INTERFACE FOR SENDING SYNCHRONIZED AUDIO AND VIDEO DATA

Information

  • Patent Application
  • 20160337674
  • Publication Number
    20160337674
  • Date Filed
    July 28, 2016
    8 years ago
  • Date Published
    November 17, 2016
    8 years ago
Abstract
A data stream format for transmission of data frames between a computer and a video client via an interface, the data stream being a plurality of data frames transmitted sequentially, each data frame comprising: a frame header; video data, the video data following the frame header; and audio data, the audio data following the video data.
Description
FIELD OF THE INVENTION

The present invention relates broadly to devices in communication over a network. Specifically, the present invention relates to transmitting data in frames characterized by the presence of a header, followed by a block of video data, and a block of audio data that follows the block of video data.


BACKGROUND OF THE INVENTION

A “bus” is a collection of signals interconnecting two or more electrical devices that permits one device to transmit information to one or more other devices. There are many different types of busses used in computers and computer-related products. Examples include the Peripheral Component Interconnect (“PCI”) bus, the Industry Standard Architecture (“ISA”) bus and Universal Serial Bus (“USB”), to name a few. The operation of a bus is usually defined by a standard which specifies various concerns such as the electrical characteristics of the bus, how data is to be transmitted over the bus, how requests for data are acknowledged, and the like. Using a bus to perform an activity, such as transmitting data, requesting data, etc., is generally called running a “cycle.” Standardizing a bus protocol helps to ensure effective communication between devices connected to the bus, even if such devices are made by different manufacturers. Any company wishing to make and sell a device to be used on a particular bus, provides that device with an interface unique to the bus to which the device will connect. Designing a device to particular bus standard ensures that device will be able to communicate properly with all other devices connected to the same bus, even if such other devices are made by different manufacturers. Thus, for example, an internal fax/modem (i.e., internal to a personal computer) designed for operation on a PCI bus will be able to transmit and receive data to and from other devices on the PCI bus, even if each device on the PCI bus is made by a different manufacturer.


Currently, there is a market push to incorporate various types of consumer electronic equipment with a bus interface that permits such equipment to be connected to other equipment with a corresponding bus interface. For example, digital cameras, digital video recorders, digital video disks (“DVDs”), printers are becoming available with an IEEE 1394 bus interface. The IEEE (“Institute of Electrical and Electronics Engineers”) 1394 bus, for example, permits a digital camera to be connected to a printer or computer so that an image acquired by the camera can be printed on the printer or stored electronically in the computer. Further, digital televisions can be coupled to a computer or computer network via an IEEE 1394 bus.


However, many devices exist without any sort of IEEE 1394 interface. This presents a problem as such devices are unable to be to be connected with other devices as described above. There is a heartfelt need to overcome this problem to provide connectivity to devices that otherwise cannot be connected to a IEEE 1394 bus.


SUMMARY

The present invention solves the problems discussed above by providing a data stream format for transmission of data frames between a computer and a video client. The computer and video client are in communication with each other through an interface connected between the computer and the video client. The data stream comprises data frames transmitted sequentially, with each data frame having a frame header, video data following the frame header, and audio data following the video data. In an embodiment, the data frame also includes an audio header presented between the video data and the audio data. A frame count synchronization bit may be included, which is synchronized with the vertical blanking portion. In an embodiment, the audio header comprises an audio cycle count. In an embodiment, the audio data is sampled with respect to the video data. In an embodiment, the audio data comprises an audio sample count per frame, the audio sample count per frame. In an embodiment, the audio sample count indicates a number of bytes per sample, and can vary in accordance with an ANSI/SMPTE 272M specification. The frame header may also include format flags that indicate a number of bits per sample of video data. In embodiments, the frame header comprises an SMPTE time code, and an incrementing frame counter, and an audio cycle count that indicates the position in the audio cadence specified by the ANSI/SMPTE 272M specification. In embodiments, the frame header comprises an audio channel count, and a block size byte count that indicates how many bytes of audio are contained in the audio data. Audio format flags and video format flags may also be included in the frame header.


In another aspect, the present invention provides a method of data transmission, the method comprising attaching a header to an SDTI-compliant frame; and transmitting the header and SDTI-compliant frame between a video client and a computer over a IEEE 1394b-compliant interface. In an embodiment, the SDTI-compliant frame is divided into first and second portions and sending the header and a portion over a first channel, and sending the header and second portion over a second channel.


Many other features and advantages of the present invention will be realized by reading the following detailed description, when considered in conjunction with the accompanying drawings, in which:





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates in block diagram form major components used in connection with embodiments of the present invention;



FIG. 2 illustrates the format of a frame in accordance with embodiments of the present invention;



FIGS. 3A and 3B illustrate the format of the first data packet and following data packet, respectively;



FIGS. 4A and 4B illustrate the organization of video data within data packets in accordance with the embodiments of the present invention;



FIGS. 5A and 5B illustrate the organization of audio data within data packets in accordance with the embodiments of the present invention;



FIGS. 6 and 7 illustrate elements of a header included in the frame in accordance with embodiments of the present invention;



FIG. 8 illustrates a collection of packets that combine to form a frame in accordance with embodiments of the present invention;



FIGS. 9A-9D illustrates an alternative embodiment of the present invention in which variations of SDTI frames are used in accordance with embodiments of the present invention;



FIG. 9E illustrates an alternative embodiment in which the transmitter divides the SDTI stream across multiple channels;



FIG. 10 illustrates in flow chart form acts performed to provide external clocking between a computer and a hardware interface in accordance with embodiments of the present invention;



FIG. 11 illustrates the register memory map for the interface device in accordance with embodiments of the present invention;



FIG. 12 illustrates organization of A/V global registers contained within the interface of the present invention;



FIG. 13 illustrates organization of global status registers contained within the interface device of the present invention;



FIG. 14 illustrates the isochronous control register contained in the interface device of the present invention;



FIG. 15 illustrates the organization of the flow control register contained in the interface device of the present invention; and



FIG. 16 illustrates the organization of the isochronous channel register contained in the interface device of the present invention.





DETAILED DESCRIPTION

Directing attention to FIG. 1, there is shown in block diagram form components connected to transmit audio and video data between a computer 100 and client 102, connected by bus 104 to interface 106. Computer 100 in the preferred embodiment is a computing device capable of processing and video and audio data and displaying it in a recognizable form to a user. Such devices include desktop, laptop, and palmtop computers. Client 102 as referred to herein is a video consumer or video producer, and includes such devices as digital cameras, and video storage devices, such as linear and random access devices. Bus 104, as referred to herein, includes a physical connection between computer 100 and interface 106, as well as the serial protocol adhered to by devices communicating over bus 104. In the preferred embodiment, bus 104 utilizes the IEEE 1394 serial bus protocol known as Firewire. Interface 106 accepts from client 102 both analog and digital inputs, and converts the input to scanned lines that can be used by an audio/video player executed on computer 100. In an alternative embodiment, interface 106 accepts from client 102 a digital compressed/uncompressed signal and transmits the entire signal or subsets of that signal. In an embodiment, interface 106 divides the input into frames 108 them over bus 104 to computer 100.


The format of frame 108 is illustrated in FIG. 2. Frame 108 includes a frame header 110, video block 112, audio block 114, and optionally an audio header 116. Audio data in audio block 114 is sampled with respect to the video data in video block 112. The audio sample count per frame varies in accordance with the number defined in the ANSI/SMPTE 272M specification, incorporated herein by reference in its entirety. The audio sample count cadence is necessary to divide the integer number of samples per second across the NTSC frame rate (29.97 fps Similarly, the size of frame 108 can vary to accommodate various video formats such as PAL or NTSC, and 8 or 10 bit video data, and audio formats such as 48 Khz and 96 Khz 16 and 24 bit etc. Similarly, the frame size of compressed data can vary to accommodate the compressed format. In an embodiment, video block 112 and audio block or compressed block are of a predetermined size, to make parsing frame 108 simple and requiring little processing overhead by applications such as direct memory access programs. In the event that not all of video block 112 or audio block 114 is not completely full of data, the remaining portions of blocks 112, 114 can be filled with zeros. In one embodiment, data contained in video block 112 and audio block 114 is not compressed, further reducing processing overhead on interface 106, as well as processing overhead required by decompression programs running on computer 100.


Interface 106, upon converting the input received from client 102 and converting it to scan lines and organizing it into frames 108, sends a frame at each vertical blanking interval to provide synchronization with computer 100. Computer 100 can derive the vertical blanking interval from the frequency of frames received and synchronize itself with the audio and video data of the incoming frames 108 received from interface 106. In this manner, processing resources are preserved, as there is no need to perform synchronization on each frame as it is received, thus providing higher quality performance of audio and video display on computer 100.



FIGS. 3A and 3B illustrate the format of the first data packet and following data packet, respectively.



FIGS. 4A and 4B illustrate the organization of video data within data packets. FIGS. 5A and 5B illustrate the organization of audio data within data packets.



FIG. 6 illustrates the contents of frame header 110. Included are format flags 130, which indicate how many bits per sample, SMPTE time code 132, incrementing frame counter 134, audio cycle count 136, audio sample count 138, channel count 140, block size byte count 142, audio format flags 144, and video format flags 146. Audio sample count 138 indicates a number of samples, which is in accordance with a cadence. The value in audio cycle count 136 indicates location within the cadence. A cadence of frames form a cycling pattern.


In an alternative embodiment, some of the contents of frame header 110 can be moved or copied to optional audio header 116. An alternative view of frame header 110 is shown in FIG. 7, showing byte count, data length, and a frame bit.


As illustrated in FIG. 8, frame 108 is constructed from a plurality of packets 150 of a predetermined size. Associated with each packet is an 1394 isochronous packet header. Data transmission in accordance with the present invention takes advantage of a synchronization bit to find the beginning of a frame. The first packet in frame 108 is marked with the synchronization bit. This allows the stream of data to be identified by computer 100 as it is received, further reducing processing overhead by allowing computer 100 to synchronize the flow of frames received from interface 106.


In an alternative embodiment of the present invention, frames adhering to the serial digital interface (SDI) standard can be utilized as illustrated in FIGS, 9A through 9E. In these embodiments, bus 104 adheres to the IEEE 1394B serial bus protocol to accommodate data rate restrictions set forth by the SDI standard. As described above, interface 106 forms frames from received input by creating scanned lines, performing deinterlacing, packetizing, and creating fixed-size SDTI frames of audio and video data. Various modifications can be made to SDTI frames, depending on the processing resources available on computer 100, interface 106, client 102, or other device. As described above, the transmission of SDTI frames sent over bus 104 are synchronized to the vertical blanking interval of the accepted signal.


As shown in FIG. 9A, SDTI frame 160 generally has two components: vertical blanking portion 162 and horizontal retrace 164. Alternatively, in another embodiment (FIG. 9B), SDI frame header 166, a header having a synchronization bit and a frame count, is added to SDTI frame 160 for further synchronization and fault detection purposes, such as recovering from data lost in transmission or the occurrence of a bus reset. In this embodiment, a frame count synchronization bit is included in SDTI frame header 166 and SDTI frame header 166 is synchronized with vertical blanking portion 162. For example, in an application where interface 106 is unable to read compressed data, or excessive upgrades to interface 106 would be required, SDTI frame 160 can be transmitted to computer 100, where processing on the SDTI stream is performed by software in a non-realtime manner. Alternatively, as shown in FIG. 9C, SDTI frame 160 can be constructed without horizontal retrace 164 to further reduce processing overhead. An SDTI frame constructed without a horizontal retrace but having header 166, can also be utilized in an embodiment, as shown in FIG. 9D. In yet another embodiment, as shown in FIG. 9E, the SDTI frame can be split between multiple channels and also include SDTI frame header 166. In this embodiment, the transmitter splits the SDTI stream in half, with half of the lines being transmitted across channel A, the other half being transmitted across channel B. An attached header for each partial frame can be used to assist in re-combining frame data.


In another aspect of the present invention, external clocking can be utilized to synchronize data transmission between computer 100, interface 106 and client 102. In an embodiment, client 102 includes a high-quality reference clock 180 (FIG. 1) that can be used to synchronize clock 182 on interface 106 and prevent overflow of buffer 184 on interface 106. In this embodiment, the value of reference clock 180 on client 102 is derived on interface 106 from the frequency at which data is transmitted from computer 102 to interface 106. To perform flow control, cycles are skipped between transmission of frames. A skipped cycle increases the amount of time between transmissions of frames, to slow the data rate of the frame transmission. Directing attention to FIG. 10, at reference numeral 200, computer polls interface 106 to read the size of buffer 184. While for exemplary purposes the buffer is referred to in terms such as “bigger” and “smaller,” it is to be understood that in the case of a fixed-size buffer bigger and smaller refer to fullness of the buffer. At reference numeral 202, computer 100 then sends a plurality of frames to interface 106. At reference numeral 204, computer 100 again polls interface 106 to determine the size of buffer 184. If buffer 184 has grown in size from the last poll of its size (decision reference numeral 206), control proceeds to reference numeral 208, where computer 100 increases the delay between frames it is sending to interface 106. In an embodiment, the delay between frames sent is 125 milliseconds. In another embodiment a fractional delay is attained by modulating the delay over a number of frames. For instance if a delay between frames of 2.5 times 1.25 microseconds is required, alternating frame delays of 2 and 3 cycles (of 125 microseconds) are interspersed. Control then returns to reference numeral 202, where the frames are sent to interface 106 with the additional delay between frames. However, returning to decision reference numeral 206, if buffer 184 has not grown in size since the last polling of its size, control transitions to decision reference numeral 210. At decision reference numeral 210, if buffer 206 has decreased in size, control transitions to reference numeral 212, where the delay between frames sent from computer 100 to interface 106 is decreased. In an embodiment, the amount of this decrease is also 125 Ms. Control then transitions to reference numeral 202, where the frames are sent from computer 100 to interface 106 with the reduced delay between frames. Returning to decision reference numeral 210, if the size of buffer 184 has not reduced since the last polling of the size of buffer 184, then no adjustment to the delay between frames is necessary, and control transitions to reference numeral 202.


Interface 106 includes a serial unit 300 for enabling communication across bus 104. Serial unit 300 includes a unit directory 302 as shown in Table 1.













TABLE 1







Name
Key
Value









Unit_Spec_ID
Ox12
Ox000a27



Unit_SW_Version
Ox13
Ox000022



Unit_Register_Location
Ox54
Csr_offset to registers



Unit_Signals_Supported
Ox55
Supported RS232 signals










The Unit_Spec_ID value specifies the organization responsible for the architectural definition of serial unit 300. The Unit_SW_Version value, in combination with Unit_Spec_ID value, specifies the software interface of the unit. The Unit_Register_location value specifies the offset in the target device's initial address space of the serial unit registers. The Unit_Signals_Supported value specifies which RS-232 signals are supported, as shown in the Table 2. If this entry is omitted from the serial unit directory 302, then none of these signals are supported.











TABLE 2





Field
Bit
Description







Ready to Send (RTS)
0
Set if RTS/RFR is supported


Clear to Send (CTS)
1
Set if CTS is supported


Data Set ready (DSR)
2
Set if DSR is supported


Data Transmit Ready (DTR)
3
Set if DTR is supported


Ring Indicator (RI)
4
Set if RI supported


Carrier (CAR)
5
Set if CAR/DCD is supported


Reserved
[31 . . . 6]
Reserved









Also included in serial unit 300 is a serial unit register map 304 that references registers contained in serial unit 300. The organization of serial unit register map 304 is shown in Table 3.













TABLE 3





Hex

Ac-
Size



Offset
Name
cess
(quads)
Value







OxO
Login
w
2
Address of initiator's






serial registers


Ox8
Logout
w
1
Any value


Oxc
Reconnect
w
1
Initiator's node ID


OxlO
TxFIFO Size
R
1
Size in bytes of Tx FIFO


Ox14
RxFIFO Size
R
1
Size in bytes of Rx FIFO


Ox18
Status
R
1
CTS/DSR/RI/CAR


Oxlc
Control
w
1
DTR/RTS


Ox20
Flush TxFIFO
w
1
Any value


Ox24
Flush RxFIFO
w
1
Any value


Ox28
Send Break
w
1
Any value


Ox2c
Set Baud Rate
w
1
Baud rate 300->230400


Ox30
Set Char Size
w
1
7 or 8 bit characters


Ox34
Set Stop Size
w
1
1, 1.5 or 2 bits


Ox38
Set Parity
w
1
None, odd or even parity


Ox3c
Set Flow
w
1
None, RTS/CTS or



Control


Xon/Xoff


Ox40
Reserved

4
Reserved


Ox50
Send Data
w
TxFIFO size
Bytes to transmit









Serial unit register map 304 references a login register. A device attempting to communicate with serial unit 300, is referred to herein as an initiator. For example, an initiator can be computer 100, or other nodes connected on a network via a high-speed serial bus and in communication with interface 106. The initiator writes the 64 bit address of the base of its serial register map to the login register to log into serial unit 300. If another initiator is already logged in, serial unit 300 returns a conflict error response message. The high 32 bits of the address are written to the Login address, the lower 32 bits to Login+4. The serial unit register map also references a logout register. The initiator writes any value to this register to log out of the serial unit. After every bus reset the initiator must write its (possibly changed) nodeID to the reconnect register. If the initiator fails to do so within one second after the bus reset it is automatically logged out. The 16-bit nodeID is written to the bottom 16 bits of this register, the top 16 bits should be written as zero. A read of the TxFIFOSize register returns the size in bytes of the serial unit's transmit FIFO. A read of the RxFIFOSize register returns the size in bytes of serial unit 300's receive FIFO. A read of the status register returns the current state of CTS/DSR/RI/CAR (if supported). The status register is organized as shown in Table 4.













TABLE 4







Field
Bit
Description









CTS
0
1 if CTS is high, else 0



DSR
1
1 if DSR is high, else 0



RI
2
1 if RI is high, else 0



CAR
3
1 if CAR is high, else 0



Reserved
[31 . . . 4]
Always 0










A write to the control register sets the state of DTR and RTS (if supported). The organization of the control register is shown in Table 5.













TABLE 5







Field
Bit
Description









RTS
0
If 1 set RTS high, else set RTS low



DTR
1
If 1 set DTR high, else set DTR low



Reserved
[31 . . . 2]
Always 0










A write of any value to the FlushTxFIFO register causes serial unit 300 to flush its transmit FIFO, discarding any bytes currently in it. A write of any value to the FlushRxFIFO register causes the serial unit to flush its receive FIFO, discarding any bytes currently in it. A write of any value to the send break register causes serial unit 300 to set a break condition on its serial port, after transmitting the current contents of the TxFIFO. A write to the set baud rate register sets serial unit 300's serial port's baud rate. The set baud rate register is organized as shown in Table 6.












TABLE 6







Value written
Baud Rate



















0
300



1
600



2
1200



3
2400



4
4800



5
9600



6
19200



7
38400



8
57600



9
115200



10
230400










The set char size register sets the bit size of the characters sent and received. The organization of the set char size register is shown in Table 7. 7 bit characters are padded to 8 bits by adding a pad bit as the most significant bit.












TABLE 7







Value written
Character bit size









0
7 bits



1
8 bits










The set stop size register designates the number of stop bits. The set stop size register is organized as shown in Table 8.












TABLE 8







Value written
Stop bits









0

1 bit




1
1.5 bits



2

2 bits











The set parity register sets the serial port parity. The organization of the set parity register is shown in Table 9.










TABLE 9





Value written
Parity







0
No Parity bit


1
Even parity


2
Odd parity









The set flow control register sets the type of flow control used by the serial port. The organization of the set flow register is shown in Table 10.










TABLE 10





Value written
Flow Control







0
None


1
CTS/RTS


2
XOn/XOff









The send data register is used when the initiator sends block write requests to this register to write characters into the transmit FIFO. Block writes must not be larger than the transmit FIFO size specified by the TxFIFOSize register. If there isn't enough room in the TxFIFO for the whole block write, then a conflict error response message is returned and no characters are copied into the FIFO.


Also included in serial unit 300 is an initiator register map having a plurality of registers, organized as shown in Table 11.













TABLE 11





Hex

Ac-
Size



Offse
Name
cess
(quads
Value







OxO
Break
w
1
Any value


Ox4
Framing Error
w
1
Received character


Ox8
Parity Error
w
1
Received character


Oxc
RxFIFO overflow
w
1
Any value


OxlO
Status change
w
1
CTS/DSR/RI/CAR


Ox14
Reserved

3
Reserved


Ox20
Received Data
w
RxFIFO size
Bytes received









When serial unit 300 detects a break condition on its serial port, it writes an arbitrary value to this register. When serial unit 300 detects a framing error on its serial port, it writes the received character to the framing register. When serial unit 300 detects a parity error on its serial port, it writes the received character to the parity error register. When serial unit 300's receive FIFO overflows, serial unit 300 writes an arbitrary value to the RxFIFO overflow register. When serial unit 300 detects a change in state of any of CTS/DSR/RI/CAR it writes to the status change register indicating the new serial port signal state. The organization of the status register is shown in table 12.













TABLE 12







Field
Bit
Description









CTS
0
1 if CTS is high, else 0



DSR
1
1 if DSR is high, else 0



RI
2
1 if RI is high, else 0



CAR
3
1 if CAR is high, else 0



Reserved
[31 . . . 4]
Always 0










When serial unit 300 receives characters from its serial port it writes the received characters to the received data register with a block write transaction. It never writes more bytes than the receive FIFO size specified by the RxFIFOSize register. If the initiator cannot receive all the characters sent it responds with a conflict error response message and receives none of the characters sent.



FIG. 11 illustrates the register memory map for the interface device in accordance with embodiments of the present invention. FIG. 12 illustrates organization of A/V global registers contained within the interface of the present invention. FIG. 13 illustrates organization of global status registers contained within the interface device of the present invention. FIG. 14 illustrates the isochronous control register contained in the interface device of the present invention. FIG. 15 illustrates the organization of the flow control register contained in the interface device of the present invention. FIG. 16 illustrates the organization of the isochronous channel register contained in the interface device of the present invention.


In another embodiment of the present invention, a synthesized vertical blanking signal is derived by polling a vertical blanking register on interface 106. The vertical blanking signal invokes code to programs running on computer 100. In an embodiment, timing information may also be provided to programs running on computer 100, either in combination with the invoked code or instead of the invoked code. In an embodiment of the invention, interface 106 contains a register that holds a counter indicating current progress in the frame, from which the next vertical retrace can be extrapolated or otherwise derived. By deriving boundaries on frame transmission, other data that is within the frame and synchronized to the occurrence of a vertical blanking interval can be located and accessed, such as for sampling operations. Additionally, an embodiment of the present invention derives frame boundaries for locating data that is coincident with the vertical blanking interval but includes no information about the vertical blanking In an embodiment, the present invention is used to obtain data that is valid for a period after the occurrence of a video blanking interval, such as a time code contained within the frame, can be read, and used in various processing applications. In an embodiment, computer 100 can then schedule an interrupt to fire at this extrapolated time, thus sending out a frame.

Claims
  • 1. A method of processing data frames, comprising: receiving input data from a client device at a device interface;converting, using the device interface, at least a portion of the input data into a data frame, wherein the data frame comprises video data and audio data;dividing, using the device interface, the data frame into a first portion and a second portion;constructing, using the device interface, a first partial frame that includes a first header and the first portion;constructing, using the device interface, a second partial frame that includes a second header and the second portion;transmitting, using the device interface, the first partial frame over a first channel to a computing device; andtransmitting, using the device interface, the second partial frame over a second channel to the computing device, wherein the first channel and the second channel are different.
  • 2. The method of claim 1, wherein converting, using the device interface comprises: creating, using the device interface, scanned lines based on the input data;performing, using the device interface, deinterlacing and packetizing of the scanned lines; andgenerating, using the device interface, the data frame based upon the deinterlacing and packetizing of the scanned lines.
  • 3. The method of claim 1, wherein transmitting the first partial frame over the first channel comprises synchronizing the transmission of the first partial frame with a vertical blanking interval defined between the device interface and the computing device.
  • 4. The method of claim 3, wherein the first header comprises a synchronization bit that is synchronized with the vertical blanking interval.
  • 5. The method of claim 3, wherein the vertical blanking interval corresponds to a frequency of a plurality of other data frames transmitted to the computing device.
  • 6. The method of claim 1, wherein the data frame further comprises an audio header, and wherein the audio header is located between the video data and the audio data.
  • 7. The method of claim 6, wherein the audio header includes an audio sample count that is indicative of a number of audio samples in accordance with a cadence.
  • 8. The method of claim 7, wherein the audio header includes an audio cycle count that is indicative of a location within the cadence.
  • 9. The method of claim 1, wherein the first header comprises format flags that are indicative of the number of bits per sample of video data.
  • 10. A non-transitory machine readable medium that comprises instructions that when executed by at least one processor causes a device interface of a programmable device to: receive input data from the programmable device;convert at least a portion of the input data into a data frame, wherein the data frame comprises video data and audio data;divide the data frame into a first portion and a second portion;construct a first partial frame that includes a first header and the first portion;construct a second partial frame that includes a second header and the second portion;transmit the first partial frame over a first channel to a computing device; andtransmit the second partial frame over a second channel to the computing device, wherein the first channel and the second channel are different.
  • 11. The non-transitory machine readable medium of claim 10, wherein the instructions to convert comprises instructions that cause the device interface to: create scanned lines based on the input data;perform deinterlacing and packetizing of the scanned lines; andgenerate the data frame based upon the deinterlacing and packetizing of the scanned lines.
  • 12. The non-transitory machine readable medium of claim 10, wherein the instructions to transmit the first partial frame over the first channel comprises instructions that cause the device interface to synchronize the transmission of the first partial frame with a vertical blanking interval defined between the device interface and the computing device.
  • 13. The non-transitory machine readable medium of claim 12, wherein the first header comprises a synchronization bit that is synchronized with the vertical blanking interval.
  • 14. The non-transitory machine readable medium of claim 12, wherein the vertical blanking interval corresponds to a frequency of a plurality of other data frames transmitted to the computing device.
  • 15. The non-transitory machine readable medium of claim 10, wherein the data frame further comprises an audio header, and wherein the audio header is located between the video data and the audio data.
  • 16. A system, comprising: a-processor; anda memory coupled to the processor, wherein instructions are stored in the memory, the instructions comprising instructions that when executed cause a device interface of a client device to:receive input data from the programmable device;convert at least a portion of the input data into a data frame, wherein the data frame comprises video data and audio data;divide the data frame into a first portion and a second portion;construct a first partial frame that includes a first header and the first portion;construct a second partial frame that includes a second header and the second portion;transmit the first partial frame over a first channel to a computing device; andtransmit the second partial frame over a second channel to the computing device, wherein the first channel and the second channel are different.
  • 17. The system of claim 16, wherein the instructions to convert comprises instructions that cause the device interface to: create scanned lines based on the input data;perform deinterlacing and packetizing of the scanned lines; andgenerate the data frame based upon the deinterlacing and packetizing of the scanned lines.
  • 18. The system of claim 16, wherein the instructions to transmit the first partial frame over the first channel comprises instructions that cause the device interface to synchronize the transmission of the first partial frame with a vertical blanking interval defined between the device interface and the computing device.
  • 19. The system of claim 18, wherein the first header comprises a synchronization bit that is synchronized with the vertical blanking interval.
  • 20. The system of claim 18, wherein the vertical blanking interval corresponds to a frequency of a plurality of other data frames transmitted to the computing device.
RELATED APPLICATIONS

This application is a divisional application of U.S. patent application Ser. No. 10/746,281 filed on Dec. 23, 2003, by Giovannni Agnoli et al. and entitled “Interface for Sending Synchronized Audio and Video Data,” which claims priority from provisional patent application Ser. No. 60/478,336 filed on Jun. 13, 2013, by Giovannni Agnoli et al. and entitled “Interface for Sending Synchronized Audio and Video Data,” all of which are incorporated herein by reference in their entirety.

Provisional Applications (1)
Number Date Country
60478336 Jun 2003 US
Divisions (1)
Number Date Country
Parent 10746281 Dec 2003 US
Child 15222555 US