
10803548 | Matam et al. | Oct 2020 | B2 |
10804204 | Rubin et al. | Oct 2020 | B2 |
10855498 | Farjadrad | Dec 2020 | B1 |
10935593 | Goyal | Mar 2021 | B2 |
11088876 | Farjadrad | Aug 2021 | B1 |
11100028 | Subramaniam | Aug 2021 | B1 |
11164817 | Rubin et al. | Nov 2021 | B2 |
11204863 | Sheffler | Dec 2021 | B2 |
11581282 | Elsherbini | Feb 2023 | B2 |
11782865 | Kochavi | Oct 2023 | B1 |
11789649 | Chatterjee et al. | Oct 2023 | B2 |
11841815 | Farjadrad | Dec 2023 | B1 |
11842986 | Farjadrad | Dec 2023 | B1 |
11855043 | Farjadrad | Dec 2023 | B1 |
11855056 | F.Rad | Dec 2023 | B1 |
11892242 | Mao | Feb 2024 | B2 |
11893242 | Farjadrad | Feb 2024 | B1 |
11983125 | Soni | May 2024 | B2 |
12001355 | Dreier | Jun 2024 | B1 |
12001725 | Chatterjee | Jun 2024 | B2 |
20020122479 | Agazzi | Sep 2002 | A1 |
20020136315 | Chan | Sep 2002 | A1 |
20040088444 | Baumer | May 2004 | A1 |
20040113239 | Prokofiev | Jun 2004 | A1 |
20040130347 | Moll | Jul 2004 | A1 |
20040156461 | Agazzi | Aug 2004 | A1 |
20050041683 | Kizer | Feb 2005 | A1 |
20050134306 | Stojanovic | Jun 2005 | A1 |
20050157781 | Ho | Jul 2005 | A1 |
20050205983 | Origasa | Sep 2005 | A1 |
20060060376 | Yoon | Mar 2006 | A1 |
20060103011 | Andry | May 2006 | A1 |
20060158229 | Hsu | Jul 2006 | A1 |
20060181283 | Wajcer | Aug 2006 | A1 |
20060188043 | Zerbe | Aug 2006 | A1 |
20060250985 | Baumer | Nov 2006 | A1 |
20060251194 | Bublil | Nov 2006 | A1 |
20070281643 | Kawai | Dec 2007 | A1 |
20080063395 | Royle | Mar 2008 | A1 |
20080143422 | Lalithambika | Jun 2008 | A1 |
20080186987 | Baumer | Aug 2008 | A1 |
20080222407 | Carpenter | Sep 2008 | A1 |
20090113158 | Schnell | Apr 2009 | A1 |
20090154365 | Diab | Jun 2009 | A1 |
20090174448 | Zabinski | Jul 2009 | A1 |
20090220240 | Abhari | Sep 2009 | A1 |
20090225900 | Yamaguchi | Sep 2009 | A1 |
20090304054 | Tonietto | Dec 2009 | A1 |
20100177841 | Yoon | Jul 2010 | A1 |
20100197231 | Kenington | Aug 2010 | A1 |
20100294547 | Hatanaka | Nov 2010 | A1 |
20110029803 | Redman-White | Feb 2011 | A1 |
20110038286 | Ta | Feb 2011 | A1 |
20110167297 | Su | Jul 2011 | A1 |
20110187430 | Tang | Aug 2011 | A1 |
20110204428 | Erickson | Aug 2011 | A1 |
20110267073 | Chengson | Nov 2011 | A1 |
20110293041 | Luo | Dec 2011 | A1 |
20120082194 | Tam | Apr 2012 | A1 |
20120182776 | Best | Jul 2012 | A1 |
20120192023 | Lee | Jul 2012 | A1 |
20120216084 | Chun | Aug 2012 | A1 |
20120327818 | Takatori | Dec 2012 | A1 |
20130181257 | Ngai | Jul 2013 | A1 |
20130222026 | Havens | Aug 2013 | A1 |
20130249290 | Buonpane | Sep 2013 | A1 |
20130285584 | Kim | Oct 2013 | A1 |
20140016524 | Choi | Jan 2014 | A1 |
20140048947 | Lee | Feb 2014 | A1 |
20140126613 | Zhang | May 2014 | A1 |
20140192583 | Rajan | Jul 2014 | A1 |
20140269860 | Brown | Sep 2014 | A1 |
20140269983 | Baeckler | Sep 2014 | A1 |
20150012677 | Nagarajan | Jan 2015 | A1 |
20150172040 | Pelekhaty | Jun 2015 | A1 |
20150180760 | Rickard | Jun 2015 | A1 |
20150206867 | Lim | Jul 2015 | A1 |
20150271074 | Hirth | Sep 2015 | A1 |
20150326348 | Shen | Nov 2015 | A1 |
20150358005 | Chen | Dec 2015 | A1 |
20160056125 | Pan | Feb 2016 | A1 |
20160071818 | Wang | Mar 2016 | A1 |
20160111406 | Mak | Apr 2016 | A1 |
20160217872 | Hossain | Jul 2016 | A1 |
20160294585 | Rahman | Oct 2016 | A1 |
20170286340 | Ngo | Oct 2017 | A1 |
20170317859 | Hormati | Nov 2017 | A1 |
20170331651 | Suzuki | Nov 2017 | A1 |
20180010329 | Golding, Jr. | Jan 2018 | A1 |
20180082981 | Gowda | Mar 2018 | A1 |
20180175001 | Pyo | Jun 2018 | A1 |
20180190635 | Choi | Jul 2018 | A1 |
20180196767 | Linstadt | Jul 2018 | A1 |
20180210830 | Malladi et al. | Jul 2018 | A1 |
20180315735 | Delacruz | Nov 2018 | A1 |
20190044764 | Hollis | Feb 2019 | A1 |
20190058457 | Ran | Feb 2019 | A1 |
20190108111 | Levin | Apr 2019 | A1 |
20190198489 | Kim | Jun 2019 | A1 |
20190267062 | Tan | Aug 2019 | A1 |
20190319626 | Dabral | Oct 2019 | A1 |
20200051961 | Rickard | Feb 2020 | A1 |
20200105718 | Collins et al. | Apr 2020 | A1 |
20200257619 | Sheffler | Aug 2020 | A1 |
20200320026 | Kabiry | Oct 2020 | A1 |
20200364142 | Lin | Nov 2020 | A1 |
20200373286 | Dennis | Nov 2020 | A1 |
20210056058 | Lee | Feb 2021 | A1 |
20210082875 | Nelson | Mar 2021 | A1 |
20210117102 | Grenier | Apr 2021 | A1 |
20210181974 | Ghosh | Jun 2021 | A1 |
20210183842 | Fay | Jun 2021 | A1 |
20210193567 | Cheah et al. | Jun 2021 | A1 |
20210225827 | Lanka | Jul 2021 | A1 |
20210258078 | Meade | Aug 2021 | A1 |
20210311900 | Malladi | Oct 2021 | A1 |
20210365203 | O | Nov 2021 | A1 |
20210405919 | K | Dec 2021 | A1 |
20220051989 | Agarwal | Feb 2022 | A1 |
20220159860 | Winzer | May 2022 | A1 |
20220222198 | Lanka | Jul 2022 | A1 |
20220223522 | Scearce | Jul 2022 | A1 |
20220237138 | Lanka | Jul 2022 | A1 |
20220334995 | Das Sharma | Oct 2022 | A1 |
20220350756 | Burstein | Nov 2022 | A1 |
20220391114 | Richter | Dec 2022 | A1 |
20230039033 | Zarkovsky | Feb 2023 | A1 |
20230068802 | Wang | Mar 2023 | A1 |
20230090061 | Zarkovsky | Mar 2023 | A1 |
20230181599 | Erickson | May 2023 | A1 |
20230289311 | Noguera Serra | Sep 2023 | A1 |
20240007234 | Harrington | Jan 2024 | A1 |
20240028208 | Kim | Jan 2024 | A1 |
20240241840 | Im | Jul 2024 | A1 |
20240273041 | Lee | Aug 2024 | A1 |
Entry |
---|
U.S. Appl. No. 16/812,234; Mohsen F. Rad, filed Mar. 6, 2020. |
Farjadrad et al., “A Bunch of Wires (B0W) Interface for Inter-Chiplet Communication”, 2019 IEEE Symposium on High-Performance Interconnects (HOTI), pp. 27-30, Oct. 2019. |
Universal Chiplet Interconnect Express (UCIe) Specification Rev. 1.0, Feb. 24, 2022. |
“Hot Chips 2017: Intel Deep Dives Into EMIB”, TomsHardware.com; Aug. 25, 2017. |
“Using Chiplet Encapsulation Technology to Achieve Processing-In-Memory Functions”; Micromachines 2022, 13, 1790; https://www.mdpi.com/journal/micromachines; Tian et al. |
“Multiport memory for high-speed interprocessor communication in MultiCom;” Scientia Iranica, vol. 8, No. 4, pp. 322-331; Sharif University of Technology, Oct. 2001; Asgari et al. |
Block Memory Generator v8.2 LogiCORE IP Product Guide Vivado Design Suite; Xilinx; Apr. 1, 2015. |
Kurt Lender et al., “Questions from the Compute Express Link Exploring Coherent Memory and Innovative Cases Webinar”, Apr. 13, 2020, CXL consortium. |
Planet Analog, “The basics of SerDes (serializers/deserializers) for interfacing”, Dec. 1, 2020, Planet Analog. |
Universal Chiplet Interconnect Express (UCIe) Specification, Revision 1.1, Version 1.0, Jul. 10, 2023. |
Hybrid Memory Cube Specification 2.1, Hybrid Memory Cube Consortium, HMC-30G-VSR PHY, 2014. |
Number | Date | Country | |
---|---|---|---|
63346298 | May 2022 | US |