Interface virtualization and fast path for network on chip

Information

  • Patent Grant
  • 10735335
  • Patent Number
    10,735,335
  • Date Filed
    Friday, February 23, 2018
    6 years ago
  • Date Issued
    Tuesday, August 4, 2020
    4 years ago
Abstract
Example implementations described herein are directed to a configurable Network on Chip (NoC) element that can be configured with a bypass that permits messages to pass through the NoC without entering the queue or arbitration. The configurable NoC element can also be configured to provide a protocol alongside the valid-ready protocol to facilitate valid-ready functionality across virtual channels.
Description
BACKGROUND
Technical Field

Methods and example implementations described herein are directed to interconnect architecture, and more specifically, to Network on Chip (NoC) architectures and the design and management thereof.


Related Art

The number of components on a chip is rapidly growing due to increasing levels of integration, system complexity and shrinking transistor geometry. Complex System-on-Chips (SoCs) may involve a variety of components e.g., processor cores, Digital Signal Processors (DSPs), hardware accelerators, memory and I/O, while Chip Multi-Processors (CMPs) may involve a large number of homogenous processor cores, memory and I/O subsystems. In both SoC and CMP systems, the on-chip interconnect plays a role in providing high-performance communication between the various components. Due to scalability limitations of traditional buses and crossbar based interconnects, Network-on-Chip (NoC) has emerged as a paradigm to interconnect a large number of components on the chip. NoC is a global shared communication infrastructure made up of several routing nodes interconnected with each other using point-to-point physical links.


Messages are injected by the source and are routed from the source node to the destination over multiple intermediate nodes and physical links. The destination node then ejects the message and provides the message to the destination. For the remainder of this application, the terms ‘components’, ‘blocks’, ‘hosts’ or ‘cores’ will be used interchangeably to refer to the various system components which are interconnected using a NoC. Terms ‘routers’ and ‘nodes’ will also be used interchangeably. Without loss of generalization, the system with multiple interconnected components will itself be referred to as a ‘multi-core system’.


There are several topologies in which the routers can connect to one another to create the system network. Bi-directional rings (as shown in FIG. 1(a)), 2-D (two dimensional) mesh (as shown in FIG. 1(b)) and 2-D Taurus (as shown in FIG. 1(c)) are examples of topologies in the related art. Mesh and Taurus can also be extended to 2.5-D (two and half dimensional) or 3-D (three dimensional) organizations. FIG. 1(d) shows a 3D mesh NoC, where there are three layers of 3×3 2D mesh NoC shown over each other. The NoC routers have up to two additional ports, one connecting to a router in the higher layer, and another connecting to a router in the lower layer. Router 111 in the middle layer of the example has both ports used, one connecting to the router at the top layer and another connecting to the router at the bottom layer. Routers 110 and 112 are at the bottom and top mesh layers respectively, therefore they have only the upper facing port 113 and the lower facing port 114 respectively connected.


Packets are message transport units for intercommunication between various components. Routing involves identifying a path composed of a set of routers and physical links of the network over which packets are sent from a source to a destination. Components are connected to one or multiple ports of one or multiple routers; with each such port having a unique ID. Packets carry route information such as the destination's router and port ID for use by the intermediate routers to route the packet to the destination component.


Examples of routing techniques include deterministic routing, which involves choosing the same path from A to B for every packet. This form of routing is independent from the state of the network and does not load balance across path diversities, which might exist in the underlying network. However, such deterministic routing may implemented in hardware, maintains packet ordering and may be rendered free of network level deadlocks. Shortest path routing may minimize the latency as such routing reduces the number of hops from the source to the destination. For this reason, the shortest path may also be the lowest power path for communication between the two components. Dimension-order routing is a form of deterministic shortest path routing in 2-D, 2.5-D, and 3-D mesh networks. In this routing scheme, messages are routed along each coordinates in a particular sequence until the message reaches the final destination. For example in a 3-D mesh network, one may first route along the X dimension until it reaches a router whose X-coordinate is equal to the X-coordinate of the destination router. Next, the message takes a turn and is routed in along Y dimension and finally takes another turn and moves along the Z dimension until the message reaches the final destination router. Dimension ordered routing may be minimal turn and shortest path routing.



FIG. 2(a) pictorially illustrates an example of XY routing in a two dimensional mesh. More specifically, FIG. 2(a) illustrates XY routing from node ‘34’ to node ‘00’. In the example of FIG. 2(a), each component is connected to only one port of one router. A packet is first routed over the x-axis till the packet reaches node ‘04’ where the x-coordinate of the node is the same as the x-coordinate of the destination node. The packet is next routed over the y-axis until the packet reaches the destination node.


In heterogeneous mesh topology in which one or more routers or one or more links are absent, dimension order routing may not be feasible between certain source and destination nodes, and alternative paths may have to be taken. The alternative paths may not be shortest or minimum turn.


Source routing and routing using tables are other routing options used in NoC. Adaptive routing can dynamically change the path taken between two points on the network based on the state of the network. This form of routing may be complex to analyze and implement.


A NoC interconnect may contain multiple physical networks. Over each physical network, there may exist multiple virtual networks, wherein different message types are transmitted over different virtual networks. In this case, at each physical link or channel, there are multiple virtual channels; each virtual channel may have dedicated buffers at both end points. In any given clock cycle, only one virtual channel can transmit data on the physical channel.


The physical channels are shared into a number of independent logical channels called virtual channels (VCs). VCs provide multiple independent paths to route packets, however they are time-multiplexed on the physical channels. A virtual channel holds the state needed to coordinate the handling of the flits of a packet over a channel. At a minimum, this state identifies the output channel of the current node for the next hop of the route and the state of the virtual channel (idle, waiting for resources, or active). The virtual channel may also include pointers to the flits of the packet that are buffered on the current node and the number of flit buffers available on the next node.


NoC interconnects may employ wormhole routing, wherein, a large message or packet is broken into small pieces known as flits (also referred to as flow control digits). The first flit is the header flit, which holds information about this packet's route and key message level info along with payload data and sets up the routing behavior for all subsequent flits associated with the message. Optionally, one or more body flits follows the head flit, containing the remaining payload of data. The final flit is the tail flit, which in addition to containing the last payload also performs some bookkeeping to close the connection for the message. In wormhole flow control, virtual channels are often implemented.


The term “wormhole” plays on the way messages are transmitted over the channels: the output port at the next router can be so short that received data can be translated in the head flit before the full message arrives, thereby facilitating the sending of the packet to the next router before the packet is fully received. This allows the router to quickly set up the route upon arrival of the head flit and then opt out from the rest of the conversation. Since a message is transmitted flit by flit, the message may occupy several flit buffers along its path at different routers so that the packet can exist in multiple routers, thereby creating a worm-like image.


Based upon the traffic between various end points, and the routes and physical networks that are used for various messages, different physical channels of the NoC interconnect may experience different levels of load and congestion. The capacity of various physical channels of a NoC interconnect is determined by the width of the channel (number of physical wires) and the clock frequency at which it is operating. Various channels of the NoC may operate at different clock frequencies, and various channels may have different widths based on the bandwidth requirement at the channel. The bandwidth requirement at a channel is determined by the flows that traverse over the channel and their bandwidth values. Flows traversing over various NoC channels are affected by the routes taken by various flows. In a mesh or Taurus NoC, there may exist multiple route paths of equal length or number of hops between any pair of source and destination nodes. For example, in FIG. 2(b), in addition to the standard XY route between nodes 34 and 00, there are additional routes available, such as YX route 203 or a multi-turn route 202 that makes more than one turn from source to destination.


In a NoC with statically allocated routes for various traffic flows, the load at various channels may be controlled by intelligently selecting the routes for various flows. When a large number of traffic flows and substantial path diversity is present, routes can be chosen such that the load on all NoC channels is balanced nearly uniformly, thus avoiding a single point of bottleneck. Once routed, the NoC channel widths can be determined based on the bandwidth demands of flows on the channels. Unfortunately, channel widths cannot be arbitrarily large due to physical hardware design restrictions, such as timing or wiring congestion. There may be a limit on the maximum channel width, thereby putting a limit on the maximum bandwidth of any single NoC channel.


Additionally, wider physical channels may not help in achieving higher bandwidth if messages are short. For example, if a packet is a single flit packet with a 64-bit width, then no matter how wide a channel is, the channel will only be able to carry 64 bits per cycle of data if all packets over the channel are similar. Thus, a channel width is also limited by the message size in the NoC. Due to these limitations on the maximum NoC channel width, a channel may not have enough bandwidth in spite of balancing the routes.


To address the above bandwidth concern, multiple parallel physical NoCs may be used. Each NoC may be called a layer, thus creating a multi-layer NoC architecture. Hosts inject a message on a NoC layer; the message is then routed to the destination on the NoC layer, where it is delivered from the NoC layer to the host. Thus, each layer operates more or less independently from each other, and interactions between layers may only occur during the injection and ejection times. FIG. 3(a) illustrates a two layer NoC. Here the two NoC layers are shown adjacent to each other on the left and right, with the hosts connected to the NoC replicated in both left and right diagrams. A host is connected to two routers in this example—a router in the first layer shown as R1, and a router is the second layer shown as R2. In this example, the multi-layer NoC is different from the 3D NoC, i.e. multiple layers are on a single silicon die and are used to meet the high bandwidth demands of the communication between hosts on the same silicon die. Messages do not go from one layer to another. For purposes of clarity, the present disclosure will utilize such a horizontal left and right illustration for multi-layer NoC to differentiate from the 3D NoCs, which are illustrated by drawing the NoCs vertically over each other.


In FIG. 3(b), a host connected to a router from each layer, R1 and R2 respectively, is illustrated. Each router is connected to other routers in its layer using directional ports 301, and is connected to the host using injection and ejection ports 302. A bridge-logic 303 may sit between the host and the two NoC layers to determine the NoC layer for an outgoing message and sends the message from host to the NoC layer, and also perform the arbitration and multiplexing between incoming messages from the two NoC layers and delivers them to the host.


In a multi-layer NoC, the number of layers needed may depend upon a number of factors such as the aggregate bandwidth requirement of all traffic flows in the system, the routes that are used by various flows, message size distribution, maximum channel width, etc. Once the number of NoC layers in NoC interconnect is determined in a design, different messages and traffic flows may be routed over different NoC layers. Additionally, one may design NoC interconnects such that different layers have different topologies in number of routers, channels and connectivity. The channels in different layers may have different widths based on the flows that traverse over the channel and their bandwidth requirements.


In a NoC interconnect, if the traffic profile is not uniform and there is a certain amount of heterogeneity (e.g., certain hosts talking to each other more frequently than the others), the interconnect performance may depend on the NoC topology and where various hosts are placed in the topology with respect to each other and to what routers they are connected to. For example, if two hosts talk to each other frequently and require higher bandwidth than other interconnects, then they should be placed next to each other. This will reduce the latency for this communication which thereby reduces the global average latency, as well as reduce the number of router nodes and links over which the higher bandwidth of this communication must be provisioned.


A NoC uses a shared network to pass traffic between different components. Any particular traffic flow might cross multiple routers before arriving at its destination. While the NoC can be efficient in terms of sharing wires, there can be an adverse effect on latency. Each router needs to arbitrate between its various inputs ports to decide which packet will be sent in a cycle. After the arbitration, the data must be selected through a multiplexing (muxing) structure. This process can take one or more cycles to complete, depending on the microarchitecture of the routers and the frequency. This means that for each router a traffic flow must cross, it can be incurring additional cycles of delay. Wire delay between routers can also cause delay.


To reduce latency, the routers can be built with bypass paths that allow skipping some or all of the arbitration and muxing costs of a router. These bypass paths can be used opportunistically when the router is idle, or they can support a simpler arbitration that allows a significant decrease in cycle time loss. Intelligent use of bypasses in a system can improve average latency of requests.


Longer latency can hurt the performance of the system. Reducing the latency of traffic flows is an important goal. The benefit of lower latency vary between different traffic flows. Some components are very latency sensitive, where each additional cycle of latency can have a significant performance reduction. Other flows will be less sensitive to latency. Intelligent setup of the bypasses can select the traffic flows that will provide the largest overall benefit to the system performance.


When packets finish traversing a NoC, they arrive at the interface to a component. Because a NoC can have many different kinds of traffic, design of the interface can have a big impact on performance. Many interface protocols use a method of flow control that doesn't distinguish between the contents of the packets. This can create head-of-line blocking issues, where a more important packet is stuck behind a less important packet.


The destination component can often benefit from distinguishing between different incoming traffic flows, allowing it to accept the more important flows and hold off the less important flows when resources are scares. Support of an enhanced interface can allow the destination component to signal the network which traffic flows it is willing to accept. The network can then choose which packets to send, avoiding the head-of-line blocking issue.


The enhanced interface flow control can be coupled with the networks use of virtual or physical channels to further avoid head-of-line blocking. If lower priority packets are transported in a separate channel from the higher priority packets, the destination component can backpressure one channel and allow the other to continue unimpeded.


SUMMARY

Therefore, to address the aforementioned problems, there is a need for systems, methods, and non-transitory computer readable mediums to facilitate an opportunistic bypass system for a NoC, as well as a VC valid and credit system to facilitate the management of VCs of the NoC.


Aspects of the present disclosure involve a Network on Chip (NoC) having a plurality of channels and a valid-ready system with VC valid and VC credit going back, element configured to send a valid signal with a VC valid signal.


Aspects of the present disclosure further involve a network on chip (NoC) element involving a plurality of physical links and virtual links, and a configurable bypass between virtual links, and bypass logic configured to bypass the queue and the logic of the NoC element.


The bypass is configured to bypass the queue and the logic of the NoC element in an opportunistic manner in accordance with the desired implementation. The NoC can also involve a configurable router that has complete configurability in terms of which bypasses are available. The configurable router has output ports, in which any select input port can connect to an output port with a direct bypass.


Aspects of the present disclosure can further include methods and computer readable mediums directed to determining the selection of bypasses for NoC construction. Such methods and computer readable mediums can include algorithms that during NoC construction, create additional opportunities for bypassing. Such algorithms can include restrictions to bypass placement (e.g., connections requiring upsizing and downsizing do not have bypass) reshaping the NoC topology to create more links for the bypass, building the NoC to have equal number of ports with no clock crossing, and avoiding upsizing and downsizing links.


In example implementations, the algorithms for the creation of bypass paths can involve determining the possible bypass opportunities for the configurations based on restrictions, for each bypass opportunity, choosing which inputs go to the output based on calculation of expected traffic flows/bandwidth that are expected to have biggest impact on the specification (e.g., weighted average of traffic, also take latency and importance of traffic into consideration), and selecting the bypasses with the biggest benefit.


In example implementations, there can be algorithms such as a multiplexer selection algorithm to select which multiplexer to use (e.g., preselected versus post selected), opportunistic bypass processing (e.g., messages are sent through bypass if bypass is idle or if bypass is possible, bypass conducted based on latency and First In First Out (FIFO) depth).


In example implementations, there can be NoC elements and configuration methods wherein a single input port could be selected for use as a bypass to multiple output port subject to restrictions (e.g., output VC must be the same size as the input, different physical link sizes involve bypass links with matching VCs).





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1(a), 1(b), 1(c) and 1(d) illustrate examples of Bidirectional ring, 2D Mesh, 2D Taurus, and 3D Mesh NoC Topologies.



FIG. 2(a) illustrates an example of XY routing in a related art two dimensional mesh.



FIG. 2(b) illustrates three different routes between a source and destination nodes.



FIG. 3(a) illustrates an example of a related art two layer NoC interconnect.



FIG. 3(b) illustrates the related art bridge logic between host and multiple NoC layers.



FIG. 4 illustrates an example of a router, in accordance with an example implementation.



FIG. 5 illustrates an example flow diagram for configuring routers during configuration time, in accordance with an example implementation.



FIG. 6 illustrates a valid-ready architecture in accordance with an example implementation.



FIG. 7(a) illustrates an example system having a SoC element (master), a SoC element (slave), a NoC bridge and a NoC, in accordance with an example implementation. In the example implementation, the NoC bridges and the NoC elements have four input VCs and four output VCs. A single physical wire proceeds from the SoC element to the bridge, whereupon the signal is fanned out to each NoC element in four output VCs.



FIG. 7(b) illustrates an example architecture for a NoC element, in accordance with an example implementation.



FIG. 8 illustrates an example table view of information utilized by the NoC element, in accordance with an example implementation.



FIG. 9 illustrates a flow diagram for a requesting NoC element, in accordance with an example implementation.





DETAILED DESCRIPTION

The following detailed description provides further details of the figures and example implementations of the present application. Reference numerals and descriptions of redundant elements between figures are omitted for clarity. Terms used throughout the description are provided as examples and are not intended to be limiting. For example, the use of the term “automatic” may involve fully automatic or semi-automatic implementations involving user or administrator control over certain aspects of the implementation, depending on the desired implementation of one of ordinary skill in the art practicing implementations of the present application.


In example implementations, a NoC interconnect is generated from a specification by utilizing design tools. The specification can contain constraints such as bandwidth/Quality of Service (QoS)/latency attributes that is to be met by the NoC, and can be in various software formats depending on the design tools utilized. Once the NoC is generated through the use of design tools on the specification to meet the specification requirements, the physical architecture can be implemented either by manufacturing a chip layout to facilitate the NoC or by generation of a register transfer level (RTL) for execution on a chip to emulate the generated NoC, depending on the desired implementation.


In a NoC, there is a network having routers and bridges. Other elements may also be present which can make the NoC fairly large. There may be an inherent latency problem with the NoC. In example implementations, bridges require activation for send messages into the network, and when messages are sent through the link, the router has to arbitrate the messages before the message is sent to the next hop.


For each hop running at a slow frequency, an entire router arbitration calculation including the travel time can be determined. However, most related art implementations are executed at a high frequency, wherein in such cases that the router arbitration may be conducted in a single cycle. Further, latency can be incurred in the bridge, with a cycle incurred in the bridge, a cycle for the link, a cycle for the router, and so on for the transaction. Latency reduction can be difficult due to the routers having arbitration requirements which incur a latency loss for arbitration in each router.



FIG. 4 illustrates an example of a router, in accordance with an example implementation. In example implementations for reducing latency in the router, routers implement a fast path, which functions as a bypass having bypass logic 406. A router may have an assortment of inputs which are processed by elements such as a decoder 401, a queue such as a First in First Out (FIFO) queue 402, an arbiter 403 and a multiplexer 404 (mux) for conducting arbitration and determining the output 405. In example implementations alongside the multiplexer 404, the router has a path configured to function as a special bypass with bypass logic 406. One or more inputs can be designated for the special bypass, such that the input entering one of the muxes will be able to hop in at the end of a cycle. If there is an output, the output can be placed in at the end of a cycle so that the input into the router will be able to go directly to the output instead of going through the arbitration. In such an example implementation, one cycle of latency can thereby be removed per router by reducing the processing to decode, bypass logic (e.g. validation) and output. Routing information can be included in direct wires to the router in accordance with the desired implementation. Further, once latency is reduced, the potential round trip latency is decreased as other messages may be able to pop off the FIFO more quickly. Once the bypasses are configured for each eligible router, the example implementations could then calculate the cycle of depth based on this latency. Example implementations of a NoC contains hardware or NoC elements that involve a plurality of physical links and virtual links, with a configurable bypass between virtual links, and bypass logic 406 configured to bypass the queue and the logic of the NoC element. The bypass logic 406 can be configured to initiate bypass of the message in an opportunistic manner (e.g., depending on whether queue is free or not, etc.)


In example implementations, messages destined to bypass can be pre-arbitrated and then the only logic in the hop can be for determining which output channel is used for the bypass as determined by the bypass logic as illustrated in FIG. 4. In example implementations, multiple outputs can be used for bypass for an input. For example, one input can bypass to one of multiple output ports, with each output associated with only one input. Bypass logic may also be utilized for optimizing messages in accordance with an example implementation. For example, if a queue is empty the message is sent through the logic for the bypass. If no other message takes priority then the message is transmitted through the bypass path to avoid all logic. Such example implementations can therefore be configured to conduct more than simply bypassing the FIFO queue and entering arbitration, but can be utilized to bypass all router logic and go directly to the output. In example implementations, the bypass can be conducted when there is no other traffic going on the link, which indicates no cost to arbitration as determined by the bypass logic.


In the following example implementations, requirements may be set for forwarding an input to the special bypass. One example requirement is that the link sizes are matched so latency from a width conversion is removed. Another example requirement is no clock crossing, so latency from clock conversion is also removed. Other requirements may also be set in according to the desired implementation.


Related art implementations implement a bypass path in a fixed position that is affixed to an input that is considered to be the most common bypass user. One example of a related art implementation is that an input destined for a particular direction will continually proceed in the direction (e.g. a south input port bypasses to the north input port). Such related art solutions are static.


In example implementations as illustrated in FIG. 4, there can be a NoC hardware element which can involve a plurality of physical channels and virtual channels, and a configurable bypass between virtual links, whereupon bypass logic can be configured to bypass the queue and the logic of the NoC element in an opportunistic manner. The bypass logic can allow messages to be transmitted through the bypass opportunistically based on whether the input First in First Out (FIFO) queue is empty or not, based on the priority of the traffic being arbitrated, whether the bypass is idle/available or not, queue depth of the transmitting hardware element, and so on depending on the desired implementation.


In example implementations, the bypass configuration can be made during configuration time for the specification. FIG. 5 illustrates an example flow diagram for configuring routers during configuration time, in accordance with an example implementation. At 501, the specification is processed for traffic flows. During configuration time, the example implementations determine all of the traffic flows from the specification, wherein routers that are eligible for bypass are identified at 502. In an example implementation, if all the traffic flows can be considered during configuration time, traffic tendencies can be identified for a router (e.g. most traffic for an identified router proceeds from the west port to the north port). In the above example, a bypass can be constructed from the west port to the north port to reduce latency. Other implementations based on the traffic flow for identifying routers are also possible depending on the desired implementation. For example, latency sensitivity of traffic flows can also be recognized. In this manner, example implementations can be configured to determine the bypass not only by the most amount of traffic going through a port, the bypass can be determined based on determining the importance of the traffic. Traffic flows can be associated with a weight in terms of the importance of the latency, e.g. how latency sensitive is the traffic, which can be taken into account for identifying eligible routers. Example implementations can calculate the latency sensitivity based on the weights. For example, latency sensitive traffic can be multiplied by the weight to prioritize latency sensitive traffic over raw latency for a channel, depending on the desired implementation.


Example implementations can also analyze traffic flows so that an array is created based on the input ports (e.g. A, B, C, D, E, and F), and analyze how much of the traffic is coming in on a given link is going to a given output port. So for a given output port, analysis can be conducted by comparing the input ports and constructing a bypass based on the bandwidth consumed by the input ports to a given output port. For example, for a router wherein input port one is responsible for three gigabytes of output for output port X for a given time frame and input port two is responsible for six gigabytes for the given time frame, a bypass can be utilized between input port two and output port one.


At 503, locations for implementing a bypass are identified. The locations for implementing the bypass can be identified based on the traffic flow determinations, the hardware configuration of the router and by other methods according to the desired implementation. For example, simulations can be conducted to detect where latency as affected by wire length and travel length are taken into consideration. In such example implementations, output ports can be configured so that a bypass can be made available within the router. And so by converting the router with additional output ports, latency can be reduced. Thus, in example implementations, the optimization can involve determining which bypasses can be implemented to reduce latency and the location of such bypass. The optimization can involve a pre-optimization implementation where conditions for bypassing are identified, and bypasses can be implemented therein. By using design tools during the configuration time, path input algorithms can be utilized to determine the shortest path for the bypass for use in determining the location for implementing the bypass. Optimizations for placement of network elements can also be made to create additional opportunities for bypass in accordance with the desired implementation.


Bypasses may also be determined based on desired constraints. In an example constraint, the input VC width is set to match the output VC width. In such an example implementation, the physical link size may be different, however, the bypass is still utilized between the two physical links to connect matching input and output VCs.


At 504, the eligible routers are then configured with the bypass based on the determinations. As the routers are configurable in example implementations, a heterogeneous NoC with heterogeneous routers can thereby be implemented. Example implementations are in contrast to related art systems, which are directed to homogenous NoC systems and homogenous routers. Related art implementations involve bypasses that are stacked directionally on the assumption that the NoC is homogenous and is therefore static, whereas the example implementations of the present disclosure can utilize heterogeneous router and NoC configurations.


Example implementations described herein can be implemented as a hardwired bypass. In such example implementations, the software at configuration time can precompute where packets are going and can also utilize sideband information to the NoC. Sideband channels can be utilized for messages to determine which output port to utilize. Sideband information does not need to be utilized for controlling multiplexing to the output ports, but can be utilized control the validity of the output port. The routing information is processed, wherein example implementations calculate the route including the port.


As illustrated in FIG. 5, example implementations can also involve methods and computer readable mediums with instructions directed to determining the selection of bypasses for NoC construction. Such example implementations can involve algorithms that during NoC construction, create additional opportunities for bypassing. The opportunities can involve the reshaping of NoC topology to create more channels that are eligible for bypass (e.g., building a NoC with routers having equal numbers of ports without any clock crossing), applying restrictions to bypass to avoid channels or virtual channels that conduct upsizing and downsizing, and so on depending on the desired implementation.


Example implementations can also involve algorithms for the creation of bypass paths. As illustrated in FIG. 5, such algorithms determine all of the possible bypass opportunities for the configurations based on the restrictions as described above. For each possible bypass, the algorithm can then determine which inputs go to which output based on the calculation of expected traffic flows/bandwidth. Such example implementations will determine which bypass provides the biggest impact on the NoC specification (weighted average of traffic, also take latency and importance of traffic into consideration), whereupon the algorithm can thereby choose bypasses with the biggest benefit above a desired threshold.


Example implementations may also involve algorithms for selecting which multiplexer to incorporate into the NoC hardware element, which can be conducted in a preselected manner or configured after the NoC is designed, in accordance with the desired implementation.


Example implementations may also involve NoCs with hardware elements having differing physical channel sizes, but VCs with matching sizes to facilitate the bypass. The hardware elements may also be in the form of a configurable router that has complete configurability in terms of which bypasses are available. In an example implementation, the router design can involve having each output port associated with a selected input port with a direct bypass. Further, example implementations may involve a NoC element and configuration method wherein a single input port could be selected from bypass to multiple with restrictions. (e.g., if the output VC is the same size as the input.)


Virtualization Interface and Valid-Ready for Virtual Channels (VCs) and Other Types of Traffic


In related art implementations, NoC systems utilize a valid/ready handshake. In such a handshake protocol, one NoC element asserts a valid signal, and if the receiving NoC element asserts a ready signal at the same time, then a message transfer can occur between the two NoC elements. Such related art implementations may further have restrictions depending on the implementation (e.g. to prevent deadlock). In an example restriction, the NoC element does not wait for the valid signal to assert a ready signal, or vice versa. However, related art implementations of the valid/ready handshake are not aware of the actual status of VCs. In related art implementations, even if a request is made using the valid/ready handshake, the status of the VC to be used may actually be blocked. Further, other VCs within the physical channel may be available, but the related art implementations cannot discern their availability due to the NoC elements requiring a ready signal before proceeding. Such implementations may also apply to other traffic types where the valid/ready handshake is blocking the transmission. The destination element would benefit from being able to indicate which traffic flows it would like to receive through the issuance of credits or indication through the ready signal for that specific traffic type.


In example implementations, additional information is provided for a valid-ready handshake to address the issues with the related art. Example implementations utilize a valid-ready and credit based hybrid system to facilitate valid-ready handshake functionality. In a credit-based design for the example implementations, independent credits are allocated for each VC. The requesting NoC element transmits a request when a VC credit has been obtained.


Related art implementations utilize a sideband information channel to indicate which virtual channels are available. However, such information is potentially stale. Further, such implementations provide a bit vector that indicates VCs within a range are available (e.g. VCs 8-16) without specifically indicating which VCs are available and which are not.



FIG. 6 illustrates a valid-ready architecture in accordance with an example implementation. In example implementations, a hybrid approach involving a credit base system is utilized, which facilitates a bi-directional communication. For a NoC requesting element 601 and a NoC target element 602, there is a valid-ready handshake as well as another vector for VC valid and VC credit in the sideband. The VC valid information is provided to the NoC requesting element 601, so that the NoC requesting elements makes the request if a specific resource dedicated to the request is available. Such example implementations provide flexibility as the number of virtual channels can be any number in accordance with a desired implementation.


In example implementations, a number of VCs on the NoC are associated with a physical interface. The physical interface can be associated with a number of interface VCs which can be mapped according to the desired implementation.


In an example implementation involving a master and slave, a NoC bridge is utilized. The NoC bridge communicates with a slave, which may have a plurality of virtual channels for the traffic. One virtual channel may involve high-priority CPU traffic (e.g. latency-sensitive traffic), another may involve I/O traffic, and another may involve asynchronous traffic which may be time critical, and so on. The properties of the virtual channels may also change over time, depending on the desired implementation.


In example implementations involving credit based implementation, as each channel can be separated and dedicated to the desired implementation, such implementations avoid the merger of traffic flows that should not be merged.


In the example implementation hybrid approach, the credit-based handshake is conducted between the agents while valid-ready requirements are enforced. In an example implementation, the target sends a credit back to the master indicating that a resource is available for a request. When the master tries to make that request, the target can indicate that it is not ready due to some delay (e.g. clock crossing). By utilizing the valid-ready with the credit system, it provides a way for temporary back-pressuring from the slave.


In example implementations, initialization is also facilitated as when the credit-based approach is applied, the NoC elements will determine the initialization. For example, the initialization of the credits can be zero, whereupon after a reset credits can be passed from the target NoC element to the requesting NoC element. Depending on the desired implementation, a certain number of credits can be provided at the master. However, if the reset for the NoC elements are unknown, the flow is harder to control, the valid-ready handshake can be utilized with the ready allowed for de-assertion. Even though the master element has VC credits, the master may be unable to transmit until the target NoC (slave) element is ready to accept the credits.


In example implementations, different virtual channels may involve different responses (e.g. read response, write response). In example implementations, there can be multiple virtual channels on the read interface going into another controller having only one read response channel. Thus, the congestion may go to the memory controller undergoing different arbitrations with a guaranteed drain. Each channel is completely independent, and they can be used for any purpose according to the desired implementation.


Example implementations involve a bookkeeping mechanism to track responses. Such a mechanism can involve a data structure to store information to track responses and when the responses are received. For example, if there are four VCs, the VCs can be broken into four segments with reservations. The arbiter may determine to send a flit if the NoC element has credit at the output. The example implementations can involve any partition of the data structure between the four VCs in any way according to the desired implementation. For example, each hardware element can be dedicated to a single VC, or pools of resources can be shared with some or all of the VCs. In example implementations, a mix of dedicated and shared resources can also be provided. Dedicated resources can ensure one channel cannot block another channel.



FIG. 7(a) illustrates an example system having a SoC element (master) 701, a SoC element (slave) 705, NoC bridges 702, 704 and a NoC 703, in accordance with an example implementation. In the example implementation, the NoC bridges 702, 704 and the NoC elements inside the NoC 703 have four input VCs and four output VCs. A single physical wire proceeds from the SoC element to the bridge, whereupon the signal is fanned out to each NoC element in four output VCs.



FIG. 7(b) illustrates an example architecture for a NoC element, in accordance with an example implementation. In the example implementation, the NoC element has four input VCs and four output VCs. In the example of FIG. 7(b), there is a decoder 711 for the input VCs, a queue 712, an arbiter 713, a multiplexer 714, and an output 715 facilitating output to four output VCs. The single bus feeds into the decoder 711, which receives the input and fans out the input to four individual queues 712. When a VC credit is received, the arbiter 713 pops a flit off of the queue 712 and send the flit to the multiplexer 714 to be transmitted through the corresponding output VC 715.


As illustrated in FIGS. 7(a) and 7(b), example implementations may involve a NoC that can involve a plurality of channels (e.g., physical channels, virtual channels and/or virtual channels disposed within the physical channels) and NoC hardware elements. Such NoC hardware elements can involve at least one receiving hardware element (e.g., target NoC element 602) and at least one transmitting hardware element (e.g., requesting NoC element 601) as illustrated in FIG. 6. When a transmitting hardware element is to transmit a message, the protocol as illustrated in FIG. 6 can be followed wherein the hardware element transmits a valid signal to the at least one receiving hardware element on a channel of the plurality of channels, and transmits a virtual channel (VC) valid signal on a virtual channel of the plurality of channels to the at least one receiving hardware element. The receiving hardware element is configured to transmit a VC credit to the at least one transmitting hardware element over the virtual channel of the plurality of channels as illustrated in FIG. 6.


Depending on the desired implementation, the transmitting hardware element can be configured to not transmit the VC valid signal on the virtual channel until a VC credit is obtained, and transmit the VC valid signal on the virtual channel to the at least one receiving hardware element on receipt of the VC credit based on the protocol of FIG. 6. In example implementations, the transmitting hardware element can issue a write request when the transmitter determines that the receiving NoC hardware element has enough buffer size for the address information and the storage of data. The transmitting NoC hardware element can infer such information based on the default storage (e.g., 64B) which can be programmable or definable depending on the desired implementation.


In an example implementation, the plurality of channels can also involve virtual channels, with each of the physical channels being configurable to be independently controlled to adjust a number of VCs for each of the plurality of channels. Such implementations can be conducted by a NoC controller which is configured to define the number of VCs for a given physical channel. In an example implementation, the NoC may maintain the same quantity of VCs for read messages as for read response messages within a given physical channel through such a NoC controller, or they can be differing quantities depending on the desired implementation.


In example implementations, the NoC may include a configurable interface for the transmitting hardware element and the receiving hardware element, that configures the transmitting hardware element and the receiving hardware element for at least one of deadlock avoidance and quantity of virtual channels. Such configuration can be conducted through a NoC specification, wherein the interface can be in the form of a hardware/software interface or a hardware mechanism that processes the specification to configure the NoC for deadlock avoidance, and quantity of virtual channels.


In example implementations, the NoC may also include a virtual interface for virtual channels to interact with agents of a SoC. Such a virtual interface can be implemented in the NoC bridges, or can be part of the NoC depending on the desired implementation.


In example implementations, the transmitting element can be configured to manage VC credits received from one or more receiving hardware elements as illustrated in FIG. 8, and conduct arbitration based on whether a message destination is associated with a VC credit from the managed VC credits. The hardware elements can be configured to conduct informed arbitration, as each hardware element knows whether a potential output VC has an associated credit or not based on the information managed as illustrated in FIG. 8.


In further example implementations, the receiving hardware element can be configured to provide a reservation for a VC to one or more transmitting hardware elements based on at least one of management of dedicated VC credits to the one or more of transmitting hardware elements, a shared tool providing certain minimum priority for the one or more transmitting hardware elements, and an inference of priority from the one or more of the at least one transmitting hardware element. Such reservations can include a pre-configuration so that certain hardware elements always have a certain number of VC credits reserved, priority inferred based on the type of message received or a hierarchy of hardware elements as defined in the NoC specification.



FIG. 8 illustrates an example table view of information utilized by the NoC element, in accordance with an example implementation. In example implementations, NoC elements may include a bookkeeping mechanism to indicate the status of the target VCs. In the example of FIG. 8, each output VC is associated with a ready signal, and VC credit. When ready and valid are set, then a transfer can take place. VC credit indicates the number of credits available for transmission to the output VC. VC credit is incremented when a credit signal is received, and decremented when a credit is utilized.



FIG. 9 illustrates a flow diagram for a requesting NoC element, in accordance with an example implementation. At 901 the requesting NoC element waits until a VC credit is received before transmitting a request. At 902, once a VC credit is received, the requesting NoC element conducts arbitration among available traffic that are associated with credits, and forwards the data packet to the output interface. At 903, the valid/ready handshake as illustrated in FIG. 6 is conducted, wherein a VC valid signal is provided to indicate the VC that the data will be sent through and the data/flit is sent through the corresponding VC with the VC valid signal. The VC credit counter is decremented. The requesting NoC element will also wait for additional VC credits as necessary. At 904, the receiving element receives the data/flit from the transmitting element.


In example implementations there can be a system such as a NoC, a SoC, or any hardware element system that require a virtual channel interface that involves a plurality of channels; at least one receiving hardware element; and at least one transmitting hardware element configured to: transmit a valid signal to the at least one receiving hardware element on a channel of the plurality of channels, and transmit a virtual channel (VC) valid signal as a virtual channel indicator for a virtual channel of a plurality of virtual channels designated for transmission of data and transmit the data on the virtual channel designated for the transmission of the data; wherein the at least one receiving hardware element is configured to transmit a VC credit to the at least one transmitting hardware element as illustrated in FIG. 6 and FIG. 9.


In example implementations, the at least one transmitting hardware element is configured to not transmit the data packet on the virtual channel until a VC credit is obtained. The plurality of channels can be physical channels that are partitioned into one or more virtual channels, and each of the channels can be configurable to be independently controlled for mapping to an interface virtual VCs. In such example implementations, multiple transmitting channels can map to a single interface virtual channel, or a single transmitting channel can map to multiple virtual channels depending on the desired implementation. In an example implementation involving a single transmitting channel mapping to multiple virtual channels, the transmission can be conducted when any of the VC credits are available. The mapping can be done through a virtual interface connected to the NoC to map virtual channels with transmitting elements such as agents of a SoC. Such interfaces can include read channels, read response channels, and so on depending on the desired implementation. In example implementations, the interface can include the decoder, queue, arbiter, multiplexer, and/or the output as illustrated in FIG. 7(b).


In example implementations, the at least one transmitting element is further configured to manage VC credits received from one or more of the at least one receiving hardware element; and conduct arbitration based on whether a message destination is associated with a VC credit from the managed VC credits as illustrated in FIG. 8. The management can be done through the interface of the hardware element that is configured to map transmitting channels to virtual channels.


In example implementations, the at least one transmitting hardware element is configured to arbitrate messages for transmitting through prioritizing messages that are associated with a VC credit through the user of the arbiter as illustrated in FIG. 7(b).


In example implementations, the at least one receiving hardware element is configured to provide a reservation for a VC to one or more of the at least one transmitting hardware element based on at least one of management of dedicated VC credits to the one or more of the at least one transmitting hardware element, and an inference of priority from the one or more of the at least one transmitting hardware element based on the information of FIG. 8. Priority can be inferred based on the type of message and the hierarchy set according to the desired implementation (e.g., hierarchy for read, read response, write, etc.).


In example implementations the at least one receiving hardware element can be a NoC element such as a router or a bridge and the at least one transmitting hardware element is an agent of the System on Chip (SoC), such as a memory or a CPU.


Although example implementations involve a NoC, other systems such as a SoC or other interconnect can be utilized in accordance with the desired implementation. Any hardware element that can utilize a virtual interface can take advantage of the example implementations described herein.


Unless specifically stated otherwise, as apparent from the discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing,” “computing,” “calculating,” “determining,” “displaying,” or the like, can include the actions and processes of a computer system or other information processing device that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system's memories or registers or other information storage, transmission or display devices.


Example implementations may also relate to an apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, or it may include one or more general-purpose computers selectively activated or reconfigured by one or more computer programs. Such computer programs may be stored in a computer readable medium, such as a computer-readable storage medium or a computer-readable signal medium. A computer-readable storage medium may involve tangible mediums such as, but not limited to optical disks, magnetic disks, read-only memories, random access memories, solid state devices and drives, or any other types of tangible or non-transitory media suitable for storing electronic information. A computer readable signal medium may include mediums such as carrier waves. The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Computer programs can involve pure software implementations that involve instructions that perform the operations of the desired implementation.


Various general-purpose systems may be used with programs and modules in accordance with the examples herein, or it may prove convenient to construct a more specialized apparatus to perform desired method steps. In addition, the example implementations are not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the example implementations as described herein. The instructions of the programming language(s) may be executed by one or more processing devices, e.g., central processing units (CPUs), processors, or controllers.


As is known in the art, the operations described above can be performed by hardware, software, or some combination of software and hardware. Various aspects of the example implementations may be implemented using circuits and logic devices (hardware), while other aspects may be implemented using instructions stored on a machine-readable medium (software), which if executed by a processor, would cause the processor to perform a method to carry out implementations of the present disclosure. Further, some example implementations of the present disclosure may be performed solely in hardware, whereas other example implementations may be performed solely in software. Moreover, the various functions described can be performed in a single unit, or can be spread across a number of components in any number of ways. When performed by software, the methods may be executed by a processor, such as a general purpose computer, based on instructions stored on a computer-readable medium. If desired, the instructions can be stored on the medium in a compressed and/or encrypted format.


Moreover, other implementations of the present disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the teachings of the present disclosure. Various aspects and/or components of the described example implementations may be used singly or in any combination. It is intended that the specification and example implementations be considered as examples only, with the true scope and spirit of the present disclosure being indicated by the following claims.

Claims
  • 1. A method for a Network on Chip (NoC), the NoC comprising a plurality of virtual channels, at least one receiving hardware element; and at least one transmitting hardware element, the method comprising: transmitting, at the at least one transmitting hardware, a virtual channel (VC) valid signal as a virtual channel indicator for a virtual channel of the plurality of virtual channels designated for transmission of data and transmitting the data on the virtual channel designated for the transmission of the data to the at least one receiving hardware element; andtransmitting a VC credit to the at least one transmitting hardware element, wherein a configurable router of the NoC is to provide configurability of which bypass links of the NoC matching the plurality of virtual channels are available, wherein one or more of the bypass links and the plurality of virtual are capable to provide communication between two or more elements of the NOC or two or more elements of a System on Chip (SoC), wherein the configurable router is to couple any input port to an output port with a direct bypass, wherein bridge logic, coupled between a host and two NoC layers, is to arbitrate between incoming messages from the two NoC layers and cause delivery of each of the incoming messages to the host via one of the two NoC layers.
  • 2. The method of claim 1, further comprising not transmitting a data packet on the virtual channel until a VC credit is obtained.
  • 3. The method of claim 1, wherein each of the plurality of virtual channels are configurable to be independently controlled for mapping to an interface virtual VCs.
  • 4. The method of claim 1, further comprising: managing virtual channel (VC) credits received from one or more of the at least one receiving hardware element; andconducting arbitration based on whether a message destination is associated with a VC credit from the managed VC credits.
  • 5. The method of claim 1, further comprising: arbitrating messages for transmitting through prioritizing messages that are associated with a VC credit.
  • 6. The method of claim 1, further comprising: providing a reservation for a virtual channel (VC) to one or more of the at least one transmitting hardware element based on at least one of management of dedicated VC credits to the one or more of the at least one transmitting hardware element, and an inference of priority from the one or more of the at least one transmitting hardware element.
  • 7. The method of claim 1, wherein the at least one receiving hardware element is an NoC element and the at least one transmitting hardware element is an agent of the System on Chip (SoC).
  • 8. A non-transitory computer readable medium, storing instructions for a Network on Chip (NoC), the NoC comprising a plurality of virtual channels, at least one receiving hardware element; and at least one transmitting hardware element, the instructions to cause a processor to execute one or more operations, the one or more operations comprising: transmitting, at the at least one transmitting hardware, a virtual channel (VC) valid signal as a virtual channel indicator for a virtual channel of the plurality of virtual channels designated for transmission of data and transmitting the data on the virtual channel designated for the transmission of the data to the at least one receiving hardware element; andtransmitting a VC credit to the at least one transmitting hardware element, wherein a configurable router of the NoC is to provide configurability of which bypass links of the NoC matching the plurality of virtual channels are available, wherein one or more of the bypass links and the plurality of virtual are capable to provide communication between two or more elements of the NOC or two or more elements of a System on Chip (SoC), wherein the configurable router is to couple any input port to an output port with a direct bypass, wherein bridge logic, coupled between a host and two NoC layers, is to arbitrate between incoming messages from the two NoC layers and cause delivery of each of the incoming messages to the host via one of the two NoC layers.
  • 9. The non-transitory computer readable medium of claim 8, wherein the one or more operations further comprise not transmitting a data packet on the virtual channel until a VC credit is obtained.
  • 10. The non-transitory computer readable medium of claim 8, wherein each of the plurality of virtual channels are configurable to be independently controlled for mapping to an interface virtual VCs.
  • 11. The non-transitory computer readable medium of claim 8, wherein the one or more operations further comprise: managing virtual channel (VC) credits received from one or more of the at least one receiving hardware element; and conducting arbitration based on whether a message destination is associated with a VC credit from the managed VC credits.
  • 12. The non-transitory computer readable medium of claim 8, wherein the one or more operations further comprise: arbitrating messages for transmitting through prioritizing messages that are associated with a VC credit.
  • 13. The non-transitory computer readable medium of claim 8, wherein the one or more operations further comprise: providing a reservation for a virtual channel (VC) to one or more of the at least one transmitting hardware element based on at least one of management of dedicated VC credits to the one or more of the at least one transmitting hardware element, and an inference of priority from the one or more of the at least one transmitting hardware element.
  • 14. The non-transitory computer readable medium of claim 8, wherein the at least one receiving hardware element is an NoC element and the at least one transmitting hardware element is an agent of the System on Chip (SoC).
  • 15. The method of claim 1, wherein the configurable router comprises the output ports.
  • 16. The method of claim 1, wherein a host is coupled to a router of the NoC via injection and ejection ports while the router is coupled to other routers of the NoC via direction ports.
  • 17. The non-transitory computer readable medium of claim 8, wherein the configurable router comprises the output ports.
  • 18. The non-transitory computer readable medium of claim 8, wherein a host is coupled to a router of the NoC via injection and ejection ports while the router is coupled to other routers of the NoC via direction ports.
  • 19. The method of claim 1, wherein the bridge logic is to multiplex between the incoming messages from the two NoC layers to cause delivery of the incoming messages to the host via the two NoC layers.
CROSS-REFERENCE TO RELATED APPLICATION

This regular U.S. patent application is a continuation of U.S. patent application Ser. No. 15/829,749, filed on Dec. 1, 2017 (now abandoned) which is based on and claims the benefit of priority under 35 U.S.C. 119 from provisional U.S. patent application No. 62/429,695, filed on Dec. 2, 2016, the entire disclosures of which are incorporated by reference herein.

US Referenced Citations (410)
Number Name Date Kind
4409838 Schomberg Oct 1983 A
4933933 Dally Jun 1990 A
5105424 Flaig et al. Apr 1992 A
5163016 Har'El et al. Nov 1992 A
5355455 Hilgendorf et al. Oct 1994 A
5432785 Ahmed et al. Jul 1995 A
5563003 Suzuki et al. Oct 1996 A
5583990 Birrittella et al. Dec 1996 A
5588152 Dapp et al. Dec 1996 A
5764740 Holender Jun 1998 A
5790554 Pitcher et al. Aug 1998 A
5859981 Levin et al. Jan 1999 A
5991308 Fuhrmann et al. Nov 1999 A
5999530 LeMaire et al. Dec 1999 A
6003029 Agrawal et al. Dec 1999 A
6029220 Iwamura et al. Feb 2000 A
6058385 Koza et al. May 2000 A
6101181 Passint et al. Aug 2000 A
6108739 James Aug 2000 A
6249902 Igusa et al. Jun 2001 B1
6285679 Dally et al. Sep 2001 B1
6314487 Hahn et al. Nov 2001 B1
6377543 Grover et al. Apr 2002 B1
6415282 Mukherjea et al. Jul 2002 B1
6674720 Passint et al. Jan 2004 B1
6701361 Meier Mar 2004 B1
6711717 Nystrom et al. Mar 2004 B2
6778531 Kodialam et al. Aug 2004 B1
6925627 Longway et al. Aug 2005 B1
6967926 Williams, Jr. et al. Nov 2005 B1
6983461 Hutchison et al. Jan 2006 B2
7046633 Carvey May 2006 B2
7065730 Alpert et al. Jun 2006 B2
7143221 Bruce et al. Nov 2006 B2
7318214 Prasad et al. Jan 2008 B1
7379424 Krueger May 2008 B1
7437518 Tsien Oct 2008 B2
7461236 Wentzlaff Dec 2008 B1
7509619 Miller et al. Mar 2009 B1
7564865 Radulescu Jul 2009 B2
7583602 Bejerano et al. Sep 2009 B2
7590959 Tanaka Sep 2009 B2
7693064 Thubert et al. Apr 2010 B2
7701252 Chow et al. Apr 2010 B1
7724735 Locatelli et al. May 2010 B2
7725859 Lenahan et al. May 2010 B1
7774783 Toader Aug 2010 B2
7808968 Kalmanek, Jr. et al. Oct 2010 B1
7853774 Wentzlaff Dec 2010 B1
7917885 Becker Mar 2011 B2
7957381 Clermidy et al. Jun 2011 B2
7973804 Mejdrich et al. Jul 2011 B2
8018249 Koch et al. Sep 2011 B2
8020163 Nollet et al. Sep 2011 B2
8020168 Hoover et al. Sep 2011 B2
8050256 Bao et al. Nov 2011 B1
8059551 Milliken Nov 2011 B2
8098677 Pleshek et al. Jan 2012 B1
8099757 Riedle et al. Jan 2012 B2
8136071 Solomon Mar 2012 B2
8203938 Gibbings Jun 2012 B2
8228930 Kim et al. Jul 2012 B1
8261025 Mejdrich et al. Sep 2012 B2
8281297 Dasu et al. Oct 2012 B2
8285679 Agombar et al. Oct 2012 B2
8285912 Feero et al. Oct 2012 B2
8306042 Abts Nov 2012 B1
8312402 Okhmatovski et al. Nov 2012 B1
8352774 Elrabaa Jan 2013 B2
8407425 Gueron et al. Mar 2013 B2
8412795 Mangano et al. Apr 2013 B2
8438578 Hoover et al. May 2013 B2
8448102 Komachuk et al. May 2013 B2
8490110 Hoover et al. Jul 2013 B2
8492886 Or-Bach et al. Jul 2013 B2
8503445 Lo Aug 2013 B2
8514889 Jayasimha Aug 2013 B2
8541819 Or-Bach et al. Sep 2013 B1
8543964 Ge et al. Sep 2013 B2
8547972 Mahdavi Oct 2013 B2
8572353 Bratt et al. Oct 2013 B1
8601423 Philip Dec 2013 B1
8614955 Gintis et al. Dec 2013 B2
8619622 Harrand et al. Dec 2013 B2
8635577 Kazda et al. Jan 2014 B2
8661455 Mejdrich et al. Feb 2014 B2
8667439 Kumar et al. Mar 2014 B1
8704548 Hutton Apr 2014 B1
8705368 Abts et al. Apr 2014 B1
8711867 Guo et al. Apr 2014 B2
8717875 Bejerano et al. May 2014 B2
8726295 Hoover et al. May 2014 B2
8738860 Griffin et al. May 2014 B1
8793644 Michel et al. Jul 2014 B2
8798038 Jayasimha et al. Aug 2014 B2
8819611 Philip et al. Aug 2014 B2
8885510 Kumar et al. Nov 2014 B2
9210048 Marr et al. Dec 2015 B1
9223711 Philip et al. Dec 2015 B2
9244845 Rowlands et al. Jan 2016 B2
9244880 Philip et al. Jan 2016 B2
9253085 Kumar et al. Feb 2016 B2
9294354 Kumar Mar 2016 B2
9319232 Kumar Apr 2016 B2
9444702 Raponi et al. Sep 2016 B1
9471726 Kumar et al. Oct 2016 B2
9473359 Kumar et al. Oct 2016 B2
9473388 Kumar et al. Oct 2016 B2
9473415 Kumar Oct 2016 B2
9477280 Gangwar et al. Oct 2016 B1
9515961 Guo Dec 2016 B2
9529400 Kumar et al. Dec 2016 B1
9535848 Rowlands et al. Jan 2017 B2
9568970 Kaushal et al. Feb 2017 B1
9569579 Kumar Feb 2017 B1
9571341 Kumar et al. Feb 2017 B1
9571402 Kumar et al. Feb 2017 B2
9571420 Kumar Feb 2017 B2
9590813 Kumar et al. Mar 2017 B1
9660942 Kumar May 2017 B2
9699079 Chopra et al. Jul 2017 B2
9742630 Philip et al. Aug 2017 B2
10419338 Gray Sep 2019 B2
20020071392 Grover et al. Jun 2002 A1
20020073380 Cooke et al. Jun 2002 A1
20020083159 Ward et al. Jun 2002 A1
20020095430 Egilsson et al. Jul 2002 A1
20020150094 Cheng et al. Oct 2002 A1
20030005149 Haas et al. Jan 2003 A1
20030088602 Dutta et al. May 2003 A1
20030145314 Nguyen et al. Jul 2003 A1
20030200315 Goldenberg et al. Oct 2003 A1
20040006584 Vandeweerd Jan 2004 A1
20040019814 Pappalardo et al. Jan 2004 A1
20040049565 Keller et al. Mar 2004 A1
20040103218 Blumrich et al. May 2004 A1
20040156376 Nakagawa Aug 2004 A1
20040156383 Nakagawa et al. Aug 2004 A1
20040216072 Alpert et al. Oct 2004 A1
20050147081 Acharya et al. Jul 2005 A1
20050203988 Nollet et al. Sep 2005 A1
20050228930 Ning et al. Oct 2005 A1
20050286543 Coppola et al. Dec 2005 A1
20060002303 Bejerano et al. Jan 2006 A1
20060031615 Bruce et al. Feb 2006 A1
20060053312 Jones et al. Mar 2006 A1
20060075169 Harris et al. Apr 2006 A1
20060104274 Caviglia et al. May 2006 A1
20060161875 Rhee Jul 2006 A1
20060206297 Ishiyama et al. Sep 2006 A1
20060209846 Clermidy et al. Sep 2006 A1
20060268909 Langevin et al. Nov 2006 A1
20070038987 Ohara et al. Feb 2007 A1
20070088537 Lertora et al. Apr 2007 A1
20070118320 Luo et al. May 2007 A1
20070147379 Lee et al. Jun 2007 A1
20070162903 Babb, II et al. Jul 2007 A1
20070189283 Agarwal et al. Aug 2007 A1
20070244676 Shang et al. Oct 2007 A1
20070256044 Coryer et al. Nov 2007 A1
20070267680 Uchino et al. Nov 2007 A1
20070274331 Locatelli et al. Nov 2007 A1
20080072182 He et al. Mar 2008 A1
20080120129 Seubert May 2008 A1
20080126569 Rhim et al. May 2008 A1
20080127014 Pandey et al. May 2008 A1
20080184259 Lesartre et al. Jul 2008 A1
20080186998 Rijpkema Aug 2008 A1
20080211538 Lajolo et al. Sep 2008 A1
20080232387 Rijpkema et al. Sep 2008 A1
20090037888 Tatsuoka et al. Feb 2009 A1
20090046727 Towles Feb 2009 A1
20090067331 Watsen et al. Mar 2009 A1
20090067348 Vasseur et al. Mar 2009 A1
20090070726 Mehrotra et al. Mar 2009 A1
20090083263 Felch et al. Mar 2009 A1
20090089725 Khan Apr 2009 A1
20090109996 Hoover et al. Apr 2009 A1
20090122703 Gangwal et al. May 2009 A1
20090125574 Mejdrich et al. May 2009 A1
20090125703 Mejdrich et al. May 2009 A1
20090125706 Hoover et al. May 2009 A1
20090135739 Hoover et al. May 2009 A1
20090138567 Hoover et al. May 2009 A1
20090150647 Mejdrich et al. Jun 2009 A1
20090157976 Comparan et al. Jun 2009 A1
20090172304 Gueron et al. Jul 2009 A1
20090182944 Comparan et al. Jul 2009 A1
20090182954 Mejdrich et al. Jul 2009 A1
20090182986 Schwinn et al. Jul 2009 A1
20090182987 Mejdrich et al. Jul 2009 A1
20090187716 Comparan et al. Jul 2009 A1
20090187734 Mejdrich et al. Jul 2009 A1
20090187756 Nollet et al. Jul 2009 A1
20090201302 Hoover et al. Aug 2009 A1
20090210184 Medardoni et al. Aug 2009 A1
20090210883 Hoover et al. Aug 2009 A1
20090228681 Mejdrich et al. Sep 2009 A1
20090228682 Mejdrich et al. Sep 2009 A1
20090228689 Muff et al. Sep 2009 A1
20090228690 Muff et al. Sep 2009 A1
20090231348 Mejdrich et al. Sep 2009 A1
20090231349 Mejdrich et al. Sep 2009 A1
20090240920 Muff et al. Sep 2009 A1
20090245257 Comparan et al. Oct 2009 A1
20090256836 Fowler et al. Oct 2009 A1
20090260013 Heil et al. Oct 2009 A1
20090268677 Chou et al. Oct 2009 A1
20090271172 Mejdrich et al. Oct 2009 A1
20090276572 Heil et al. Nov 2009 A1
20090282139 Mejdrich et al. Nov 2009 A1
20090282197 Comparan et al. Nov 2009 A1
20090282211 Hoover et al. Nov 2009 A1
20090282214 Kuesel et al. Nov 2009 A1
20090282221 Heil et al. Nov 2009 A1
20090282222 Hoover et al. Nov 2009 A1
20090282226 Hoover et al. Nov 2009 A1
20090282227 Hoover et al. Nov 2009 A1
20090282419 Mejdrich et al. Nov 2009 A1
20090285222 Hoover et al. Nov 2009 A1
20090287885 Kriegel et al. Nov 2009 A1
20090292907 Schwinn et al. Nov 2009 A1
20090293061 Schwinn et al. Nov 2009 A1
20090300292 Fang et al. Dec 2009 A1
20090300335 Muff et al. Dec 2009 A1
20090307714 Hoover et al. Dec 2009 A1
20090313592 Murali et al. Dec 2009 A1
20090315908 Comparan et al. Dec 2009 A1
20100023568 Hickey et al. Jan 2010 A1
20100031009 Muff et al. Feb 2010 A1
20100040162 Suehiro Feb 2010 A1
20100042812 Hickey et al. Feb 2010 A1
20100042813 Hickey et al. Feb 2010 A1
20100070714 Hoover et al. Mar 2010 A1
20100091787 Muff et al. Apr 2010 A1
20100100707 Mejdrich et al. Apr 2010 A1
20100100712 Mejdrich et al. Apr 2010 A1
20100100770 Mejdrich et al. Apr 2010 A1
20100100934 Mejdrich et al. Apr 2010 A1
20100106940 Muff et al. Apr 2010 A1
20100125722 Hickey et al. May 2010 A1
20100158005 Mukhopadhyay et al. Jun 2010 A1
20100162019 Kumar et al. Jun 2010 A1
20100189111 Muff et al. Jul 2010 A1
20100191940 Mejdrich et al. Jul 2010 A1
20100211718 Gratz et al. Aug 2010 A1
20100223505 Andreev et al. Sep 2010 A1
20100228781 Fowler et al. Sep 2010 A1
20100239185 Fowler et al. Sep 2010 A1
20100239186 Fowler et al. Sep 2010 A1
20100242003 Kwok Sep 2010 A1
20100269123 Mejdrich et al. Oct 2010 A1
20100284309 Allan et al. Nov 2010 A1
20100333099 Kupferschmidt et al. Dec 2010 A1
20110022754 Cidon et al. Jan 2011 A1
20110035523 Feero et al. Feb 2011 A1
20110044336 Umeshima Feb 2011 A1
20110060831 Ishii et al. Mar 2011 A1
20110063285 Hoover et al. Mar 2011 A1
20110064077 Wen Mar 2011 A1
20110072407 Keinert et al. Mar 2011 A1
20110085550 Lecler et al. Apr 2011 A1
20110085561 Ahn et al. Apr 2011 A1
20110103799 Shacham et al. May 2011 A1
20110119322 Li et al. May 2011 A1
20110154282 Chang et al. Jun 2011 A1
20110173258 Arimilli et al. Jul 2011 A1
20110191088 Hsu et al. Aug 2011 A1
20110191774 Hsu et al. Aug 2011 A1
20110235531 Vangal et al. Sep 2011 A1
20110243147 Paul Oct 2011 A1
20110276937 Waller Nov 2011 A1
20110289485 Mejdrich et al. Nov 2011 A1
20110292063 Mejdrich et al. Dec 2011 A1
20110302345 Boucard et al. Dec 2011 A1
20110302450 Hickey et al. Dec 2011 A1
20110307734 Boesen et al. Dec 2011 A1
20110316864 Mejdrich et al. Dec 2011 A1
20110320719 Mejdrich et al. Dec 2011 A1
20110320724 Mejdrich et al. Dec 2011 A1
20110320771 Mejdrich et al. Dec 2011 A1
20110320854 Elrabaa Dec 2011 A1
20110320991 Hsu et al. Dec 2011 A1
20110321057 Mejdrich et al. Dec 2011 A1
20120022841 Appleyard Jan 2012 A1
20120023473 Brown Jan 2012 A1
20120026917 Guo et al. Feb 2012 A1
20120054511 Brinks et al. Mar 2012 A1
20120072635 Yoshida et al. Mar 2012 A1
20120079147 Ishii et al. Mar 2012 A1
20120099475 Tokuoka Apr 2012 A1
20120110106 De Lescure et al. May 2012 A1
20120110541 Ge et al. May 2012 A1
20120144065 Parker et al. Jun 2012 A1
20120155250 Carney et al. Jun 2012 A1
20120173846 Wang et al. Jul 2012 A1
20120176364 Schardt et al. Jul 2012 A1
20120195321 Ramanujam et al. Aug 2012 A1
20120198408 Chopra Aug 2012 A1
20120209944 Mejdrich et al. Aug 2012 A1
20120218998 Sarikaya Aug 2012 A1
20120221711 Kuesel et al. Aug 2012 A1
20120260252 Kuesel et al. Oct 2012 A1
20120311512 Michel et al. Dec 2012 A1
20130021896 Pu et al. Jan 2013 A1
20130028083 Yoshida et al. Jan 2013 A1
20130028090 Yamaguchi et al. Jan 2013 A1
20130028261 Lee Jan 2013 A1
20130036296 Hickey et al. Feb 2013 A1
20130044117 Mejdrich et al. Feb 2013 A1
20130046518 Mejdrich et al. Feb 2013 A1
20130051397 Guo et al. Feb 2013 A1
20130054811 Harrand Feb 2013 A1
20130073771 Hanyu et al. Mar 2013 A1
20130073878 Jayasimha et al. Mar 2013 A1
20130080073 de Corral Mar 2013 A1
20130080671 Ishii et al. Mar 2013 A1
20130086399 Tychon et al. Apr 2013 A1
20130103369 Huynh et al. Apr 2013 A1
20130103912 Jones et al. Apr 2013 A1
20130111190 Muff et al. May 2013 A1
20130111242 Heller et al. May 2013 A1
20130117543 Venkataramanan et al. May 2013 A1
20130138925 Hickey et al. May 2013 A1
20130145128 Schardt et al. Jun 2013 A1
20130148506 Lea Jun 2013 A1
20130151215 Mustapha Jun 2013 A1
20130159668 Muff et al. Jun 2013 A1
20130159669 Comparan et al. Jun 2013 A1
20130159674 Muff et al. Jun 2013 A1
20130159675 Muff et al. Jun 2013 A1
20130159676 Muff et al. Jun 2013 A1
20130159944 Uno et al. Jun 2013 A1
20130160026 Kuesel et al. Jun 2013 A1
20130160114 Greenwood et al. Jun 2013 A1
20130163615 Mangano et al. Jun 2013 A1
20130174113 Lecler et al. Jul 2013 A1
20130179613 Boucard Jul 2013 A1
20130179902 Hoover et al. Jul 2013 A1
20130185542 Mejdrich et al. Jul 2013 A1
20130191572 Nooney et al. Jul 2013 A1
20130191600 Kuesel et al. Jul 2013 A1
20130191649 Muff et al. Jul 2013 A1
20130191651 Muff et al. Jul 2013 A1
20130191824 Muff et al. Jul 2013 A1
20130191825 Muff et al. Jul 2013 A1
20130207801 Barnes Aug 2013 A1
20130219148 Chen et al. Aug 2013 A1
20130250792 Yoshida et al. Sep 2013 A1
20130254488 Kaxiras et al. Sep 2013 A1
20130263068 Cho et al. Oct 2013 A1
20130268990 Urzi et al. Oct 2013 A1
20130294458 Yamaguchi et al. Nov 2013 A1
20130305207 Hsieh et al. Nov 2013 A1
20130311819 Ishii et al. Nov 2013 A1
20130326458 Kazda et al. Dec 2013 A1
20140013293 Hsu et al. Jan 2014 A1
20140068132 Philip et al. Mar 2014 A1
20140068134 Philip et al. Mar 2014 A1
20140082237 Wertheimer et al. Mar 2014 A1
20140086260 Dai et al. Mar 2014 A1
20140092740 Wang et al. Apr 2014 A1
20140098683 Kumar Apr 2014 A1
20140112149 Urzi et al. Apr 2014 A1
20140115218 Philip et al. Apr 2014 A1
20140115298 Philip et al. Apr 2014 A1
20140126572 Hutton et al. May 2014 A1
20140143557 Kuesel et al. May 2014 A1
20140143558 Kuesel et al. May 2014 A1
20140149720 Muff et al. May 2014 A1
20140164465 Muff et al. Jun 2014 A1
20140164704 Kuesel et al. Jun 2014 A1
20140164732 Muff et al. Jun 2014 A1
20140164734 Muff et al. Jun 2014 A1
20140211622 Kumar et al. Jul 2014 A1
20140229709 Kuesel et al. Aug 2014 A1
20140229712 Muff et al. Aug 2014 A1
20140229713 Muff et al. Aug 2014 A1
20140229714 Muff et al. Aug 2014 A1
20140229720 Hickey et al. Aug 2014 A1
20140230077 Muff et al. Aug 2014 A1
20140232188 Cheriyan et al. Aug 2014 A1
20140241376 Balkan et al. Aug 2014 A1
20140254388 Kumar et al. Sep 2014 A1
20140281243 Shalf et al. Sep 2014 A1
20140281402 Comparan et al. Sep 2014 A1
20140307590 Dobbelaere et al. Oct 2014 A1
20140359641 Clark et al. Dec 2014 A1
20140376569 Philip Dec 2014 A1
20150020078 Kuesel et al. Jan 2015 A1
20150026435 Muff et al. Jan 2015 A1
20150026494 Bainbridge et al. Jan 2015 A1
20150026500 Muff et al. Jan 2015 A1
20150032988 Muff et al. Jan 2015 A1
20150032999 Muff et al. Jan 2015 A1
20150043575 Kumar et al. Feb 2015 A1
20150081941 Brown et al. Mar 2015 A1
20150103822 Gianchandani et al. Apr 2015 A1
20150109024 Abdelfattah et al. Apr 2015 A1
20150159330 Weisman et al. Jun 2015 A1
20150178435 Kumar Jun 2015 A1
20150331831 Solihin Nov 2015 A1
20150348600 Bhatia et al. Dec 2015 A1
20150381707 How Dec 2015 A1
20170061053 Kumar et al. Mar 2017 A1
20170063625 Philip et al. Mar 2017 A1
20170063697 Kumar Mar 2017 A1
20180159786 Rowlands et al. Jun 2018 A1
20180183721 Rowlands et al. Jun 2018 A1
20180183722 Rowlands et al. Jun 2018 A1
Foreign Referenced Citations (10)
Number Date Country
103684961 Mar 2014 CN
5936793 May 2016 JP
6060316 Jan 2017 JP
6093867 Feb 2017 JP
10-2013-0033898 Apr 2013 KR
101652490 Aug 2016 KR
101707655 Feb 2017 KR
2010074872 Jul 2010 WO
2013063484 May 2013 WO
2014059024 Apr 2014 WO
Non-Patent Literature Citations (43)
Entry
Ababei, C., et al., Achieving Network on Chip Fault Tolerance by Adaptive Remapping, Parallel & Distributed Processing, 2009, IEEE International Symposium, 4 pgs.
Abts, D., et al., Age-Based Packet Arbitration in Large-Radix k-ary n-cubes, Supercomputing 2007 (SC07), Nov. 10-16, 2007, 11 pgs.
Beretta, I, et al., A Mapping Flow for Dynamically Reconfigurable Multi-Core System-on-Chip Design, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Aug. 2011, 30(8), pp. 1211-1224.
Das, R., et al., Aergia: Exploiting Packet Latency Slack in On-Chip Networks, 37th International Symposium on Computer Architecture (ISCA '10), Jun. 19-23, 2010, 11 pgs.
Ebrahimi, E., et al., Fairness via Source Throttling: A Configurable and High-Performance Fairness Substrate for Multi-Core Memory Systems, ASPLOS '10, Mar. 13-17, 2010, 12 pgs.
Gindin, R., et al., NoC-Based FPGA: Architecture and Routing, Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07), May 2007, pp. 253-262.
Grot, B., Preemptive Virtual Clock: A Flexible, Efficient, and Cost-Effective QOS Scheme for Networks-on-Chip, Micro '09, Dec. 12-16, 2009, 12 pgs.
Grot, B., Kilo-NOC: A Heterogeneous Network-on-Chip Architecture for Scalability and Service Guarantees, ISCA 11, Jun. 4-8, 2011, 12 pgs.
Grot, B., Topology-Aware Quality-of-Service Support in Highly Integrated Chip Multiprocessors, 6th Annual Workshop on the Interaction between Operating Systems and Computer Architecture, Jun. 2006, 11 pgs.
Hiestness, J., et al., Netrace: Dependency-Tracking for Efficient Network-on-Chip Experimentation, The University of Texas at Austin, Dept. of Computer Science, May 2011, 20 pgs.
Jiang, N., et al., Performance Implications of Age-Based Allocations in On-Chip Networks, CVA MEMO 129, May 24, 2011, 21 pgs.
Lee, J. W., et al., Globally-Synchronized Frames for Guaranteed Quality-of-Service in On-Chip Networks, 35th IEEE/ACM International Symposium on Computer Architecture (ISCA), Jun. 2008, 12 pgs.
Lee, M. M., et al. Approximating Age-Based Arbitration in On-Chip Networks, PACT '10, Sep. 11-15, 2010, 2 pgs.
Li, B. et al., CoQoS: Coordinating QoS-Aware Shared Resources in NoC-based SoCs, J. Parallel Distrib. Comput., 71(5), May 2011, 14 pgs.
Lin, S., et al., Scalable Connection-Based Flow Control Scheme for Application-Specific Network-on-Chip, The Journal of China Universities of Posts and Telecommunications, Dec. 2011, 18(6), pp. 98-105.
Bolotin, Evgency, et al., “QNoC: QoS Architecture and Design Process for Network on Chip” 2004, 24 pages, Journal of Systems Architecture 50 (2004) 105-128 Elsevier.
Holsmark, Shashi Kumar Rickard, et al., “HiRA: A Methodology for Deadlock Free Routing in Hierarchical Networks on Chip”, 10 pages, (978-1-4244-4143-3/09 2009 IEEE).
Munirul, H.M., et al., Evaluation of Multiple-Valued Packet Multiplexing Scheme for Network-on-Chip Architecture, Proceedings of the 36th International Symposium on Multiple-Valued Logic (ISMVL '06), 2006, 6 pgs.
Rajesh BV, Shivaputra, “NOC: Design and Implementation of Hardware Network Interface With Improved Communication Reliability”, 7 pages, International Journal of VLSI and Embedded Systems, Ijives (vol. 04, Article 06116; Jun. 2013).
Yang, J., et al., Homogeneous NoC-based FPGA: The Foundation for Virtual FPGA, 10th IEEE International Conference on Computer and Information Technology (CIT 2010), Jun. 2010, pp. 62-67.
Zaman, Aanam, “Formal Verification of Circuit-Switched Network on Chip (NoC) Architectures using SPIN”, Oosman Hasan, IEEE © 2014, 8 pages.
Benini, Luca, et al., “Networks on Chips: A New SoC Paradigm”, IEEE Computers, SOC Designs, pp. 70-78, Copyright 2002 IEEE. 0018-9162/02.
Sethuraman, Ranga Vemuri Balasubramanian, “optiMap: A Tool for Automated Generation of NoC Architecture Using Multi-Port Routers for FPGAs”, IEEE, pp. 1-6, 2006.
International Search Report and Written Opinion for PCT/US2014/060745, dated Jan. 21, 2015, 10 pgs.
International Search Report and Written Opinion for PCT/US2014/060879, dated Jan. 21, 2015, 10 pgs.
International Search Report and Written Opinion for PCT/US2014/060892, dated Jan. 27, 2015, 10 pgs.
International Search Report and Written Opinion for PCT/US2014/060886, dated Jan. 26, 2015, 10 pgs.
International Search Report and Written Opinion for PCT/US2013/064140, dated Jan. 22, 2014, 9 pgs.
International Search Report and Written Opinion for PCT/US2014/012003, dated Mar. 26, 2014, 9 pgs.
International Search Report and Written Opinion for PCT/US2014/012012, dated May 14, 2014, 9 pgs.
International Search Report and Written Opinion for PCT/US2014/023625, dated Jul. 10, 2014, 9 pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2013/064140, dated Apr. 14, 2015, 5 pages.
Office Action for Korean Patent Application No. 10-2016-7019093 dated Sep. 8, 2016, 3 pages plus 1 page English translation. KIPO, Korea.
Notice of Allowance for for Korean Patent Application No. 10-2016-7019093 dated Sep. 8, 2016, 4 pages. KIPO, Korea.
International Search Report and Written Opinion for PCT/US2014/037902, dated Sep. 30, 2014, 14 pgs.
Office Action for Japanese Patent Application No. 2015-535898 dated Oct. 25, 2016, 2 pages English, 2 pages untranslated copy. Japan Patent Office.
Notice of Grant for Japanese Patent Application No. 2015-535898 dated Jan. 17, 2017, 3 pages, untranslated. Japan Patent Office.
International Search Report and Written Opinion for PCT/US2014/048190, dated Nov. 28, 2014, 11 pgs.
Office Action for Japanese Patent Application No. 2016-516030 dated Aug. 30, 2016, 2 pages, Japan Patent Office.
Decision to Grant for Japanese Patent Application No. 2016-516030 dated Nov. 22, 2016, 6 pages, untranslated, Japan Patent Office.
Office Action received for U.S. Appl. No. 15/829,749, dated Jan. 14, 2019, 14 pages.
Office Action received for U.S. Appl. No. 15/903,425, dated Jan. 22, 2019, 8 pages.
Office Action received for U.S. Appl. No. 15/903,557, dated Jan. 21, 2019, 10 pages.
Related Publications (1)
Number Date Country
20180191626 A1 Jul 2018 US
Provisional Applications (1)
Number Date Country
62429695 Dec 2016 US
Continuations (1)
Number Date Country
Parent 15829749 Dec 2017 US
Child 15903633 US