Interference cancellation in a spread spectrum communication system

Abstract
A code division multiple access communication system transmits a pilot and traffic signal over a shared spectrum. The pilot and traffic signal have an associated code and are received over the shared spectrum. The received signals are sampled and the samples are delayed to produce a window. A weighted value for each despread pilot code window sample is determined using an adaptive algorithm. Each window sample is despread with a traffic code. Each despread traffic code window sample is weighted according to a weight corresponding to its respective pilot code sample.
Description
FIELD OF INVENTION

The present invention relates generally to signal transmission and reception in a wireless code division multiple access (CDMA) communication system. More specifically, the invention relates to reception of signals to reduce interference in a wireless CDMA communication system.


BACKGROUND

A prior art CDMA communication system is shown in FIG. 1. The communication system has a plurality of base stations 20-32. Each base station 20 communicates using spread spectrum CDMA with user equipment (UEs) 34-38 within its operating area. Communications from the base station 20 to each UE 34-38 are referred to as downlink communications and communications from each UE 34-38 to the base station 20 are referred to as uplink communications.


Shown in FIG. 2 is a simplified CDMA transmitter and receiver. A data signal having a given bandwidth is mixed by a mixer 40 with a pseudo random chip code sequence producing a digital spread spectrum signal for transmission by an antenna 42. Upon reception at an antenna 44, the data is reproduced after correlation at a mixer 46 with the same pseudo random chip code sequence used to transmit the data. By using different pseudo random chip code sequences, many data signals use the same channel bandwidth. In particular, a base station 20 will communicate signals to multiple UEs 34-38 over the same bandwidth.


For timing synchronization with a receiver, an unmodulated pilot signal is used. The pilot signal allows respective receivers to synchronize with a given transmitter allowing despreading of a data signal at the receiver. In a typical CDMA system, each base station 20 sends a unique pilot signal received by all UEs 34-38 within communicating range to synchronize forward link transmissions. Conversely, in some CDMA systems, for example in the B-CDMA™ air interface, each UE 34-38 transmits a unique assigned pilot signal to synchronize reverse link transmissions.


When a UE 34-38 or a base station 20-32 is receiving a specific signal, all the other signals within the same bandwidth are noise-like in relation to the specific signal. Increasing the power level of one signal degrades all other signals within the same bandwidth. However, reducing the power level too far results in an undesirable received signal quality. One indicator used to measure the received signal quality is the signal to noise ratio (SNR). At the receiver, the magnitude of the desired received signal is compared to the magnitude of the received noise. The data within a transmitted signal received with a high SNR is readily recovered at the receiver. A low SNR leads to loss of data.


To maintain a desired signal to noise ratio at the minimum transmission power level, most CDMA systems utilize some form of adaptive power control. By minimizing the transmission power, the noise between signals within the same bandwidth is reduced. Accordingly, the maximum number of signals received at the desired signal to noise ratio within the same bandwidth is increased.


Although adaptive power control reduces interference between signals in the same bandwidth, interference still exists limiting the capacity of the system. One technique for increasing the number of signals using the same radio frequency (RF) spectrum is to use sectorization. In sectorization, a base station uses directional antennas to divide the base station's operating area into a number of sectors. As a result, interference between signals in differing sectors is reduced. However, signals within the same bandwidth within the same sector interfere with one another. Additionally, sectorized base stations commonly assign different frequencies to adjoining sectors decreasing the spectral efficiency for a given frequency bandwidth. Accordingly, there exists a need for a system which further improves the signal quality of received signals without increasing transmitter power levels.


SUMMARY

A code division multiple access communication system transmits a pilot and traffic signal over a shared spectrum. The pilot and traffic signal have an associated code and are received over the shared spectrum. The received signals are sampled and the samples are delayed to produce a window. A weighted value for each despread pilot code window sample is determined using an adaptive algorithm. Each window sample is despread with a traffic code. Each despread traffic code window sample is weighted according to a weight corresponding to its respective pilot code sample.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a prior art wireless spread spectrum CDMA communication system.



FIG. 2 is a prior art spread spectrum CDMA transmitter and receiver.



FIG. 3 is the transmitter of the invention.



FIG. 4 is the transmitter of the invention transmitting multiple data signals.



FIG. 5 is the pilot signal receiving circuit of the invention.



FIG. 6 is the data signal receiving circuit of the invention.



FIG. 7 is an embodiment of the pilot signal receiving circuit.



FIG. 8 is a least mean squared weighting circuit.



FIG. 9 is the data signal receiving circuit used with the pilot signal receiving circuit of FIG. 7.



FIG. 10 is an embodiment of the pilot signal receiving circuit where the output of each RAKE is weighted.



FIG. 11 is the data signal receiving circuit used with the pilot signal receiving circuit of FIG. 10.



FIG. 12 is an embodiment of the pilot signal receiving circuit where the antennas of the transmitting array are closely spaced.



FIG. 13 is the data signal receiving circuit used with the pilot signal receiving circuit of FIG. 12.



FIG. 14 is an illustration of beam steering in a CDMA communication system.



FIG. 15 is a beam steering transmitter.



FIG. 16 is a beam steering transmitter transmitting multiple data signals.



FIG. 17 is the data receiving circuit used with the transmitter of FIG. 14.



FIG. 18 is a pilot signal receiving circuit used when uplink and downlink signals use the same frequency.



FIG. 19 is a transmitting circuit used with the pilot signal receiving circuit of FIG. 18.



FIG. 20 is a data signal receiving circuit used with the pilot signal receiving circuit of FIG. 18.



FIG. 21 is a simplified receiver for reducing interference.



FIG. 22 is an illustration of a vector correlator/adaptive algorithm block using a least mean square error algorithm.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

The preferred embodiments will be described with reference to the drawing figures where like numerals represent like elements throughout. FIG. 3 is a transmitter of the invention. The transmitter has an array of antennas 48-52, preferably 3 or 4 antennas. For use in distinguishing each antenna 48-52, a different signal is associated with each antenna 56-60. The preferred signal to associate with each antenna is a pilot signal as shown in FIG. 3. Each spread pilot signal is generated by a pilot signal generator 56-60 using a different pseudo random chip code sequence and is combined by combiners 62-66 with the respective spread data signal. Each spread data signal is generated using data signal generator 54 by mixing at mixers 378-382 the generated data signal with a different pseudo random chip code sequence per antenna 48-52, D1-DN. The combined signals are modulated to a desired carrier frequency and radiated through the antennas 48-52 of the array.


By using an antenna array, the transmitter utilizes spacial diversity. If spaced far enough apart, the signals radiated by each antenna 48-52 will experience different multipath distortion while traveling to a given receiver. Since each signal sent by an antenna 48-52 will follow multiple paths to a given receiver, each received signal will have many multipath components. These components create a virtual communication channel between each antenna 48-52 of the transmitter and the receiver. Effectively, when signals transmitted by one antenna 48-52 over a virtual channel to a given receiver are fading, signals from the other antennas 48-52 are used to maintain a high received SNR. This effect is achieved by the adaptive combining of the transmitted signals at the receiver.



FIG. 4 shows the transmitter as used in a base station 20 to send multiple data signals. Each spread data signal is generated by mixing at mixers 360-376 a corresponding data signal from generators 74-78 with differing pseudo random chip code sequences D11-DNM. Accordingly, each data signal is spread using a different pseudo random chip code sequence per antenna 48-52, totaling N×M code sequences. N is the number of antennas and M is the number of data signals. Subsequently, each spread data signal is combined with the spread pilot signal associated with the antenna 48-52. The combined signals are modulated and radiated by the antennas 48-52 of the array.


The pilot signal receiving circuit is shown in FIG. 5. Each of the transmitted pilot signals is received by the antenna 80. For each pilot signal, a despreading device, such as a RAKE 82-86 as shown in the FIG. 5 or a vector correlator, is used to despread each pilot signal using a replica of the corresponding pilot signal's pseudo random chip code sequence. The despreading device also compensates for multipath in the communication channel. Each of the recovered pilot signals is weighted by a weighting device 88-92. Weight refers to both magnitude and phase of the signal. Although the weighting is shown as being coupled to a RAKE, the weighting device preferably also weights each finger of the RAKE. After weighting, all of the weighted recovered pilot signals are combined in a combiner 94. Using an error signal generator 98, an estimate of the pilot signal provided by the weighted combination is used to create an error signal. Based on the error signal, the weights of each weighting device 88-92 are adjusted to minimize the error signal using an adaptive algorithm, such as least mean squared (LMS) or recursive least squares (RLS). As a result, the signal quality of the combined signal is maximized.



FIG. 6 depicts a data signal receiving circuit using the weights determined by the pilot signal recovery circuit. The transmitted data signal is recovered by the antenna 80. For each antenna 48-52 of the transmitting array, the weights from a corresponding despreading device, shown as a RAKE 82-86, are used to filter the data signal using a replica of the data signal's spreading code used for the corresponding transmitting antenna. Using the determined weights for each antenna's pilot signal, each weighting device 106-110 weights the RAKE's despread signal with the weight associated with the corresponding pilot. For instance, the weighting device 88 corresponds to the transmitting antenna 48 for pilot signal 1. The weight determined by the pilot RAKE 82 for pilot signal 1 is also applied at the weighting device 106 of FIG. 6. Additionally, if the weights of the RAKE's fingers were adjusted for the corresponding pilots signal's RAKE 82-86, the same weights will be applied to the fingers of the data signal's RAKE 100-104. After weighting, the weighted signals are combined by the combiner 112 to recover the original data signal.


By using the same weights for the data signal as used with each antenna's pilot signal, each RAKE 82-86 compensates for the channel distortion experienced by each antenna's signals. As a result, the data signal receiving circuit optimizes the data signal's reception over each virtual channel. By optimally combining each virtual channel's optimized signal, the received data signal's signal quality is increased.



FIG. 7 shows an embodiment of the pilot signal recovery circuit. Each of the transmitted pilots are recovered by the receiver's antenna 80. To despread each of the pilots, each RAKE 82-86 utilizes a replica of the corresponding pilot's pseudo random chip code sequence, P1-PN. Delayed versions of each pilot signal are produced by delay devices 114-124. Each delayed version is mixed by a mixer 126-142 with the received signal. The mixed signals pass through sum and dump circuits 424-440 and are weighted using mixers 144-160 by an amount determined by the weight adjustment device 170. The weighted multipath components for each pilot are combined by a combiner 162-164. Each pilot's combined output is combined by a combiner 94. Since a pilot signal has no data, the combined pilot signal should have a value of 1+j0. The combined pilot signal is compared to the ideal value, 1+j0, at a subtractor 168. Based on the deviation of the combined pilot signal from the ideal, the weight of the weighting devices 144-160 are adjusted using an adaptive algorithm by the weight adjustment device 170.


An LMS algorithm used for generating a weight is shown in FIG. 8. The output of the subtractor 168 is multiplied using a mixer 172 with the corresponding despread delayed version of the pilot. The multiplied result is amplified by an amplifier 174 and integrated by an integrator 176. The integrated result is used to weight, W1M, the RAKE finger.


The data receiving circuit used with the embodiment of FIG. 7 is shown for a base station receiver in FIG. 9. The received signal is sent to a set of RAKEs 100-104 respectively associated with each antenna 48-52 of the array. Each RAKE 100-104, produces delayed versions of the received signal using delay devices 178-188. The delayed versions are weighted using mixers 190-206 based on the weights determined for the corresponding antenna's pilot signal. The weighted data signals for a given RAKE 100-104 are combined by a combiner 208-212. One combiner 208-212 is associated with each of the N transmitting antennas 48-52. Each combined signal is despread M times by mixing at a mixer 214-230 the combined signal with a replica of the spreading codes used for producing the M spread data signals at the transmitter, D11-DNM. Each despread data signal passes through a sum and dump circuit 232-248. For each data signal, the results of the corresponding sum and dump circuits are combined by a combiner 250-254 to recover each data signal.


Another pilot signal receiving circuit is shown in FIG. 10. The despreading circuits 82-86 of this receiving circuit are the same as FIG. 7. The output of each RAKE 82-86 is weighted using a mixer 256-260 prior to combining the despread pilot signals. After combining, the combined pilot signal is compared to the ideal value and the result of the comparison is used to adjust the weight of each RAKE's output using an adaptive algorithm. To adjust the weights within each RAKE 82-86, the output of each RAKE 82-86 is compared to the ideal value using a subtractor 262-266. Based on the result of the comparison, the weight of each weighting device 144-160 is determined by the weight adjustment devices 268-272.


The data signal receiving circuit used with the embodiment of FIG. 10 is shown in FIG. 11. This circuit is similar to the data signal receiving circuit of FIG. 9 with the addition of mixers 274-290 for weighting the output of each sum and dump circuit 232-248. The output of each sum and dump circuit 232-248 is weighted by the same amount as the corresponding pilot's RAKE 82-86 was weighted. Alternatively, the output of each RAKE's combiner 208-212 may be weighted prior to mixing by the mixers 214-230 by the amount of the corresponding pilot's RAKE 82-86 in lieu of weighting after mixing.


If the spacing of the antennas 48-52 in the transmitting array is small, each antenna's signals will experience a similar multipath environment. In such cases, the pilot receiving circuit of FIG. 12 may be utilized. The weights for a selected one of the pilot signals are determined in the same manner as in FIG. 10. However, since each pilot travels through the same virtual channel, to simplify the circuit, the same weights are used for despreading the other pilot signals. Delay devices 292-294 produce delayed versions of the received signal. Each delayed version is weighted by a mixer 296-300 by the same weight as the corresponding delayed version of the selected pilot signal was weighted. The outputs of the weighting devices are combined by a combiner 302. The combined signal is despread using replicas of the pilot signals' pseudo random chip code sequences, P2-Pn, by the mixers 304-306. The output of each pilot's mixer 304-306 is passed through a sum and dump circuit 308-310. In the same manner as FIG. 10, each despread pilot is weighted and combined.


The data signal recovery circuit used with the embodiment of FIG. 12 is shown in FIG. 13. Delay devices 178-180 produce delayed versions of the received signal. Each delayed version is weighted using a mixer 190-194 by the same weight as used by the pilot signals in FIG. 12. The outputs of the mixers are combined by a combiner 208. The output of the combiner 208 is inputted to each data signal despreader of FIG. 13.


The invention also provides a technique for adaptive beam steering as illustrated in FIG. 14. Each signal sent by the antenna array will constructively and destructively interfere in a pattern based on the weights provided each antenna 48-52 of the array. As a result, by selecting the appropriate weights, the beam 312-316 of the antenna array is directed in a desired direction.



FIG. 15 shows the beam steering transmitting circuit. The circuit is similar to the circuit of FIG. 3 with the addition of weighting devices 318-322. A target receiver will receive the pilot signals transmitted by the array. Using the pilot signal receiving circuit of FIG. 5, the target receiver determines the weights for adjusting the output of each pilot's RAKE. These weights are also sent to the transmitter, such as by using a signaling channel. These weights are applied to the spread data signal as shown in FIG. 15. For each antenna, the spread data signal is given a weight by the weighting devices 318-322 corresponding to the weight used for adjusting the antenna's pilot signal at the target receiver providing spatial gain. As a result, the radiated data signal will be focused towards the target receiver. FIG. 16 shows the beam steering transmitter as used in a base station sending multiple data signals to differing target receivers. The weights received by the target receiver are applied to the corresponding data signals by weighting devices 324-340.



FIG. 17 depicts the data signal receiving circuit for the beam steering transmitter of FIGS. 15 and 16. Since the transmitted signal has already been weighted, the data signal receiving circuit does not require the weighting devices 106-110 of FIG. 6.


The advantage of the invention's beam steering are two-fold. The transmitted data signal is focused toward the target receiver improving the signal quality of the received signal. Conversely, the signal is focused away from other receivers reducing interference to their signals. Due to both of these factors, the capacity of a system using the invention's beam steering is increased. Additionally, due to the adaptive algorithm used by the pilot signal receiving circuitry, the weights are dynamically adjusted. By adjusting the weights, a data signal's beam will dynamically respond to a moving receiver or transmitter as well as to changes in the multipath environment.


In a system using the same frequency for downlink and uplink signals, such as time division duplex (TDD), an alternate embodiment is used. Due to reciprocity, downlink signals experience the same multipath environment as uplink signals sent over the same frequency. To take advantage of reciprocity, the weights determined by the base station's receiver are applied to the base station's transmitter. In such a system, the base station's receiving circuit of FIG. 18 is co-located, such as within a base station, with the transmitting circuit of FIG. 19.


In the receiving circuit of FIG. 18, each antenna 48-52 receives a respective pilot signal sent by the UE. Each pilot is filtered by a RAKE 406-410 and weighted by a weighting device 412-416. The weighted and filtered pilot signals are combined by a combiner 418. Using the error signal generator 420 and the weight adjustment device 422, the weights associated with the weighting devices 412-416 are adjusted using an adaptive algorithm.


The transmitting circuit of FIG. 19 has a data signal generator 342 to generate a data signal. The data signal is spread using mixer 384. The spread data signal is weighted by weighting devices 344-348 as were determined by the receiving circuit of FIG. 19 for each virtual channel.


The circuit of FIG. 20 is used as a data signal receiving circuit at the base station. The transmitted data signal is received by the multiple antennas 48-52. A data RAKE 392-396 is coupled to each antenna 48-52 to filter the data signal. The filtered data signals are weighted by weighting devices 398-402 by the weights determined for the corresponding antenna's received pilot and are combined at combiner 404 to recover the data signal. Since the transmitter circuit of FIG. 19 transmits the data signal with the optimum weights, the recovered data signal at the UE will have a higher signal quality than provided by the prior art.


An adaptive algorithm can also be used to reduce interference in received signals for a spread spectrum communication system. A transmitter in the communication system, which can be located in either a base station 20 to 32 or UE 34 to 36, transmits a spread pilot signal and a traffic signal over the same frequency spectrum. The pilot signal is spread using a pilot code, P, and the traffic signal is spread using a traffic code, C.


The simplified receiver 500 of FIG. 21 receives both the pilot and traffic signals using an antenna 502. The received signals are demodulated to a baseband signal by a demodulator 518. The baseband signal is converted into digital samples, such as by two analog to digital converters (ADC) 512, 514. Each ADC 512, 514 typically samples at the chip rate. To obtain a half-chip resolution, one ADC 514 is delayed with respect to the other ADC 512 by a one-half chip delay. The samples are processed by a filtering device, such two vector correlators 504, 508 as shown in FIG. 21 or a RAKE, to process the pilot signal. The vector correlators 504, 508, are used to despread various multipath components of the received pilot signal using the pilot code, P. By using two vector correlators 504, 508 as in FIG. 21, each half-chip component is despread, such as for a 10 chip window to despread 21 components. Each despread component is sent to an adaptive algorithm block 506 to determine an optimum weight for each despread component to minimize interference in the received pilot signal. The adaptive algorithm block 506 may use a minimum mean square error (MMSE) algorithm such as a least mean square error algorithm.


One combination vector correlator/adaptive algorithm block using an LMS algorithm and half-chip resolution is shown in FIG. 22. The pilot code is delayed by a group of delay devices 5201 to 520N and 5221 to 522N. Each of the ADC samples is despread such as by mixing it with timed versions of the pilot code, P, by mixers 5241 to 524N and 5261 to 526N. The mixed signals are processed by sum and dump circuits 5281 to 528N and 5301 to 530N to produce despread components of the pilot signal. By using two ADCs 512, 514 with a half-chip sampling delay and two vector correlators 504, 508, despread components at half-chip intervals are produced such as 21 components for a 10 chip window. Each despread version is weighted by a weight, W11 to W2N, such as by using a weighting device, 5441 to 544N and 5461 to 546N. The weighted versions are combined, such as by using a summer 528. The combined signal is compared to the complex transmitted value of pilot signal, such as 1+j for a pilot signal in the third generation wireless standard, to produce an error signal, e. The comparison may be performed by a subtractor 550 by subtracting the combined signal from the ideal, 1+j. The error signal, e, is mixed using mixers 5321 to 532N and 5341 to 534N with each despread version. Each mixed version is amplified and integrated, such as by using an amplifier 5361 to 536N and 5381 to 538N and an integrator 5401 to 540N and 5421 to 542N. The amplified and integrated results are refined weights, W11 to W2N, for further weighting of the despread versions. Using the least mean square algorithm, the weights, W11 to W2N, will be selected as to drive the combined signal to its ideal value.


The received signal is also processed by an adaptive filter 510 with the weights, W11 to W2N, determined for the pilot signal components. Since the pilot signal and the traffic signal are transmitted over the same frequency spectrum, the two signals experience the same channel characteristics. As a result, the pilot weights, W11 to W2N, applied to the traffic signal components reduces interference in the received traffic signal. Additionally, if the pilot and channel signals were sent using orthogonal spreading codes, the orthogonality of the received channel signal is restored after weighting. The restored orthogonality substantially reduces correlated interference from other traffic channels that occurs as a result of the deorthogonalization due to channel distortion. The weighted received signal is despread by a traffic despreader 516 using the corresponding traffic code to recover the traffic data.


Although the features and elements of the present invention are described in the preferred embodiments in particular combinations, each feature or element can be used alone (without the other features and elements of the preferred embodiments) or in various combinations with or without other features and elements of the present invention.

Claims
  • 1. A base station comprising: a plurality of antennas;circuitry configured to produce a plurality of pilot signals;wherein a different pilot signal of the plurality of pilot signals is transmitted on each of the plurality of antennas;wherein each of the pilot signals is derived from at least a portion of a first pseudo noise (PN) sequence and the at least a portion of the first PN sequence bits for each of the pilot signals is different;wherein the circuitry is further configured to produce data and split the data into a plurality of data streams;wherein the data of each of the data streams has data bits combined with at least a portion of a second PN sequence and the at least a portion of the second PN sequence bits for each stream is different;wherein the circuitry is further configured to weight the data streams in response to weight information received from a user equipment; anda transmitter configured to transmit the plurality of weighted data streams using the plurality of antennas with different pilot signals.
  • 2. The base station of claim 1 wherein the plurality of data streams are transmitted to the user equipment.
  • 3. A base station comprising: a plurality of antennas;circuitry configured to produce a plurality of pilot signals;wherein a different pilot signal of the plurality of pilot signals is transmitted on each of the plurality of antennas;wherein each of the pilot signals is derived from at least a portion of a first pseudo noise (PN) sequence and the at least a portion of the first PN sequence bits for each of the pilot signals is different;wherein the circuitry is further configured to produce data and split the data into a plurality of data streams;wherein the data of each of the data streams has data bits combined with at least a portion of a second PN sequence and the at least a portion of the second PN sequence bits for each stream is different;wherein the circuitry is further configured to weight the data streams in response to weights derived from uplink signals; anda transmitter configured to transmit the plurality of weighted data streams using the plurality of antennas with different pilot signals.
  • 4. The base station of claim 3 wherein the base station is a time division duplex base station.
  • 5. A method comprising: producing, by a base station, a plurality of pilot signals;wherein each of the pilot signals is derived from at least a portion of a first pseudo noise (PN) sequence and the at least a portion of the first PN sequence bits for each of the pilot signals is different;producing, by the base station, data and splitting the data into a plurality of data streams;wherein the data of each of the data streams has data bits combined with at least a portion of a second PN sequence and the at least a portion of the second PN sequence bits for each stream is different;weighting the data streams in response to weight information received by the base station from a user equipment; andtransmitting the plurality of weighted data streams using the plurality of antennas with different pilot signals.
  • 6. A method comprising: producing, by a base station, a plurality of pilot signals;wherein each of the pilot signals is derived from at least a first portion of a pseudo noise (PN) sequence and the at least a portion of the first PN sequence bits for each of the pilot signals is different;producing, by the base station, data and splitting the data into a plurality of data streams;wherein the data of each of the data streams has data bits combined with at least a portion of a second PN sequence and the at least a portion of the second PN sequence bits for each stream is different;weighting the data streams in response to the weights derived from uplink signals; andtransmitting the plurality of weighted data streams using the plurality of antennas with different pilot signals.
  • 7. The method of claim 6 wherein the base station is a time division duplex base station.
  • 8. The method of claim 5 wherein the plurality of data streams are transmitted to the user equipment.
  • 9. A user equipment comprising: circuitry configured to receive a downlink signal including a plurality of pilot signals and a plurality of data streams;wherein a different pilot signal of the plurality of pilot signals was transmitted from a different antenna of a plurality of antennas of a base station;wherein each of the pilot signals was derived from at least a first portion of a pseudo noise (PN) sequence and the at least a portion of the first PN sequence bits for each of the pilot signals is different;wherein the circuitry is further configured to recover data from the plurality of data streams;wherein the recovered data was split into the plurality of data streams;wherein the data of each of the data streams had data bits combined with at least a portion of a second PN sequence and the at least a portion of the second PN sequence bits for each stream was different;wherein the circuitry is further configured to transmit weight information to the base station for use in weighting the plurality of data streams; anda receiver configured to receive the plurality of weighted data streams using the plurality of antennas with different pilot signals.
  • 10. The user equipment of claim 9 wherein the user equipment is a time division duplex user equipment.
  • 11. The user equipment of claim 9 wherein the user equipment is a frequency division duplex user equipment.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/480,337 filed Jun. 8, 2009, now U.S. Pat. No. 7,953,139 which issued on May 31, 2011, which is a continuation of U.S. patent application Ser. No. 11/301,666 filed Dec. 13, 2005, now U.S. Pat. No. 7,545,846 which issued on Jun. 9, 2009, which is a continuation of U.S. patent application Ser. No. 10/923,950, filed Aug. 23, 2004, now U.S. Pat. No. 6,985,515 issued Jan. 10, 2006, which is a continuation of 10/423,230, filed Apr. 25, 2003, now U.S. Pat. No. 6,782,040 issued Aug. 24, 2004, which is a continuation of Ser. No. 09/892,369 filed Jun. 27, 2001, now U.S. Pat. No. 6,574,271 issued Jun. 3, 2003, which is a continuation of Ser. No. 09/659,858, filed on Sep. 11, 2000, now U.S. Pat. No. 6,278,726, issued on Aug. 21, 2001, which is a continuation-in-part of Ser. No. 09/602,963 filed Jun. 23, 2000, now U.S. Pat. No. 6,373,877, issued Apr. 16, 2002, which is a continuation of Ser. No. 09/394,452 filed Sep. 10, 1999, now U.S. Pat. No. 6,115,406, issued Sep. 5, 2000, which are incorporated by reference as if fully set forth.

US Referenced Citations (79)
Number Name Date Kind
3662268 Gans et al. May 1972 A
4736460 Rilling Apr 1988 A
4901307 Gilhousen et al. Feb 1990 A
5146475 Kubo Sep 1992 A
5319677 Kim Jun 1994 A
5331666 Dent Jul 1994 A
5381443 Borth et al. Jan 1995 A
5457704 Hoeher et al. Oct 1995 A
5493563 Rozanski et al. Feb 1996 A
5559789 Nakano et al. Sep 1996 A
5623511 Bar-David et al. Apr 1997 A
5652764 Kanzaki et al. Jul 1997 A
5673294 Namekata Sep 1997 A
5680419 Bottomley Oct 1997 A
5694388 Sawahashi et al. Dec 1997 A
5757791 Kanterakis et al. May 1998 A
5796779 Nussbaum et al. Aug 1998 A
5809020 Bruckert et al. Sep 1998 A
5812542 Bruckert et al. Sep 1998 A
5822380 Bottomley Oct 1998 A
5822701 Tomisato et al. Oct 1998 A
5886987 Yoshida et al. Mar 1999 A
5903834 Wallstedt et al. May 1999 A
5933424 Muto Aug 1999 A
5952968 McDowell Sep 1999 A
5982327 Vook et al. Nov 1999 A
5991332 Lomp et al. Nov 1999 A
5999826 Whinnett Dec 1999 A
6009074 Kim et al. Dec 1999 A
6026130 Rahmatullah et al. Feb 2000 A
6044120 Bar-David et al. Mar 2000 A
6067324 Harrison May 2000 A
6069884 Hayashi et al. May 2000 A
6069912 Sawahashi et al. May 2000 A
6081566 Molnar et al. Jun 2000 A
6108517 Arslan et al. Aug 2000 A
6147985 Bar-David et al. Nov 2000 A
6148041 Dent Nov 2000 A
6154443 Huang et al. Nov 2000 A
6154485 Harrison Nov 2000 A
6160801 Uchida et al. Dec 2000 A
6161209 Moher Dec 2000 A
6215762 Dent Apr 2001 B1
6335954 Bottomley et al. Jan 2002 B1
6347234 Scherzer Feb 2002 B1
6359864 Yoshida et al. Mar 2002 B1
6385181 Tsutsui et al. May 2002 B1
6385187 Ahn et al. May 2002 B1
6434366 Harrison et al. Aug 2002 B1
6459740 Lo Oct 2002 B1
6470047 Kleinerman et al. Oct 2002 B1
6470192 Karlsson et al. Oct 2002 B1
6483866 Suzuki Nov 2002 B1
6484285 Dent Nov 2002 B1
6501788 Wang et al. Dec 2002 B1
6501803 Alamouti et al. Dec 2002 B1
6542471 Ito Apr 2003 B1
6556634 Dent Apr 2003 B1
6636495 Tangemann Oct 2003 B1
6647070 Shalvi et al. Nov 2003 B1
6694154 Molnar et al. Feb 2004 B1
6697441 Bottomley et al. Feb 2004 B1
6704370 Chheda et al. Mar 2004 B1
6731700 Yakhnich et al. May 2004 B1
6778507 Jalali Aug 2004 B1
6791960 Song Sep 2004 B1
6870825 Huang Mar 2005 B1
7450632 Lim Nov 2008 B2
7711034 Dabak et al. May 2010 B2
20010030993 Bottomley et al. Oct 2001 A1
20020003846 Khayrallah et al. Jan 2002 A1
20020122510 Yakhnich et al. Sep 2002 A1
20020150187 Chugg et al. Oct 2002 A1
20020154704 Reshef Oct 2002 A1
20020181430 Thomas et al. Dec 2002 A1
20030013468 Khatri Jan 2003 A1
20030053524 Dent Mar 2003 A1
20030058929 Cox et al. Mar 2003 A1
20030092456 Dent May 2003 A1
Foreign Referenced Citations (34)
Number Date Country
0 674 455 Oct 1994 EP
0 715 421 Jun 1996 EP
07 55 127 Jan 1997 EP
0 820 157 Jan 1998 EP
08 81 781 Dec 1998 EP
0 892 508 Jan 1999 EP
08 99 894 Mar 1999 EP
22 80 575 Feb 1995 GB
H09-261204 Oct 1997 JP
H11-186991 Jul 1999 JP
9401956 Jan 1994 WO
9534140 Dec 1995 WO
9611533 Apr 1996 WO
9621295 Jul 1996 WO
9713386 Apr 1997 WO
9904537 Jan 1999 WO
9912283 Mar 1999 WO
9923767 May 1999 WO
9952311 Oct 1999 WO
0035159 Jun 2000 WO
0044141 Jul 2000 WO
0048330 Aug 2000 WO
0069192 Nov 2000 WO
0105088 Jan 2001 WO
0128174 Apr 2001 WO
0145289 Jun 2001 WO
0209297 Jan 2002 WO
0223787 Mar 2002 WO
02065719 Aug 2002 WO
02067444 Aug 2002 WO
02084892 Oct 2002 WO
03003604 Jan 2003 WO
03010899 Feb 2003 WO
2004012341 Feb 2004 WO
Non-Patent Literature Citations (22)
Entry
Pahlavan et al., “Performance of Adaptive Matched Filter Receivers Over Fading Multipath Channels,” IEEE Transactions on Communications, vol. 38, No. 12, Dec. 1990, pp. 2106-2113.
Latva-aho et al., “LMMSE Detection for DS-CDMA Systems in Fading Channels,” IEEE Transactions on Communications, vol. 48, No. 2, Feb. 2000, 194-199.
Majmundar et al., “Adaptive Single-User Receivers for Direct-Sequence Spread-Spectrum CDMA Systems,” IEEE Transactions on Vehicular Technology, vol. 49, No. 2, Mar. 2000, pp. 379-389.
Foerster et al., “Coding for a Coherent DS-CDMA System Employing an MMSE Receiver in a Rayleigh Fading Channel,” IEEE Transactions on Communications, vol. 48, No. 6, Jun. 2000, pp. 1012-1021.
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Physical layer procedures (TDD) (Release 1999),” 3GPP TS 25.224 V1.0.0 (Apr. 1999).
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Physical layer procedures (TDD) (Release 1999),” 3GPP TS 25.224 V3.2.0 (Mar. 2000).
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Spreading and modulation (TDD) (Release 1999),” 3GPP TS 25.223 V2.1.0 (Jun. 1999).
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Spreading and modulation (TDD) (Release 1999),” 3GPP TS 25.223 V3.2.0 (Mar. 2000).
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Physical demands and mapping of transport channels onto physical channels (TDD) (Release 4),” 3GPP TS 25.221 V1.1.0 (Jun. 1999).
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Physical channels and mapping of transport channels onto physical channels (TDD) (Release 4),” 3GPP TS 25.221 V3.2.0 (Mar. 2000).
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Physical Channels and Mapping of Transport Channels onto Physical Channels (FDD) (Release 1999),” 3GPP TS 25.211 V2.1.0 (Jun. 1999).
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Physical Channels and Mapping of Transport Channels onto Physical Channels (FDD) (Release 1999),” 3GPP TS 25.211 V3.1.0 (Dec. 1999).
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Spreading and modulation (FDD) (Release 1999),” 3GPP TS 25.213 V2.1.0 (Jun. 1999).
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Spreading and modulation (FDD) (Release 1999),” 3GPP TS 25.213 V3.2.0 (Mar. 2000).
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Physical Layer Procedures (FDD) (Release 1999),” 3GPP TS 25.214 v3.2.0 (Mar. 2000).
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Physical Layer Procedures (FDD) (Release 1999).” 3GPP TS 25.214 v1.0.0 (Apr. 1999).
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Base Station (BS) radio transmission and reception (FDD),” 3GPP TS 25.104 V2.0.0 (Jun. 1999).
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; Base Station (BS) radio transmission and reception (FDD),” 3GPP TS 25.104 V3.2.0 (Mar. 2000).
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; User Equipment (UE) radio transmission and reception (FDD),” TS 25.101 V2.0.0 (Jun. 1999).
Third Generation Partnership Project, “Technical Specification Group Radio Access Network; User Equipment (UE) radio transmission and reception (FDD),” 3GPP TS 25.101 V3.2.2 (Apr. 2000).
Haykin, “Adaptive Filter Theory,” Prentice Hall Information and System Sciences Series, Prentice Hall; 3rd edition, pp. 365-444, 451-457, 530-532, 708-711, 716-719, 921-924 (Dec. 27, 1995).
Third Generation Partnership Project, “Technical Specification Group (TSG) Radio Access Network (RAN); Working Group 1 (WG1); Multiplexing and channel coding (FDD),” TS 25.212 V2.0.0 (Jun. 1999).
Related Publications (1)
Number Date Country
20110228710 A1 Sep 2011 US
Continuations (7)
Number Date Country
Parent 12480337 Jun 2009 US
Child 13117233 US
Parent 11301666 Dec 2005 US
Child 12480337 US
Parent 10923950 Aug 2004 US
Child 11301666 US
Parent 10423230 Apr 2003 US
Child 10923950 US
Parent 09892369 Jun 2001 US
Child 10423230 US
Parent 09659858 Sep 2000 US
Child 09892369 US
Parent 09394452 Sep 1999 US
Child 09602963 US
Continuation in Parts (1)
Number Date Country
Parent 09602963 Jun 2000 US
Child 09659858 US