Interface device for sensing position and orientation and outputting force to a user

Information

  • Patent Grant
  • 6987504
  • Patent Number
    6,987,504
  • Date Filed
    Tuesday, January 8, 2002
    23 years ago
  • Date Issued
    Tuesday, January 17, 2006
    19 years ago
Abstract
An interface device for use with a computer that provides locative data to a computer for tracking a user manipulatable physical object and provides feedback to the user through output forces. The physical object is movable in multiple degrees of freedom and is tracked by sensors for sensing the location and orientation of the object. A device processor can be responsive to the output of the sensors and can provide the host computer with information derived from the sensors. The host computer can provides images on a display, where the computer responds to the provided sensor information and force feedback is correlated with the displayed images via force feedback commands from the host computer.
Description
FIELD OF THE INVENTION

The present invention relates to a computer-human interface device, and more particularly it relates to a stylus coupled to a supportable mechanical linkage for providing and receiving commands to and from a computer.


BACKGROUND OF THE INVENTION

As the use of Computer Aided Design (CAD) Systems becomes more widespread, the need for cursor and command control devices which accurately and easily track three-dimensional position or motion is also growing. Devices which allow users to control a cursor with three-dimensional position and/or orientation commands are available for various applications. Among them are many hand-held input devices which allow users to interact with a host processor by controlling the position of a cursor or manipulating graphic objects on a computer screen. While these devices allow three-dimensional information to be transmitted to a computer they do not allow the user to use gestures and motions which are natural to the user.


For example, a prior art device of the type which is used for three-dimensional control involves the use of accelerometers to transduce the position and orientation of a stylus in space as described in U.S. Pat. No. 4,839,838. This device makes no provisions so the stylus can be grasped in a manner which makes use of finger dexterity nor does it include mechanical support to reduce fatigue or enhance user control or dexterity.


Another prior art example is an ultrasonic position-locating device like the one shown in U.S. Pat. No. 5,142,506. This device transduces position and orientation by triangulating ultrasonic signals. As with the prior art previously described, this device uses a free-floating stylus which includes no provisions for mechanical support to reduce fatigue or enhance user control or dexterity. Furthermore, this device is used with a stylus that is grasped in the palm of the hand. The use of such a stylus precludes fine positioning with the fingers and greatly reduces the dexterity of the user to manipulate position and orientation. In addition, this device is used with digital buttons on the stylus to send to the computer command signals. A button of this type is commonly called a “clicker” on a “mouse.” Because such buttons are mechanically coupled to the free-floating stylus, it is difficult to push the buttons while maintaining the position and orientation of the stylus. By pushing down on the button, the user will necessarily move the stylus from its desired position. Accordingly, these commands are difficult to control under many circumstances.


SUMMARY OF THE INVENTION

In the present invention, the user holds a stylus which is supported by a support apparatus on a fixed surface so that the user can easily manipulate the stylus in free space to interact with a computer. The three-dimensional motion of the user is translated through the stylus and mechanical linkage to a processor which communicates with the computer, thus allowing commands to be sent to the computer which track the three-dimensional motion of the user. Therefore, cursor control in three-dimensions on the two-dimensional computer screen is possible.


In one embodiment, the stylus is supportable on a fixed surface by a set of mechanical linkages which include individual components joined together by a sufficient number of joints to allow several degrees of freedom in the motion of the stylus. These mechanical linkages provide mechanical leverage, friction, counter-weighing, and/or spring resistance in order to reduce fatigue of the user and to provide support to enhance the stability and dexterity of user manipulation of the stylus.


An embodiment of the present invention includes computer software and hardware which will provide force feedback information from the computer to the stylus. The computer sends feedback signals to the mechanical linkage which has force generators for generating force in response to images depicted on the computer screen. Incoming commands from the host computer are monitored by the microprocessor and instruct the microprocessor to report forces felt by a joint or set forces on a joint of the mechanical linkage.


Another aspect of the present invention includes a remote control unit which is used in place of a command clicker on the stylus. For example, a foot pedal or hand-held unit for the user's opposite hand is included to provide command control to the computer. Accordingly, manual dexterity of stylus manipulation is not compromised.





DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of an embodiment of the present invention;



FIGS. 2A and 2B are block diagrams over-viewing two different electronic hardware configurations of the present invention;



FIG. 3 is a flow chart describing the main software loop for two different electronic hardware configurations shown in FIG. 2;



FIGS. 4A and 4B are flow charts describing two different interrupt service routines for serial output to host computer;



FIG. 5 is a perspective representation of another embodiment of the present invention;



FIG. 6 is a perspective view of still another embodiment of the present invention;



FIG. 7 is a perspective representation of another embodiment;



FIG. 8 is a perspective view of another embodiment;



FIG. 9 shows an embodiment of the resistance mechanism of the present invention;



FIG. 10 shows another embodiment of the resistance mechanism; and



FIG. 11 shows yet another embodiment of the resistance mechanism.





DESCRIPTION OF PREFERRED EMBODIMENTS

Referring to FIG. 1, a stylus 11 is shown attached to a support apparatus which is, in turn, supported on a fixed surface. By electrical and electronic configurations described below, the stylus 11 is adapted to provide data from which a computer or other computing means such as a microprocessor can ascertain the position and orientation of the stylus as it moves in three-dimensional space. This information is then translated to an image on a computer display apparatus. The stylus 11 may be used, for example, by an operator to change the position of a cursor on a computer controlled display screen by changing the position and/or orientation of the stylus, the computer being programmed to change the position of the cursor in proportion to the change in position and/or orientation of the stylus. In other words, the stylus 11 is moved through space by the user to designate to the computer how or where to move the cursor on a computer display apparatus.


Also contemplated in the present invention is computer software and hardware which will provide feedback information from the computer to the stylus and cause forces on the stylus. This implementation is described in greater detail subsequently.


The stylus 11 is a pen-like stick which can be manipulated between the fingers, allowing for much better control and fine dexterity as compared to full hand grips or palm-supported styluses used by some prior art inventions. While the stylus 11 is described in terms of manual manipulation, other stylus configurations are envisioned by the present invention. In particular, this invention includes manipulation by those unable to manually manipulate a pen. A stylus of the present invention, need not be linear, but may be curved or angled so that it may be held, for example, by the foot or the mouth of a person.


Because the stylus is supported by a support apparatus which is in turn supported by a fixed surface or other stabilizing configuration, the user can manipulate the stylus with a minimum of effort. Also, if the user chooses to discontinue using the stylus, it is capable of maintaining its position in space, unattended. While FIG. 1 shows that preferred embodiment of the present invention, FIGS. 5–8 show alternative embodiments, such which are also contemplated under the present invention. It is preferable that the stylus have enough degrees of freedom to enable it to move through the mechanical linkage to give the user the amount of flexibility needed to move the cursor as desired. In FIG. 1, six degrees of freedom are shown and are labeled as Axis A1, A2, A3, A4, A5, and A6. This, of course, provides maximum flexibility. Fewer degrees of freedom, such as a plurality of degrees of freedom, may also be sufficient depending on the application.


In one embodiment, the stylus is connected to rigid individual components which are joined together by joints. While not shown, other types of support apparatus' are included in the present invention. For example, other configurations include a semi-flexible rod or any other moveable while supportive configuration which can support the stylus in the manner described herein.


In FIG. 1, a mechanical linkage pursuant to the present invention is depicted. The stylus 11 is coupled to supportable mechanical linkages via joint 12 which, in the shown embodiment, houses sensors 13A and 13B. Linkage 14, is connected, via joint 15 having position sensors 16A and 16B, to linkage 17. Joint 18 in turn connects linkage 17 with the vertical base protrusion 20 which emanates from the base 21. The sensors are used to produce a stylus locative signal which is responsive to and corresponds with the position of the stylus at any point in time during its normal operation. The stylus locative signal is used to provide information for use by a computer display apparatus of a computer. The term “joint” as used herein is intended to mean the connection mechanism between individual linkage components. In fact, two separate moveable members can be joined; such together forming a joint.


The base 21, if necessarily, can be immobilized by securing it onto the fixed surface 23 by way of bolt, screw or other attachment mechanism 22. Moreover, the present invention implements mechanical leverage and rubbing friction (not shown) between the supportable mechanical linkages 14 and 17 and the joints 12, 15 and 18 in order to provide resistance and support so as to allow better dexterity than can be achieved with free-floating stylus trackers. This support and leverage aids in reducing the fatigue associated with manipulating the free-floating stylus 11.


As mentioned above, attached to each joint 12, 15 and 18 are sensors 13A, 13B, 16A, 16B, 19A, and 19B, respectively. These sensors sense the angle differential before and after motion of the two segments connected by that joint. The sensors can be, for example, optical incremental encoders, optical absolute encoders and potentiometers. Because the three-dimensional position and/or orientation tracking is achieved mechanically, this preferred embodiment avoids problems that magnetic and ultrasonic sensors, such as those shown in the prior art, encounter with metal and shadowing. However, as shown in FIG. 1, if desired, sensing means can be used to track the position and/or orientation of the stylus by mounting a single or several orientation sensors in the stylus 11 itself, such referred to as a stylus mounted sensor 11′. An ultrasound, magnetic, optical or position and orientation sensor can be used as the stylus mounted sensor 11′.



FIG. 1 also shows a clicker button 24 on stylus 11. The button is connected to a switch which when in the on state, sends a signal to the computer giving it a command. In order to provide for accuracy when sending commands, this invention also includes a remote clicker unit. Therefore, since the clicking motion occurs at a distant location from the cursor control, there is little or no opportunity to accidently move the cursor while making a command. FIG. 1 shows two configurations for implementing this aspect of the present invention. The first is identified as an alternate hand-clicker 25, the second as foot pedal 26.


Digital buttons 27 and 28 which are connected to switches (not shown) on the remote attached peripherals such as a hand-held clicker unit 25 or a foot pedal 26, respectively, can generate additional digital input such transmitted through lines 25′ and 26′ respectively. Either of the shown ancillary remote command units, such including the hand unit 25 and the foot pedal 26 configurations, are favorable methods of inputting digital commands by command hardware or software (not shown) because pressing the button 27 or 28 does not compromise a user's ability to hold the stylus steady whereas pressing any button 24 on the stylus does compromise stylus stability.


Referring to FIG. 2A, the sensors 13A, 13B, 16A, 16B, 19A and 19B, along with any peripherals 24, 25 or 26, can send their digital signals directly to a versatile floating-point processor or microprocessor 32A which is controlled by software stored in a digital ROM (Read-Only Memory) 35 via transmission line 32′ or another form of transmission, i.e., radio signals. As shown in FIG. 2B, an alternative embodiment can be used to lessen the demands on the floating-point processor or microprocessor 32B. The digital inputs of the sensors 13A, 13B, 16A, 16B, 19A and 19B can be sent indirectly to the floating-point processor or microprocessor 32B by way of dedicated chips 13C, 13D, 16C, 16D, 19C and 19D, which pre-process the angle sensors' signals before sending them via bus 31 to the floating-point processor or microprocessor 32B which would combine these signals with those from the peripherals 24, 25 or 26. An 8-bit data bus plus chip-enable lines allow any of the angle determining chips to communicate with the microprocessor. Moreover, reporting the status of peripherals 24, 25 or 26 includes reading the appropriate digital switch and placing its status in the output sequence array. Some examples of specific electronic hardware usable for sensor pre-processing include quadrature counters, which are common dedicated chips that continually read the output of an optical incremental encoder and determine an angle from it, Gray decoders, filters, and ROM look-up tables.


The single-chip configuration of FIG. 2A is most applicable where the angle sensors 13A, 13B, 16A, 16B, 19A and 19B are absolute sensors, which have output signals directly indicating the angles without any further processing, thereby requiring less computation for the microprocessor 32A and thus little if any pre-processing. The multi-chip configuration of FIG. 2B is most applicable if the sensors 13A, 13B, 16A, 16B, 19A and 19B are relative sensors, which indicate only the change in an angle and which require further processing for complete determination of the angle.


In either configuration, if the microprocessor 32A or 32B is fast enough, it will compute stylus 11 position and/or orientation (or motion, if desired) on board the embodiment and send this final data through any standard communications interface such as an RS-232 serial interface 33 on to the host computer system 34 and to computer display apparatus 34″ through transmission line 34′ or another form of transmission. If the microprocessor 32A or 32B is not fast enough, then the angles will be sent to the host computer 34 which will perform these calculations on its own.


In addition to the single-chip and multi-chip configurations, a variation may consist of a single microprocessor which reads the peripherals, obtains the angles, possibly computes coordinates and orientation of the stylus 11, and supervises communication with the host computer 34. Another variation may consist of dedicated sub-circuits and specialized or off-the-shelf chips which reads the peripherals, monitors the angle sensors 13A, 13B, 16A, 16B, 19A and 19B, determine the joint angles, and handle communications with the host computer 34, all without software or a microprocessor 32A or 32B.


Software is only included in the two microprocessor-based configurations shown in FIGS. 2A and 2B. The more dedicated hardware a given configuration includes, the less software it requires. The software consists of a main loop (FIG. 3) and an output interrupt (FIGS. 4A and 4B).


Referring to FIG. 3, the main command loop responds to the host computer 34 and runs repeatedly in an endless cycle. With each cycle, incoming commands from the host computer are monitored 36 and decoded 37, and the corresponding command subroutines for reporting angles, thus stylus position and/or orientation (see FIGS. 4A and 4B), are then executed 38. Two possible subroutines are shown in FIGS. 4A (single-chip method) and 4B (multi-chip method). When a subroutine terminates, the main command loop resumes 39. Available command will include but are not limited to: reporting the value of any single angle, reporting the angles of all six angles at one time, reporting the values of all six angles repeatedly until a command is given to cease aforementioned repeated reporting, reporting the status of peripheral buttons, and setting communications parameters. If the angle sensors require preprocessing, these commands will also include resetting the angle value of any single angle or otherwise modifying preprocessing parameters in other applicable ways. Resetting pre-processed angle values or preprocessing parameters does not require output data from the device. The microprocessor 32A or 32B simply sends appropriate control signals to the preprocessing hardware 13C, 13D, 16C, 16D, 19C, and 19D. If the microprocessor or floating-point processor is fast enough to computer stylus coordinates and orientation, these commands will also include reporting the stylus coordinates once, reporting the stylus coordinates repeatedly until a command is given to cease, ceasing aforementioned repeated reporting, reporting the stylus coordinates and orientation once, reporting the stylus coordinates and orientation repeatedly until a command is given to cease, ceasing aforementioned repeated reporting. If force reflection is supported, these commands will also include reporting the forces felt by any single joint, setting the resistance of any single joint, and locking or unlocking a joint.


Any report by the subroutines of FIGS. 4A and 4B of a single angle value requires determining 41 the given joint angle. For the single-chip configuration shown in FIG. 2A, this subroutine directly reads the appropriate angle sensor 42 from among sensors 13A, 13B, 16A, 16B, 19A, and 19B. For the multi-chip configuration shown in FIG. 2B, this subroutine reads the outputs 43 of pre-processing hardware 13C, 13D, 16C, 16D, 19C, and 19D which have already determined the joint angles from the outputs of the sensors 13A, 13B, 16A, 16B, 19A, and 19B. Any report of multiple angles is accomplished by repeatedly executing the subroutine for reporting a single angle. The subroutine is executed once per angle, and the values of all angles are then included in the output sequence array. If the optional parts of the subroutines 45 are included, then these subroutines become the coordinate reporting subroutines. Many other command subroutines exist and are simpler yet in their high-level structure.


After determining the given joint angle, the microprocessor 32A or 32B creates an output sequence 44A or 44B by assembling an array in a designated area of processor memory 35 which will be output by the microprocessor's communications system at a given regular communications rate. The sequence will contain enough information for the host computer 34 to deduce which command is being responded to, as well as the actual angle value that was requested. Returning to FIG. 3, a query 36 in the main command loop asks whether the previous command requested repeated reports. If so, the main command loop is initiated accordingly. The communications output process (not shown) may be as simple as storing the output data in a designated output buffer, or it may involve a standard set of communications interrupts that are an additional part of the software. Setting communications parameters does not require output data from the device. The microprocessor 32A or 32B simply resets some of its own internal registers or sends control signals to its communications sub-unit.


To report the stylus' 11 coordinates, three of the five or six angle values are pre-read and knowledge of link lengths and device kinematics are incorporated to compute stylus 11 coordinates. These coordinates are then assembled in the output sequence array.


To report the stylus' 11 orientation, at least five angle values are read and knowledge of link lengths and device kinematics are incorporated to computer stylus 11 orientation. The orientation consists of three angles (not necessarily identical to any joint angles) which are included in the output sequence array.


Forces felt by a joint, setting a joint's resistance, and locking or unlocking a joint are accomplished by using interaction of the microprocessor 32A or 32B with forced-reflecting hardware. Reporting forces felt by a joint uses a force sensor mounted on the joint and then places the resulting value in the output sequence array. To set a joint's resistance and lock or unlock a joint, control signals are used to control force-reflection hardware, and do not require any output data of the device.


Also contemplated in the present invention is computer software and hardware which will provide feedback information from the computer to the stylus, such as host commands 40 (shown FIG. 1). This type of implementation is known in robotics and thus is easily incorporated into a system including the present invention. When a surface is generated on the computer screen, the computer will send feedback signals to the mechanical linkage which has force generators indentified by numerals 13A, 13B, 16A, 16B, 19A, and 19B (which also indentifies the sensors, see above) for generating force F (see FIG.1) in response to the cursor position on the surface depicted on the computer screen. Force is applied for example, by added tension in the joints which is in proportion to the force being applied by the user and in conjunction with the image on the screen.


The various configurations of the mechanical linkages shown in FIG. 5, FIG. 6, FIG. 7 and FIG. 8 which have different numbers of individual components and joints than shown in FIG. 1 are illustrative of the numerous possible configurations which can provide varying degrees of freedom inherent in the present invention. Referring to FIG. 5, FIG. 6 and FIG. 8, note that a rounded object such as a ball can act as a joint having motion in three degrees of freedom. In conjunction with other mechanical linkages and attachments, this permits sufficient degrees of freedom for the purposes of the present invention. In each figure, the orientation of the degrees of freedom of each joint is depicted by curved lines, numbered consecutively.


Briefly, FIG. 5 shows an embodiment having 6 rotary joints including a rounded joint 46 at the base such that three degrees of motion are available at that joint. FIG. 6 shows an embodiment having 5 rotary joints and one linear joint, including a three-dimensionally rotatable rounded joint 47 at the base through which one mechanical linkage can slide linearly and where the base is attached to a fixed surface 48 such that the surface does not prohibitively impede the movement of the device. FIG. 7 shows an embodiment having 3 rotary joints and 3 linear joints, where the basal connection can slide about the base in a two-dimensional plane in the cross configuration 49 on base 51. FIG. 8 shows an embodiment having 5 rotary joints and 3 linear joints, including three-dimensionally rotatable rounded joint 52 at a perpendicular projection from the base 53 through which one mechanical linkage 54 can slide linearly through the joint 52.


While any of the above discussed configurations or others can be used in accordance with the present invention, FIGS. 9–11 show different mechanisms for providing resistance to the manual manipulation of the stylus by the user. FIG. 9, for example, shows return or tension springs 56 on each joint of the embodiment shown in FIG. 1. In an alternative embodiment, FIG. 10, shows counter-weights 57 on each joint. Moreover, FIG. 11, shows a combination of a return or tension spring 56, a counter-weight 57 and a compression spring 58. The arrangement of the resistance mechanism used should depend upon the configuration stylus mechanical linkage combination, such arrangement preferably chosen to maximize the ease with which the user can manipulate the stylus 11 in free space in accordance with the present invention.

Claims
  • 1. A method, comprising: receiving a locative signal associated with a position and an orientation of a user-manipulable object in a plurality of degrees of freedom;displaying an image in a graphical environment, the image correlated with the position and the orientation of the user-manipulable object; andoutputting a feedback force signal corresponding to at least one of the plurality of degrees of freedom of the user-manipulable object, the feedback force responsive to the locative signal,wherein the user-manipulable object includes a stylus coupled to a mechanical linkage, the mechanical linkage configured to enable the user-manipulable object to be movable in the plurality of degrees of freedom.
  • 2. The method of claim 1, wherein the stylus is adapted for at least one of hand use, foot use, and mouse use.
  • 3. The method of claim 1, wherein the image displayed in the graphical environment includes a cursor, a motion of the cursor being correlated with the position and the orientation of the user-manipulable object.
  • 4. The method of claim 1, further comprising using the feedback force to effect a motion of the user-manipulable object in the at least one of the plurality of degree of freedom.
  • 5. An apparatus, comprising: a user-manipulable object moveable in a plurality of degrees of freedom;at least one sensor coupled to the user-manipulable object, the at least one sensor being operative to provide a locative signal associated with a position and an orientation of the user-manipulable object in the plurality of degrees of freedom; anda force generator coupled to the user-manipulable object and configured to output a feedback force in at least one of the plurality of degrees of freedom of the user-manipulable object, the feedback force correlated with the locative signal,wherein the user-manipulable object includes a stylus coupled to a mechanical linkage, the mechanical linkage configured to enable the user-manipulable object to be movable in the plurality of degrees of freedom.
  • 6. The apparatus of claim 5, wherein the locative signal is configured to enable a display an image in a graphical environment, the image is correlated with the position and the orientation of the user-manipulable object.
  • 7. The apparatus of claim 5, wherein the stylus is adapted for at least one of hand use, foot use, and mouse use.
  • 8. The apparatus of claim 5, wherein the mechanical linkage includes a plurality of joints, at least one joint from the plurality of joints is coupled to a support base.
  • 9. The apparatus of claim 8, wherein the plurality of the joints include at least one rotary joint.
  • 10. The apparatus of claim 9, wherein the plurality of the joints include at least one linear joint.
  • 11. The apparatus of claim 8, wherein the feedback force operates to effect a motion of the user-manipulable object associated with at least one joint from the plurality of the joints.
  • 12. The apparatus of claim 11, wherein the feedback force includes at least one of a resistive force and an elastic force.
  • 13. The apparatus of claim 5, further comprising a processor in communication with the at least one sensor and the force generator, the processor operable to receive the locative signal from the at least one sensor and output a control signal to the force generator, the control signal causing the force generator to output the feedback force.
  • 14. An apparatus, comprising: a mechanical linkage having a first end and a second end, the first end of the mechanical linkage being coupled to a stylus, the second end of the mechanical linkage being coupled to a support base, the mechanical linkage including a plurality of joints configured to allow the stylus to be manipulable in a plurality of degrees of freedom;a plurality of sensors coupled to the plurality of joints of the mechanical linkage, the plurality of sensors operative to provide a locative signal associated with a position and an orientation of the stylus; anda force generator coupled to the mechanical linkage, the force generator configured to output a feedback force responsive to the position and the orientation of the stylus.
  • 15. The apparatus of claim 14, further comprising a processor in communication with the sensors and the force generator, the processor operable to receive the locative signal from the plurality of sensors and output a control signal to the force generator, the force generator configured to output the feedback force in response to the control signal.
  • 16. The apparatus of claim 14, wherein the processor is operable to send an image signal configured to enable an image being displayed in a graphical environment, the image correlated with the position and orientation of the stylus.
  • 17. The apparatus of claim 14, further comprising an auxiliary sensor coupled to the stylus.
  • 18. The apparatus of claim 17, wherein the auxiliary sensor includes at least one of an ultrasonic sensor, an optical sensor, and a magnetic sensor.
  • 19. The apparatus of claim 14, wherein the plurality of degrees of freedom include at least five degrees of freedom.
  • 20. The apparatus of claim 14, wherein the stylus is adapted for at least one of hand use, foot use, and mouse use.
  • 21. The apparatus of claim 14, further comprising a resistance mechanism coupled to the mechanical linkage.
  • 22. The apparatus of claim 21, wherein the resistance mechanism includes at least one of counter weights and springs.
  • 23. A processor-executable program, stored on a computer-readable medium, comprising: code to receive a locative signal associated with a position and an orientation of a user-manipulable object in a plurality of degrees of freedom;code to display an image in a graphical environment, the image correlated with the position and the orientation of the user-manipulable object; andcode to output a feedback force signal corresponding to at least one of the plurality of degrees of freedom of the user-manipulable object, the feedback force responsive to the locative signal,wherein the user-manipulable object includes a stylus coupled to a mechanical linkage, the mechanical linkage configured to enable the user-manipulable object to be movable in the plurality of degrees of freedom.
  • 24. The processor-executable program of claim 23, the image including a cursor displayed in the graphical environment, the processor-executable program further comprising: code to correlate a motion of the cursor with the position and the orientation of the user-manipulable object.
  • 25. The processor-executable program of claim 23, wherein the feedback force is associated with the at least one of the plurality of degrees of freedom of the user-manipulable object.
Parent Case Info

This application is a continuation of U.S. application Ser. No. 09/511,413, filed Feb. 23, 2000, now U.S. Pat. No. 6,366,273 which is a continuation of U.S. application Ser. No. 09/248,175, now U.S. Pat. No. 6,046,727, filed on Feb. 9, 1999, which is a continuation of U.S. application Ser. No. 08/784,198, now U.S. Pat. No. 5,880,714, filed on Jan. 15, 1997, which is a continuation of application Ser. No. 08/583,032, filed Feb. 16, 1996, and which issued as U.S. Pat. No. 5,701,140, which was the National Stage of International Application No. PCT/U594/07851, filed Jul. 12, 1994, which is a continuation of Application Ser. No. 08/092,974, filed Jul. 16, 1993, abandoned.

US Referenced Citations (196)
Number Name Date Kind
2906179 Bower Sep 1959 A
2972140 Hirsch Feb 1961 A
3157853 Hirsch Nov 1964 A
3220121 Cutler Nov 1965 A
3497668 Hirsch Feb 1970 A
3517446 Corlyon et al. Jun 1970 A
3531868 Stevenson Oct 1970 A
3623064 Kagan Nov 1971 A
3890958 Fister et al. Jun 1975 A
3902687 Hightower Sep 1975 A
3903614 Diamond et al. Sep 1975 A
3911416 Feder Oct 1975 A
3919691 Noll Nov 1975 A
3923166 Fletcher et al. Dec 1975 A
3944798 Eaton Mar 1976 A
4127752 Lowthorp Nov 1978 A
4143505 Sheesley et al. Mar 1979 A
4160508 Frosch et al. Jul 1979 A
4216467 Colston Aug 1980 A
4236325 Hall et al. Dec 1980 A
4262549 Schwellenbach Apr 1981 A
4333070 Barnes Jun 1982 A
4398889 Lam et al. Aug 1983 A
4464117 Foerst Aug 1984 A
4477973 Davies Oct 1984 A
4484191 Vavra Nov 1984 A
4513235 Acklam et al. Apr 1985 A
4538035 Pool Aug 1985 A
4571834 Fraser et al. Feb 1986 A
4581491 Boothroyd Apr 1986 A
4593470 Davies Jun 1986 A
4599070 Hladky et al. Jul 1986 A
4632341 Repperger et al. Dec 1986 A
4638798 Shelden et al. Jan 1987 A
4653011 Iwano Mar 1987 A
4654648 Herrington et al. Mar 1987 A
4670851 Murakami et al. Jun 1987 A
4676002 Slocum Jun 1987 A
4679331 Koontz Jul 1987 A
4688983 Lindbom Aug 1987 A
4703443 Moriyasu Oct 1987 A
4708656 de Vries et al. Nov 1987 A
4713007 Alban Dec 1987 A
4750487 Zanetti Jun 1988 A
4769763 Trieb et al. Sep 1988 A
4775289 Kazerooni Oct 1988 A
4787051 Olson Nov 1988 A
4791934 Brunnett Dec 1988 A
4794392 Selinko Dec 1988 A
4800721 Cemenska et al. Jan 1989 A
4803413 Kendig et al. Feb 1989 A
4811608 Hilton Mar 1989 A
4819195 Bell et al. Apr 1989 A
4839838 LaBiche et al. Jun 1989 A
4849692 Blood Jul 1989 A
4879556 Duimel Nov 1989 A
4885565 Embach Dec 1989 A
4888877 Enderle et al. Dec 1989 A
4891764 McIntosh Jan 1990 A
4891889 Tomelleri Jan 1990 A
4907970 Meenen, Jr. Mar 1990 A
4907973 Hon Mar 1990 A
4930770 Baker Jun 1990 A
4934694 McIntosh Jun 1990 A
4942545 Sapia Jul 1990 A
4945305 Blood Jul 1990 A
4945501 Bell et al. Jul 1990 A
4949119 Moncrief et al. Aug 1990 A
4961138 Gorniak Oct 1990 A
4961267 Herzog Oct 1990 A
4962591 Zeller et al. Oct 1990 A
4982504 Soderberg et al. Jan 1991 A
4983901 Lehmer Jan 1991 A
5007085 Greanias et al. Apr 1991 A
5007300 Siva Apr 1991 A
5019761 Kraft May 1991 A
5022384 Freels et al. Jun 1991 A
5022407 Horch et al. Jun 1991 A
5035242 Franklin et al. Jul 1991 A
5038089 Szakaly Aug 1991 A
5040306 McMurtry et al. Aug 1991 A
5044956 Behensky et al. Sep 1991 A
5050608 Watanabe et al. Sep 1991 A
5072361 Davis et al. Dec 1991 A
5076517 Ferranti et al. Dec 1991 A
5078152 Bond et al. Jan 1992 A
5088046 McMurtry Feb 1992 A
5088055 Oyama Feb 1992 A
5095303 Clark et al. Mar 1992 A
5103404 McIntosh Apr 1992 A
5107080 Rosen Apr 1992 A
5113179 Scott-Jackson et al. May 1992 A
5116051 Moncrief et al. May 1992 A
5128671 Thomas, Jr. Jul 1992 A
5131844 Marinaccio et al. Jul 1992 A
5132672 Clark Jul 1992 A
5139261 Openiano Aug 1992 A
5142506 Edwards Aug 1992 A
5142931 Menahem Sep 1992 A
5143505 Burdea et al. Sep 1992 A
5146566 Hollis et al. Sep 1992 A
5148377 McDonald Sep 1992 A
5165897 Johnson Nov 1992 A
5175459 Danial et al. Dec 1992 A
5181181 Glynn Jan 1993 A
5182557 Lang Jan 1993 A
5184306 Erdman et al. Feb 1993 A
5184319 Kramer Feb 1993 A
5185561 Good et al. Feb 1993 A
5186695 Mangseth et al. Feb 1993 A
5187874 Takahashi et al. Feb 1993 A
5189806 McMurtry et al. Mar 1993 A
5193963 McAffee et al. Mar 1993 A
5197003 Moncrief et al. Mar 1993 A
5203563 Loper, III Apr 1993 A
5204824 Fujimaki Apr 1993 A
5209131 Baxter May 1993 A
5209661 Hildreth et al. May 1993 A
5212473 Louis May 1993 A
5216948 Sheppard et al. Jun 1993 A
5220260 Schuler Jun 1993 A
5223776 Radke et al. Jun 1993 A
5228356 Chuang Jul 1993 A
5230623 Guthrie et al. Jul 1993 A
5240417 Smithson et al. Aug 1993 A
5243266 Kasagami et al. Sep 1993 A
5251127 Raab Oct 1993 A
5251156 Heier et al. Oct 1993 A
5259120 Chapman et al. Nov 1993 A
5259894 Sampson Nov 1993 A
5264768 Gregory et al. Nov 1993 A
5271290 Fischer Dec 1993 A
5275174 Cook Jan 1994 A
5275565 Moncrief Jan 1994 A
5283970 Aigner Feb 1994 A
5286203 Fuller et al. Feb 1994 A
5289273 Lang Feb 1994 A
5296846 Ledley Mar 1994 A
5299810 Pierce et al. Apr 1994 A
5309140 Everett, Jr. et al. May 1994 A
5334027 Wherlock Aug 1994 A
5351692 Dow et al. Oct 1994 A
5354162 Burdea et al. Oct 1994 A
5368484 Copperman et al. Nov 1994 A
5379663 Hara Jan 1995 A
5384460 Tseng Jan 1995 A
5389865 Jacobus et al. Feb 1995 A
5396266 Brimhall Mar 1995 A
5397323 Taylor et al. Mar 1995 A
5402582 Raab Apr 1995 A
5405152 Katanics et al. Apr 1995 A
5412880 Raab May 1995 A
5414337 Schuler May 1995 A
5417696 Kashuba et al. May 1995 A
5428748 Davidson et al. Jun 1995 A
5429140 Burdea et al. Jul 1995 A
5435729 Hildreth et al. Jul 1995 A
5436542 Petelin et al. Jul 1995 A
5436622 Gutman et al. Jul 1995 A
5437607 Taylor Aug 1995 A
5445166 Taylor Aug 1995 A
5459382 Jacobus et al. Oct 1995 A
5466213 Hogan et al. Nov 1995 A
5467763 McMahon et al. Nov 1995 A
5512919 Araki Apr 1996 A
5513100 Parker et al. Apr 1996 A
5547382 Yamasaki et al. Aug 1996 A
5559432 Logue Sep 1996 A
5575761 Hajianpour Nov 1996 A
5576727 Rosenberg et al. Nov 1996 A
5587937 Massie et al. Dec 1996 A
5589828 Armstrong Dec 1996 A
5591924 Hilton Jan 1997 A
5629594 Jacobus et al. May 1997 A
5631861 Kramer May 1997 A
5634794 Hildreth et al. Jun 1997 A
5690582 Ulrich et al. Nov 1997 A
5691898 Rosenberg et al. Nov 1997 A
5701140 Rosenberg et al. Dec 1997 A
5734373 Rosenberg et al. Mar 1998 A
5739811 Rosenberg et al. Apr 1998 A
5766016 Sinclair et al. Jun 1998 A
5781172 Engel et al. Jul 1998 A
5785630 Bobick et al. Jul 1998 A
5790108 Salcudean et al. Aug 1998 A
5880714 Rosenberg et al. Mar 1999 A
5899672 Salamey May 1999 A
6004134 Marcus et al. Dec 1999 A
6037927 Rosenberg Mar 2000 A
6046727 Rosenberg et al. Apr 2000 A
6050718 Schena et al. Apr 2000 A
6057828 Rosenberg et al. May 2000 A
6104158 Jacobus et al. Aug 2000 A
6111577 Zilles et al. Aug 2000 A
6186048 Kimura et al. Feb 2001 B1
6422941 Thorner et al. Jul 2002 B1
Foreign Referenced Citations (12)
Number Date Country
0 349 086 Jan 1990 EP
2254911 Oct 1992 GB
H2-185278 Jul 1990 JP
H4-8381 Jan 1992 JP
434610 Feb 1992 JP
H5-192449 Aug 1993 JP
H7-24147 Jan 1995 JP
WO0950281 Jan 1995 WO
WO9520787 Aug 1995 WO
WO9520788 Aug 1995 WO
WO9616397 May 1996 WO
WO9622591 Jul 1996 WO
Related Publications (2)
Number Date Country
20020063685 A1 May 2002 US
20040252100 A9 Dec 2004 US
Continuations (4)
Number Date Country
Parent 09511413 Feb 2000 US
Child 10043374 US
Parent 09248175 Feb 1999 US
Child 09511413 US
Parent 08784198 Jan 1997 US
Child 09248175 US
Parent 08583032 US
Child 08784198 US