The present application relates to delivery systems, methods, and configurations for implanting a device within a body of a patient.
Braid-based embolization devices and delivery system interfaces may be used for occluding blood flow at endovascular sites. One use is in intracranial aneurysm embolization or occlusion and another in parent vessel occlusion (PVO) or sacrifice.
Braid-ball devices formed with folded-over and folded-flat distal ends are among the architectures described in Becking, et al. These architectures are some of the ones best suited for treating brain aneurysms. Distal marker approaches are described that are especially suited for such devices. In addition, proximal end finishing approaches are described that are suitable for these and the rest of the devices described in Becking et al. Likewise, all of the features and technologies presented in Becking, et al. (PCT/US2009/041313) are incorporated herein by reference.
Regarding the distal marker approaches, one improvement comprises a tether to/for the distal marker included in the implant. Specifically, with the marker affixed adjacent to the distal end of the implant (as in the folded-flat embodiments in the incorporated application), the length of the tether/tie extends to the proximal hub of the implant. It has a length set so that when the implant is compressed, the marker is pulled into alignment with the implant and/or catheter.
When a suture is employed for the tether, it can tie around the interior of the distal fold with minimal interference. However, it may be advantageous to use a wire ribbon (e.g., Pt or Nitinol) for other reasons.
Namely, a tether ribbon (especially when pre-formed into a “V” shape) can be threaded through the gap/hole and around as few as one wire from the braid. So-disposed, there is no interference with the compression of the distal end of the implant. What is more, spring action in the ribbon tether (whether comprising two filaments or trimmed to one after crimping, gluing, welding or otherwise affixing at least one marker) can help position the marker against/across the top of the implant when deployed. Such a ribbon can also contribute to marker radiopacity, thereby allowing a smaller marker size.
Another option is to include fibers and/or other thrombus promoting material in connection with the tether. Whatever material option is selected and/or additional features are provided, the proximal end of the tether is advantageously captured between the layers of braid or between the braid and either one of optional inner or outer bands. It may be glued-in, affixed by welding or otherwise.
Yet another set of improvements concerns the manner in which the implant is finished. By “finished”, what is meant is the manner in which the proximal side of the implant is managed to define a hub and/or delivery system detachment interface.
In one advantageous approach, in which use of an inner band is desired for interface with detachment system components (such as those described in the referenced application), processing is done with an elongate hypotube set within the braid. The hypotube (e.g., about 2-5 cm long) serves as a means to hold and manipulate an implant preform construct. In addition, when the tube is trimmed off (or when the final or near-final implant is trimmed off relative to the tube being held) the remaining portion of the hypotube within the implant (now the “inner band”) defines the detachment interface lumen. Likewise—especially when a more radiopaque material such as Pt/Ir or CoCr is used for the tube, the same structure will improve and/or offer the requisite radiopacity at the proximal end of the implant.
In all, the approach (optionally characterized as a “sacrificial hypotube length” approach) is useful for gluing but may also be applied in a welding technique. In fact, it may be especially useful in the latter context by providing shielding from weld slag and deformation for the proximal aperture/port to be exposed by trimming the tube to define the inner band in the implant. Namely, after welding, a clean cut can be made (e.g., with a diamond saw, laser cutting, EDM, etc.—as above) and then any deburring (by mechanical action, etching, EP or otherwise) can be performed on the newly-exposed face as desired.
In conjunction with a sacrificial hypotube length approach for gluing, or the original gluing approach described in the referenced application, another advantageous option is offered by a different post-processing step. Namely, after an outer band is used at the proximal end of the implant to define an outer casting boundary for adhesive/glue (e.g., Loctite 4014), it then may be removed leaving the underlying glue casting in place. Outer band removal offers potential to reduce all of the height, diameter and appearance of the size of the proximal feature of the implant. Accordingly, it may assist in developing a system with 0.021″ catheter crossing profile.
To facilitate removal, the band may advantageously comprise NiTi alloy (that naturally forms a passivation layer) or it may be coated or otherwise plated. A Titanium Nitride coating may be desirable. Spray mold release (e.g., 3M) or dip-coating in mold release may alternatively be employed to assist in slipping-off the band after adhesive application and curing. Otherwise, the band can be cut off the glue casting.
Another approach for achieving minimal implant hub diameter—while maintaining necessary radiopacity—involves affixing a platinum band on top of an inner NiTi band (i.e., in a linear arrangement). The proximal/lower NiTi section can be easily welded to the NiTi braid in the ball (when so-constructed) and the Pt (including Pt/Ir and other alloys) provides an in-line radiopaque marker. The detachment system control and anchor wires are received through both bands. The bands may be attached (e.g., by welding, gluing or soldering) or merely associated with each other until detachment system wire removal. In either case, they may include interference fit, puzzle-piece or other groove or tongue-and-groove features to make or assist in making a connection between the bodies.
Another set of improvements concerns shaping the distal end of a “folded-flat” type implant. It may be provided with a flattened top. The flattened top derives from a flat formed in the round tooling over which the braid is shaped. The flat can be produced by milling about 0.010″ off the form. This depth cut allows sufficient “table” for desired shaping and can be consistently applied across a range of implants sized from about 5 mm to 12 mm in diameter with little effect on the perceived shape. The resulting crease in the implant wire shaped by such a form offers an immediate advantage to implant deployment. With the flat placed so close to the distal end of the device, shape recovery of the bend/crease around the flattened top drives early opening of the implant when unsheathed (as compared to a situation where a crease formed around the flat is set further away—or none is provided).
Yet another set of implant improvements described herein augments the density of the ball. Stated otherwise, provision is made for an additional layer of braid material to further decrease the braid matrix porosity, and possibly do so without any increase in device crossing profile/delivery (micro)catheter compatibility.
These improvements involve a third layer of braid that is added to the two layers preferably already present in the folded-flat base implant architecture. In one variation, a third layer of braid is captured between the two layers and captured within the hub region, but trimmed proximal to the distal folded-over/flat section. In another variation, an inner layer is set within the envelope of the aforementioned two layers. It is advantageously attached to a distal end of the inner marker band (above/distal) to any outer marker band provided. As such, the braid's attachment will not increase the hub profile. To avoid any profile increase at the distal end of the implant, the inner layer will typically be trimmed so its compressed length is located proximal to the folded-over braid at the distal end of the implant when compressed. In its unconstrained form, the inner layer may simply define a cup. Alternatively, it may define a secondary ball shape. Such a ball shape may be substantially spherical or ovoid. One advantageous configuration further includes unterminated distal ends to the braid. The ends of the braid defining the inner ball may be secured in a band or welded together. So-configured they can offer another radiopaque marker feature within the ball. However, it may be preferred that the braid ends of the inner layer (in cup, ball form, or otherwise) are unterminated. As such, they may improve thrombus formation within the body of the implant.
Finally, delivery system improvements are described. The features described are “improvements”—as are the features noted above—in a contextual sense. For example, certain of the delivery system architectures may not be as space-efficient as others. Yet, such larger system(s) may be desirable for reason of reduced manufacturing complexity and/or cost.
The subject technology is illustrated, for example, according to various aspects described below. Various examples of aspects of the subject technology are described as numbered clauses (1, 2, 3, etc.) for convenience. These are provided as examples and do not limit the subject technology. It is noted that any of the dependent clauses may be combined in any combination, and placed into a respective independent clause, e.g., clause 1 or clause 55. The other clauses can be presented in a similar manner.
The subject implant and delivery devices, kits in which they are included, methods of use and manufacture are all included within the scope of the present description. A number of aspects of such manufacture are discussed above. More detailed discussion is presented in connection with the figures below.
Additional features and advantages of the subject technology will be set forth in the description below, and in part will be apparent from the description, or may be learned by practice of the subject technology. The advantages of the subject technology will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the subject technology as claimed.
The accompanying drawings, which are included to provide further understanding of the subject technology and are incorporated in and constitute a part of this specification, illustrate aspects of the subject technology and together with the description serve to explain the principles of the subject technology.
In the following detailed description, numerous specific details are set forth to provide a full understanding of the subject technology. It will be apparent, however, to one ordinarily skilled in the art that the subject technology may be practiced without some of these specific details. In other instances, well-known structures and techniques have not been shown in detail so as not to obscure the subject technology.
A phrase such as “an aspect” does not imply that such aspect is essential to the subject technology or that such aspect applies to all configurations of the subject technology. A disclosure relating to an aspect may apply to all configurations, or one or more configurations. An aspect may provide one or more examples of the disclosure. A phrase such as “an aspect” may refer to one or more aspects and vice versa. A phrase such as “an embodiment” does not imply that such embodiment is essential to the subject technology or that such embodiment applies to all configurations of the subject technology. A disclosure relating to an embodiment may apply to all embodiments, or one or more embodiments. An embodiment may provide one or more examples of the disclosure. A phrase such “an embodiment” may refer to one or more embodiments and vice versa. A phrase such as “a configuration” does not imply that such configuration is essential to the subject technology or that such configuration applies to all configurations of the subject technology. A disclosure relating to a configuration may apply to all configurations, or one or more configurations. A configuration may provide one or more examples of the disclosure. A phrase such as “a configuration” may refer to one or more configurations and vice versa.
Turning to the figures,
While tie 22 terminates adjacent marker 20 in Becking et al., it extends to proximal hub 30 of implant 10 in the present description. The extension “tether” portions, or members, 24 so-provided operate to ensure axial alignment of marker 20 when implant 10 is captured (especially when re-capturing) in a catheter/sheath.
The length of tether member(s) 24 is therefore set such that slack is present when the implant is expanded (as shown in
Whereas the tie and/or tether member shown in
It may instead be advantageous to use a wire ribbon (e.g., Pt or Nitinol) for other reasons. A construction as detailed in the next figures was made using a superelastic NiTi ribbon with dimensions set at about 0.001 inches by about 0.003 inches.
A tether ribbon 24 heatset into a tight loop or “V” shape was threaded through gap 18 and around as few as one wire from the braid at a distal end of implant 10 as shown in
Also, the length of the tether may optionally be set in a general “question-mark” shape to match (or more closely match) the curvature of the implant when unconstrained (e.g., as the tether appears in
As stated above, another improvement to the subject implants concerns the manner of proximal end finishing.
Another proximal end finishing approach is described in connection with
With a narrow window defined (e.g., with about 0.010 to about 0.025 inches of—preferably—exposed braid) laser energy is applied as indicated by the larger area. The energy is sufficient to weld the braid to the hypotube. The welding process does not, however, weld the hypotube to the optional underlying mandrel 52.
After such welding, the majority of the length of hypotube 54 is “sacrificed”. It is trimmed off of the proximal end 36 to define the inner band 34 of the implant as shown in
Irrespective of whether an outer marker band is included,
While seemingly unimportant to function, this visual aspect can indeed be relevant. The impression of physicians regarding the bulk of the proximal feature can affect whether the physician adopts the product. Conventional implants have been designed with the proximal hub completely inset within the inner volume of the implant. This is done to make the implant's appearance more attractive to physicians. However, the implant suffers in performance as a result (e.g., the implant is more difficult to recapture; the requirements on the implant's wire size and strength are heightened to force the implant to recover the inset shape, leading to an undesirable increase in implant dimension; and other performance deficiencies). In the present aspect of the invention, the perceived hub size is reduced, which increases the visual appeal without compromising performance.
Another implant feature is illustrated in connection with
During implant preform heatsetting, it has been found that the flat section improves the quality of the distal fold 16 in the implant, helping to maximize uniformity and minimize the bend radius in the wires. As such, device trackability through tortuous anatomy within a catheter is also improved. The crease at the edge of the flattened area set in the implant also helps with delivery performance upon deployment. Specifically, as illustrated in
Other architectural changes or augmentations that may be applied to implants are shown in
Specifically, implant 90 includes an intermediate braid layer 92 set between outer layer 12 and inner layer 14. Layer 92 is captured in hub 30 as are the other layers at a proximal attachment 94. The distal extent 96 can be set at a number of positions. Advantageously, it extends to around the half-way point or equator of the device. This way, the layer will contribute to implant density (or—stated otherwise—reduce porosity) even for wide-neck aneurysms.
As shown in
In production, the inner layer 12 of the implant can be produced simply by cutting a preform (like preform 62) in half at the distal fold. This produces a set of two inner layer sections that can be used in two different devices from a single formation procedure. However produced, because the inner layer may rely on the other layers for structural definition, it may be made of finer wire and/or with lower braid count than the other layers. For instance, the inner layer may comprise 72-end 0.0008 inch wire braid, whereas the outer layers comprise 96-end 0.0008 inch wire braid. However, the reverse may be true, in which the inner layer is more robust. In any case, it may be advantageous to mismatch the number of wire ends included in the braid (such as in the example directly above) to help avoid wire match-up, thereby minimizing porosity.
Implant 100 shown in
Instead, braid matrix integrity is maintained by coating the braid layer with a polymer (e.g., TICOPHILIC coating by Lubrizol, Inc.) or other coatings or processing. Hydrogel coating also offers an appealing option, such as a hydrogel-based polymer network capable of entrapping therapeutic agents as described in U.S. Pat. No. 6,905,700 to Won et al. Likewise, while the implant elements advantageously comprise Nitinol braid (typically superelastic NiTi), the braid used for any of the layers may instead comprise polymer—especially high strength biodegradable polymer such as MX-2 (MAX-Prene), synthetic absorbable monofilament (90/10 Glycolide/L-Lactide) and/or G-2 (Glycoprene), synthetic absorbable monofilament (Glycolide (PGA), ε-Caprolactone (PCL), Trimethylene Carbonate (TMC) Copolymer) that is heat set into shape (e.g., at 110 degrees centigrade for an hour) and/or coated with the same to stabilize the braid matrix as described.
Implant 110 shown in
As with variations in the previous figures, the third layer incorporated in the implant simply deploys and recaptures in unison with the rest of the implant. Unique, however, to the architecture of
A related implant configuration is shown in
Inner ball body 118 may be shape set over a form. Alternatively, and more advantageously, the shape can be formed without either an external or internal form by bunching the braid up and tying it onto a mandrel for heatsetting. Such a “free-forming” approach is functionally advantageous because it maximizes braid angle (hence, density) in the final body. Yet, any resulting inconsistency in shape is manageable given that the only outer body of the implant defined by braid layers 12 and 14 is in contact with an aneurysm.
Irrespective of how it is formed (and the particular braid configuration selection), the inner ball 118 within the architecture will be configured so that it will not interfere with the distal end of the implant body/shell and/or marker and tether when the device is compressed for delivery or recapture.
More generally,
One handle construction includes a single plunger. The plunger pulls a collar that progressively engages and pulls sockets connected to the wires; first each control wire 212 is pulled (one at a time), then the anchor wire 214. Such action is illustrated in
Release of the implant is effected as if progressing from the steps in
Note that the length “L” by which wire 218 is inset within the pusher shaft may vary depending on purpose. It may have no inset (i.e., essentially abut the implant proximal end). It may be inset by about 1 mm so that any forward motion in a tortuous setting does not result in contact with the implant. Or it may be inset to a greater degree (e.g., between about 1 cm and 5 cm) to improve distal tip flexibility of delivery pusher shaft 210.
However configured (i.e., whether utilizing a terminal band 240, or full-length sheath 240′ concentric with sleeve 232) engagement is achieved between the implant and pusher shaft 232 by virtue of extension 242 that is offset into an interfering relationship with an inner band 34 of the implant when the anchor ball 238 is in a retracted position as shown in
In any case,
In addition, a cutout pattern 235 is advantageously made in the hypotube sleeve to improve flex performance. The cutouts 233 alternate and/or spiral on either side of control wire. As is known, such patterning can provide for unbiased flex. Kerf width may be between about 0.002 and about 0.010 inches. When employing larger (e.g., about 0.5 to about 3 mm as illustrated in
As shown, a core member 236 is received concentrically within sleeve 232′ and the sleeve concentrically within an outer catheter/pusher sheath 240′. The outer sheath may serve to encapsulate the flex-tuned sleeve and bear a hydrophilic coating for lubricity. Moreover, the sheath member may incorporate a terminal marker band.
Instead, both push and pull (for withdrawal) force application can occur within the socket chamber. While such a socket will typically be larger than the previous interfaces shown, it is easily retrofit or used as and alternative to the screw-type release approaches employed in many vessel sacrifice and closure devices as sold by AGA Medical, Inc. and others.
The delivery system configuration in
This delivery system architecture (whether adapted as described in the referenced application, with the implant size socket approach, or otherwise) may, however, be improved as illustrated in the detail view at right in
A method of assembling a delivery system is disclosed. The method may include inserting a distal section of an elongate sleeve 272 into a socket 260 of an implant. A distal portion of a core member 276 is advanced through the sleeve 272. The distal portion of the core member 276 is then passed through a window 274 of the sleeve 272. The distal portion of the core member 276 is engaged into an interference fit with the distal section of the sleeve 272 within the socket 260 of the implant.
Finally,
In the various delivery system architectures, the catheter/pusher shaft may comprise a simple extrusion (e.g., PI, PET, PTFE, FEP, PEEK, etc.) or may be constructed using conventional catheter construction techniques and include a liner, braid support and outer jacket (not shown). An exemplary construction is available through MicroLumen, Inc. as Braid Reinforced Polyimide. A distal section of the Polyimide may be ablated and replaced with fused Pebax to provide a softer or progressively-flexible end to the catheter. A loading sheath is typically provided over the pusher shaft. Advantageously, the loading sheath is splittable.
If not preloaded, after removal from sterile packaging (not shown), the implant is pulled into the loading sheath. The loading sheath is received within the hub of the catheter to be used for implant delivery and the implant is advanced into the catheter. Then, the implant may be advanced to and deployed at a treatment site. Or it may be retrieved in exchange for another size implant or repositioned, if desired, prior to ultimate detachment as illustrated in the incorporated patent application subject matter.
In the present invention, the subject methods may include each of the physician activities associated with implant positioning and release. As such, methodology implicit to the positioning and deployment of an implant device forms part of the invention. Such methodology may include placing an implant within a brain aneurysm, or at parent vessel targeted for occlusion, or other applications. In some methods, the various acts of implant introduction to an aneurysm or parent vessel are considered.
More particularly, a number of methods according to the present invention involve the manner in which the delivery system operates in reaching a treatment site, for example. Other methods concern the manner in which the system is prepared for delivering an implant, for example attaching the braid ball to the delivery system. Any method herein may be carried out in any order of the recited events which is logically possible, as well as in the recited order of events, or slight modifications of those events or the event order.
The foregoing description is provided to enable a person skilled in the art to practice the various configurations described herein. While the subject technology has been particularly described with reference to the various figures and configurations, it should be understood that these are for illustration purposes only and should not be taken as limiting the scope of the subject technology.
There may be many other ways to implement the subject technology. Various functions and elements described herein may be partitioned differently from those shown without departing from the scope of the subject technology. Various modifications to these configurations will be readily apparent to those skilled in the art, and generic principles defined herein may be applied to other configurations. Thus, many changes and modifications may be made to the subject technology, by one having ordinary skill in the art, without departing from the scope of the subject technology.
It is understood that the specific order or hierarchy of steps in the processes disclosed is an illustration of exemplary approaches. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the processes may be rearranged. Some of the steps may be performed simultaneously. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
As used herein, the phrase “at least one of” preceding a series of items, with the terms “and” or “or” to separate any of the items, modifies the list as a whole, rather than each member of the list (i.e., each item). The phrase “at least one of” does not require selection of at least one item; rather, the phrase allows a meaning that includes at least one of any one of the items, and/or at least one of any combination of the items, and/or at least one of each of the items. By way of example, the phrases “at least one of A, B, and C” or “at least one of A, B, or C” each refer to only A, only B, or only C; any combination of A, B, and C; and/or at least one of each of A, B, and C.
Terms such as “top,” “bottom,” “front,” “rear” and the like as used in this disclosure should be understood as referring to an arbitrary frame of reference, rather than to the ordinary gravitational frame of reference. Thus, a top surface, a bottom surface, a front surface, and a rear surface may extend upwardly, downwardly, diagonally, or horizontally in a gravitational frame of reference.
Furthermore, to the extent that the term “include,” “have,” or the like is used in the description or the claims, such term is intended to be inclusive in a manner similar to the term “comprise” as “comprise” is interpreted when employed as a transitional word in a claim.
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments.
A reference to an element in the singular is not intended to mean “one and only one” unless specifically stated, but rather “one or more.” Pronouns in the masculine (e.g., his) include the feminine and neuter gender (e.g., her and its) and vice versa. The term “some” refers to one or more. Underlined and/or italicized headings and subheadings are used for convenience only, do not limit the subject technology, and are not referred to in connection with the interpretation of the description of the subject technology. All structural and functional equivalents to the elements of the various configurations described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and intended to be encompassed by the subject technology. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the above description.
While certain aspects and embodiments of the invention have been described, these have been presented by way of example only, and are not intended to limit the scope of the invention. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms without departing from the spirit thereof. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the invention.
This application is a continuation-in-part of U.S. application Ser. No. 12/942,209, filed Nov. 9, 2010, which claims priority to U.S. Provisional Application Ser. No. 61/259,585, filed Nov. 9, 2009, each of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4655771 | Wallsten | Apr 1987 | A |
5109867 | Twyford, Jr. | May 1992 | A |
5217484 | Marks | Jun 1993 | A |
5234437 | Sepetka | Aug 1993 | A |
5250071 | Palermo | Oct 1993 | A |
5261916 | Engelson | Nov 1993 | A |
5263964 | Purdy | Nov 1993 | A |
5282806 | Haber et al. | Feb 1994 | A |
5304195 | Twyford, Jr. et al. | Apr 1994 | A |
5312415 | Palermo | May 1994 | A |
5350397 | Palermo et al. | Sep 1994 | A |
5368592 | Stern et al. | Nov 1994 | A |
5417708 | Hall | May 1995 | A |
5480382 | Hammerslag et al. | Jan 1996 | A |
5490859 | Mische et al. | Feb 1996 | A |
5499985 | Hein et al. | Mar 1996 | A |
5562698 | Parker | Oct 1996 | A |
5669905 | Scheldrup et al. | Sep 1997 | A |
5728129 | Summers | Mar 1998 | A |
5800455 | Palermo et al. | Sep 1998 | A |
5814062 | Sepetka et al. | Sep 1998 | A |
5895391 | Farnholtz | Apr 1999 | A |
5989242 | Saadat et al. | Nov 1999 | A |
6004338 | Ken et al. | Dec 1999 | A |
6022369 | Jacobsen et al. | Feb 2000 | A |
6039744 | Forber | Mar 2000 | A |
6063070 | Eder | May 2000 | A |
6136015 | Kurz et al. | Oct 2000 | A |
6152947 | Ambrisco et al. | Nov 2000 | A |
6190373 | Palermo et al. | Feb 2001 | B1 |
RE37117 | Palermo | Mar 2001 | E |
6203547 | Nguyen et al. | Mar 2001 | B1 |
6270508 | Klieman et al. | Aug 2001 | B1 |
6375668 | Gifford et al. | Apr 2002 | B1 |
6397850 | Scheldrup et al. | Jun 2002 | B1 |
6464699 | Swanson | Oct 2002 | B1 |
6585767 | Holley | Jul 2003 | B1 |
6589236 | Wheelock et al. | Jul 2003 | B2 |
6589251 | Yee et al. | Jul 2003 | B2 |
6656351 | Boyle | Dec 2003 | B2 |
6994689 | Zadno-Azizi et al. | Feb 2006 | B1 |
7018394 | Diaz et al. | Mar 2006 | B2 |
7022133 | Yee et al. | Apr 2006 | B2 |
7294146 | Chew et al. | Nov 2007 | B2 |
7331973 | Gesswein et al. | Feb 2008 | B2 |
7344558 | Lorenzo et al. | Mar 2008 | B2 |
7367987 | Balgobin et al. | May 2008 | B2 |
7371252 | Balgobin et al. | May 2008 | B2 |
7377932 | Mitelberg et al. | May 2008 | B2 |
7419501 | Chiu et al. | Sep 2008 | B2 |
7591829 | Gibson et al. | Sep 2009 | B2 |
7691124 | Balgobin | Apr 2010 | B2 |
7708755 | Davis, III et al. | May 2010 | B2 |
7722636 | Farnan | May 2010 | B2 |
7722637 | Barry et al. | May 2010 | B2 |
7811305 | Balgobin et al. | Oct 2010 | B2 |
7901444 | Slazas | Mar 2011 | B2 |
7918872 | Mitelberg et al. | Apr 2011 | B2 |
8007509 | Buiser et al. | Aug 2011 | B2 |
RE42758 | Ken et al. | Sep 2011 | E |
8016852 | Ho et al. | Sep 2011 | B2 |
8029466 | Wilson et al. | Oct 2011 | B2 |
8034073 | Davis, III et al. | Oct 2011 | B2 |
8062325 | Mitelberg et al. | Nov 2011 | B2 |
8100918 | Gandhi et al. | Jan 2012 | B2 |
8142456 | Rosqueta et al. | Mar 2012 | B2 |
8333796 | Tompkins et al. | Dec 2012 | B2 |
20010002438 | Sepetka et al. | May 2001 | A1 |
20010037141 | Yee et al. | Nov 2001 | A1 |
20020010481 | Jayaraman | Jan 2002 | A1 |
20020072712 | Nool et al. | Jun 2002 | A1 |
20020116024 | Goldberg et al. | Aug 2002 | A1 |
20020143348 | Wallace et al. | Oct 2002 | A1 |
20020165572 | Saadat et al. | Nov 2002 | A1 |
20030014073 | Bashiri et al. | Jan 2003 | A1 |
20030045901 | Opolski | Mar 2003 | A1 |
20030171770 | Kusleika et al. | Sep 2003 | A1 |
20030199966 | Shiu et al. | Oct 2003 | A1 |
20040002731 | Aganon et al. | Jan 2004 | A1 |
20040002733 | Teoh | Jan 2004 | A1 |
20040034363 | Wilson et al. | Feb 2004 | A1 |
20040087964 | Diaz et al. | May 2004 | A1 |
20040106946 | Ferrera et al. | Jun 2004 | A1 |
20040181256 | Glaser | Sep 2004 | A1 |
20040243228 | Kowalsky et al. | Dec 2004 | A1 |
20050021023 | Guglielmi et al. | Jan 2005 | A1 |
20060025792 | Gibson et al. | Feb 2006 | A1 |
20060025801 | Lulo et al. | Feb 2006 | A1 |
20060025802 | Sowers | Feb 2006 | A1 |
20060036281 | Patterson et al. | Feb 2006 | A1 |
20060079926 | Desai et al. | Apr 2006 | A1 |
20060106417 | Tessmer et al. | May 2006 | A1 |
20060116714 | Sepetka et al. | Jun 2006 | A1 |
20060155323 | Porter | Jul 2006 | A1 |
20060271097 | Ramzipoor et al. | Nov 2006 | A1 |
20060271099 | Marks et al. | Nov 2006 | A1 |
20060276823 | Mitelberg et al. | Dec 2006 | A1 |
20060276824 | Mitelberg et al. | Dec 2006 | A1 |
20060278680 | Viola et al. | Dec 2006 | A1 |
20070173757 | Levine et al. | Jul 2007 | A1 |
20070179520 | West | Aug 2007 | A1 |
20070185524 | Diaz et al. | Aug 2007 | A1 |
20070221230 | Thompson et al. | Sep 2007 | A1 |
20070239193 | Simon et al. | Oct 2007 | A1 |
20070265656 | Amplatz | Nov 2007 | A1 |
20070267281 | Smith | Nov 2007 | A1 |
20070270936 | Andreas et al. | Nov 2007 | A1 |
20070282373 | Ashby et al. | Dec 2007 | A1 |
20080033478 | Meng | Feb 2008 | A1 |
20080045997 | Balgobin et al. | Feb 2008 | A1 |
20080097462 | Mitelberg et al. | Apr 2008 | A1 |
20080119886 | Greenhalgh | May 2008 | A1 |
20080119887 | Que et al. | May 2008 | A1 |
20080228215 | Strauss et al. | Sep 2008 | A1 |
20080243106 | Coe et al. | Oct 2008 | A1 |
20080255542 | Nimgaard et al. | Oct 2008 | A1 |
20080281350 | Sepetka et al. | Nov 2008 | A1 |
20080300616 | Que et al. | Dec 2008 | A1 |
20080306504 | Win et al. | Dec 2008 | A1 |
20090012554 | Makower et al. | Jan 2009 | A1 |
20090018653 | Bashiri et al. | Jan 2009 | A1 |
20090024154 | Williams et al. | Jan 2009 | A1 |
20090062812 | Fitz et al. | Mar 2009 | A1 |
20090076623 | Mathis et al. | Mar 2009 | A1 |
20090088832 | Chew et al. | Apr 2009 | A1 |
20090112239 | To et al. | Apr 2009 | A1 |
20090138036 | Nardone et al. | May 2009 | A1 |
20090163780 | Tieu | Jun 2009 | A1 |
20090163986 | Tieu et al. | Jun 2009 | A1 |
20090177261 | Teoh et al. | Jul 2009 | A1 |
20090182268 | Thielen et al. | Jul 2009 | A1 |
20090254169 | Spenser et al. | Oct 2009 | A1 |
20090270877 | Johnson et al. | Oct 2009 | A1 |
20090275974 | Marchand | Nov 2009 | A1 |
20090287291 | Becking et al. | Nov 2009 | A1 |
20090306706 | Osypka | Dec 2009 | A1 |
20090312748 | Johnson et al. | Dec 2009 | A1 |
20100004673 | Denison et al. | Jan 2010 | A1 |
20100030200 | Strauss et al. | Feb 2010 | A1 |
20100094395 | Kellett | Apr 2010 | A1 |
20100174269 | Tompkins et al. | Jul 2010 | A1 |
20100234872 | Guo et al. | Sep 2010 | A1 |
20100256666 | Chen et al. | Oct 2010 | A1 |
20100268204 | Tieu et al. | Oct 2010 | A1 |
20100268251 | Chen et al. | Oct 2010 | A1 |
20100268252 | Chen et al. | Oct 2010 | A1 |
20110022003 | Tekulve | Jan 2011 | A1 |
20110106098 | Williams | May 2011 | A1 |
20110106128 | Chen | May 2011 | A1 |
20110118772 | Chen et al. | May 2011 | A1 |
20110118776 | Chen et al. | May 2011 | A1 |
20110172700 | Bose et al. | Jul 2011 | A1 |
20110202085 | Loganathan | Aug 2011 | A1 |
20110208227 | Becking | Aug 2011 | A1 |
20110265943 | Rosqueta et al. | Nov 2011 | A1 |
20110282380 | Davis et al. | Nov 2011 | A1 |
20110301686 | Bowman et al. | Dec 2011 | A1 |
20110313447 | Strauss | Dec 2011 | A1 |
20110319926 | Becking et al. | Dec 2011 | A1 |
20120041470 | Shrivastava et al. | Feb 2012 | A1 |
20120041472 | Tan et al. | Feb 2012 | A1 |
20120046687 | Trommeter et al. | Feb 2012 | A1 |
20120065720 | Strauss | Mar 2012 | A1 |
20120101510 | Lenker et al. | Apr 2012 | A1 |
20120226305 | Strauss | Sep 2012 | A1 |
20120316598 | Becking et al. | Dec 2012 | A1 |
20120330347 | Becking et al. | Dec 2012 | A1 |
20130066360 | Becking et al. | Mar 2013 | A1 |
20130085520 | Liang | Apr 2013 | A1 |
20130085521 | Lim | Apr 2013 | A1 |
20130085522 | Becking et al. | Apr 2013 | A1 |
20130123830 | Becking et al. | May 2013 | A1 |
20130138136 | Beckham | May 2013 | A1 |
20130211495 | Halden | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
2456640 | Oct 2001 | CN |
1652726 | Aug 2005 | CN |
1668250 | Sep 2005 | CN |
101234034 | Aug 2008 | CN |
101835430 | Sep 2010 | CN |
102119004 | Jul 2011 | CN |
102791205 | Nov 2012 | CN |
19547617 | Sep 1997 | DE |
7179690 | Jun 1996 | EP |
829236 | Mar 1998 | EP |
853 955 | Jul 1998 | EP |
996372 | May 2000 | EP |
1400208 | Mar 2004 | EP |
1487526 | Dec 2004 | EP |
1621150 | Feb 2006 | EP |
1738698 | Jan 2007 | EP |
832 607 | Apr 2008 | EP |
09-149904 | Jun 1997 | JP |
10-201766 | Aug 1998 | JP |
2004073874 | Mar 2004 | JP |
2004-267749 | Sep 2004 | JP |
2006-051349 | Feb 2006 | JP |
2009-533202 | Sep 2009 | JP |
WO-9221400 | Dec 1992 | WO |
WO-9311719 | Jun 1993 | WO |
WO-9406502 | Mar 1994 | WO |
WO-9834546 | Aug 1998 | WO |
WO-9858590 | Dec 1998 | WO |
WO-0158382 | Aug 2001 | WO |
WO-02054943 | Jul 2002 | WO |
WO-2004087006 | Nov 2004 | WO |
WO-2007070797 | Jun 2007 | WO |
WO-2007121405 | Oct 2007 | WO |
WO-2008112435 | Sep 2008 | WO |
WO-2008127525 | Oct 2008 | WO |
WO-2010009019 | Jan 2010 | WO |
WO-2010117883 | Oct 2010 | WO |
WO-2010123821 | Oct 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20130211495 A1 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
61259585 | Nov 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12942209 | Nov 2010 | US |
Child | 13842536 | US |