This application is a 35 U.S.C. § 371 national phase filing of International Application No. PCT/EP2017/053325, filed Feb. 14, 2017, which claims the benefit of International Application No. PCT/EP2016/057404, filed Apr. 5, 2016, the disclosures of which are incorporated herein by reference in their entireties.
Embodiments presented herein relate to interference suppression, and particularly to a method, a control device, a computer program, and a computer program product for suppressing interference in a received reception signal in a radio transceiver device.
In communications networks, there may be a challenge to obtain good performance and capacity for a given communications protocol, its parameters and the physical environment in which the communications network is deployed.
For example, radio link systems in some communications networks are designed as Frequency Division Duplex (FDD) systems. In FDD systems the transmitted carrier frequency differs from the received carrier frequency. The transmitted signal is commonly at a much higher power level than the received signal. Hence, the receiver of a radio transceiver device operating in a FDD system would saturate if the transmitted signal of the radio transceiver device would leak into its receiver.
A diplexer filter (also known as a branching filter) is commonly used to prevent the transmitted signal from leaking with high power into the receiver. Such a diplexer is relatively expensive to manufacture, and constitutes a quite space-consuming component. Furthermore, FDD systems used for providing microwave links are manufactured and sold for many different frequency bands, and it is therefore necessary to have at least one specific diplexer per frequency band, due to the frequency dependency of components. Hence, the diplexer is commonly designed in several variants (many per frequency band) leading to high cost due to the diplexer as such and the variant penalty cost. There is thus a need for a less complicated mechanism for preventing the transmitted signal of the radio transceiver device to leak into its receiver.
An object of embodiments herein is to provide efficient mechanisms for suppressing interference in a received reception signal in a radio transceiver device.
According to a first aspect there is presented a method performed by a control device for suppressing interference in a received reception signal in a radio transceiver device. The radio transceiver device is configured to receive the reception signal as a radio reception signal and to generate a radio transmission signal. The radio transmission signal and the radio reception signal occupy at least partly non-overlapping frequency bands. The method comprises obtaining a transmission reference signal based on the radio transmission signal. The method comprises estimating an interference distortion component signal based on the transmission reference signal and on a model of nonlinearity in a radio circuit of the radio transceiver device. The method comprises suppressing interference in the reception signal by combining the reception signal with the distortion component signal.
Advantageously this method provides efficient suppression of interference in a received reception signal in a radio transceiver device. In particular, interference arising from cross-modulation between transmitted and received signals, due to the non-linearity in the radio circuit, is suppressed.
Advantageously this method provides a simple mechanism for preventing, or at least countering/alleviating, leakage of the transmitted signal of the radio transceiver device into its receiver.
Advantageously this method reduces the total cost of the radio transceiver device.
Advantageously this method requires only a few frequency indexes to be stored in the radio transceiver device which, in turn, gives low production cost and less warehousing comparted to a radio transceiver device using a diplexer.
Advantageously this method requires less variants of the radio transceiver device which, in turn, gives low production cost and less warehousing of the radio transceiver device computed to a radio transceiver device using a diplexer.
According to a second aspect there is presented a control device for suppressing interference in a received reception signal in a radio transceiver device. The radio transceiver device is configured to receive the reception signal as a radio reception signal and to generate a radio transmission signal. The radio transmission signal and the radio reception signal occupy at least partly non-overlapping frequency bands. The control device comprises processing circuitry. The processing circuitry is configured to cause the control device to obtain a transmission reference signal based on the radio transmission signal. The processing circuitry is configured to cause the control device to estimate an interference distortion component signal based on the transmission reference signal and on a model of nonlinearity in a radio circuit of the radio transceiver device. The processing circuitry is configured to cause the control device to suppress interference in the reception signal by combining the reception signal with the distortion component signal.
According to a third aspect there is presented a control device for suppressing interference in a received reception signal in a radio transceiver device. The radio transceiver device is configured to receive the reception signal as a radio reception signal and to generate a radio transmission signal. The radio transmission signal and the radio reception signal occupy at least partly non-overlapping frequency bands. The control device comprises processing circuitry and a computer program product. The computer program product stores instructions that, when executed by the processing circuitry, causes the control device to perform steps, or operations. The steps, or operations, cause the control device to obtain a transmission reference signal based on the radio transmission signal. The steps, or operations, cause the control device to estimate an interference distortion component signal based on the transmission reference signal and on a model of nonlinearity in a radio circuit of the radio transceiver device. The steps, or operations, cause the control device to suppress interference in the reception signal by combining the reception signal with the distortion component signal.
According to a fourth aspect there is presented a control device for suppressing interference in a received reception signal in a radio transceiver device. The radio transceiver device is configured to receive the reception signal as a radio reception signal and to generate a radio transmission signal. The radio transmission signal and the radio reception signal occupy at least partly non-overlapping frequency bands. The control device comprises an obtain module configured to obtain a transmission reference signal based on the radio transmission signal. The control device comprises an estimate module configured to estimate an interference distortion component signal based on the transmission reference signal and on a model of nonlinearity in a radio circuit of the radio transceiver device. The control device comprises a suppress module configured to suppress interference in the reception signal by combining the reception signal with the distortion component signal.
According to a fifth aspect there is presented a computer program for suppressing interference in a received reception signal in a radio transceiver device, the computer program comprising computer program code which, when run on a control device, causes the control device to perform a method according to the first aspect.
According to a sixth aspect there is presented a computer program product comprising a computer program according to the fifth aspect and a computer readable storage medium on which the computer program is stored.
According to a seventh aspect there is presented a radio transceiver device too configured to receive the reception signal as a radio reception signal and to generate a radio transmission signal. The radio transmission signal and the radio reception signal occupy at least partly non-overlapping frequency bands. The radio transceiver device comprises a control device for suppressing interference in a received reception signal in the radio transceiver device according to any of the second aspect, the third aspect, or the fourth aspect.
It is to be noted that any feature of the first, second, third, fourth, fifth, sixth and seventh aspects may be applied to any other aspect, wherever appropriate. Likewise, any advantage of the first aspect may equally apply to the second, third, fourth, fifth, sixth, and/or seventh aspect, respectively, and vice versa. Other objectives, features and advantages of the enclosed embodiments will be apparent from the following detailed disclosure, from the attached dependent claims as well as from the drawings.
Generally, all terms used in the claims are to be interpreted according to their ordinary meaning in the technical field, unless explicitly defined otherwise herein. All references to “a/an/the element, apparatus, component, means, step, etc.” are to be interpreted openly as referring to at least one instance of the element, apparatus, component, means, step, etc., unless explicitly stated otherwise. The steps of any method disclosed herein do not have to be performed in the exact order disclosed, unless explicitly stated.
The inventive concept is now described, by way of example, with reference to the accompanying drawings, in which:
The inventive concept will now be described more fully hereinafter with reference to the accompanying drawings, in which certain embodiments of the inventive concept are shown. This inventive concept may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided by way of example so that this disclosure will be thorough and complete, and will fully convey the scope of the inventive concept to those skilled in the art. Like numbers refer to like elements throughout the description. Any step or feature illustrated by dashed lines should be regarded as optional.
As noted above, a diplexer filter is commonly used to prevent signals transmitted by a radio transceiver device from leaking into the receiver of the radio transceiver device. Disadvantages of such a diplexer have also been noted above.
The herein disclosed embodiments provide mechanisms that reduce cross modulation effects when the diplexer is replaced by a component that have lower isolation between transmitter and receiver, for example, by a notch filter.
Replacing the diplexer with a notch filter still leads to some power reduction of the transmitted signal into the receiver. However, the transmitted signal power suppression using a notch filter is lower compared to what is achieved using a diplexer. In general terms, the transmitted signal leaking into the receiver will experience nonlinear distortion in elements like the Low Noise Amplifier (LNA). A side effect of this is cross modulation nonlinear distortion, i.e. that the transmitted signal mixes with the received signal in the nonlinear elements in the receiver of the radio transceiver device. This way, components of the transmitted signal are translated in frequency and end up in the receive band of a FDD based communication system. Such components can then not be suppressed by simple filtering, since such filtering would also suppress the received desired signal. This is a problem which, if left unaddressed, will lead to performance degradation of the communication system.
The embodiments disclosed herein in particular relate to mechanisms for suppressing interference in a received reception signal in a radio transceiver device. In order to obtain such mechanisms there is provided a control device, a method performed by the control device, a computer program product comprising code, for example in the form of a computer program, that when run on a control device, causes the control device to perform the method.
According to aspects of the disclosed radio transceiver device 100 for use in a microwave radio link, radio frequency is often in the order to several tens of GHz, intermediate frequency is in the MHz range, while baseband is a frequency band comprising and often centred around zero frequency.
The radio frequency part 120 is configured to generate (by up converting a transmission signal STx by multiplication with ej2πƒTxt) and to transmit a radio transmission signal STx-RF to a remote transceiver and to receive a radio reception signal STot-RF from the remote transceiver.
The radio transmission signal STx-RF leaks into the radio reception signal STot-RF, here modelled by h. According to an embodiment the model h is a linear model, e.g. a tapped delay-line model. The model h(STx-RF) could be based on band-stop filtering of the radio transmission signal STx-RF. In this way the leakage of the radio transmission signal STx-RF into the radio reception signal STot-RF could be modelled as being caused by at least one notch filter replacing the diplexer. For example, according to aspects h is a linear filter. The total received radio reception signal STot-RF is therefore the sum of a desired radio reception signal SRx RF and a filtered version of the radio transmission signal STx-RF. The reception signal STot-RF thus comprises the desired radio reception signal and an internal leakage contribution, as modelled by the model h(STx-RF), of the radio transmission signal STx-RF.
The total received signal may also comprise one or more adjacent interferer signals. Hence, according to an embodiment the reception signal STot-RF further comprises an external leakage contribution SAdj-RF of another radio reception signal. According to some aspects this so-called another radio reception signal defines an adjacent interferer signal. However, according to other aspects this so-called another radio reception signal could be any modulated signal. The desired radio reception signal SRx-RF and this another radio reception signal can be located on neighbouring carrier frequencies, or be separated by at least one channel (where each channel could be defined by its own carrier frequency).
The relative difference in power between the transmitted signal and the desired reception signal, i.e., between STx-RF and SRx-RF is often large, i.e. PTx-RF>>PRx-RF and PTx-RF>>PAdj-RF, where PTx-RF denotes the power of STx-RF, where PRx-RF denotes the power of SRx-RF, and where PAdj-RF denotes the power of SAdj-RF. According to an embodiment the radio transmission signal STx-RF is more than one order of magnitude larger in power than the desired radio reception signal SRx-RF (or even the radio reception signal STot-RF).
An example of a resulting signal spectrum 400 of the desired radio reception signal SRx-RF and the external leakage contribution SAdj-RF of another radio reception signal is illustrated in
The total received radio reception signal STot-RF is distorted by a function denoted ƒ, before down conversion (by multiplication with e−jπƒRxt). According to aspects the function ƒ is nonlinear and modelled as memoryless. For example, the nonlinear function ƒ can be modelled by a third order memoryless nonlinearity and hence be written as follows:
ƒ(x; A)=x+Ax|x|2. (1)
In Equation (1), the symbol x denotes input to the nonlinear function (here defined by the total received radio reception signal STot-RF), and A is a parameter of function ƒ, i.e., A parameterizes ƒ. It can be assumed that |A|<<1. In general terms, LNAs in a radio receiver are typically of class A type (i.e., so-called class A amplifiers). Normally a third order intermodulation is dominating over all other intermodulation products. The same is true for other non-linear elements like mixers. A more general form of memoryless non-linearity than expressed in Equation (1) is therefore:
This general form is hereinafter approximated by Equation (1). Equation (1) is thus an approximation of the true distortion. Equations (2), (3), (4), (8), and (9) below are based on this approximation.
The resulting total received radio reception signal ƒ(STot-RF)after having been subjected to the nonlinearity ƒ is modelled as follows:
ƒ(STot-RF;A)=h⊗STx-RF+SRx-RFSAdj-RF+A(h⊗STx-RF+SRx-RF+SAdj-RF)|h⊗STx-RF+SRx-RF+SAdj-RF|2 (2)
In Equation (2) the symbol ⊗ denotes convolution. In Equation (2) any receiver noise has been assumed to be insignificant.
As a comparison
Further, a linear filter α, illustrated in
STot=SRx+2ASRx|h⊗STx-RF|2+SAdj-RF+2ASAdj|h⊗STx-RF|2. (3)
One general task and purpose of the receiver is to derive information in SRx, from the observed reception signal STot, i.e. to remove unwanted distortion and the adjacent channel (SAdj).
The transmission signal STx is generated by a mapper (denoted Map in
The reception signal STot is processed by a control device 300 to provide a compensated reception signal SComp. Further details of the control device 300 and how the compensated reception signal SComp is determined will be disclosed below.
According to the embodiment in
According to the embodiment in
Reference is now made to
As disclosed above, the radio transceiver device 100 is configured to receive the reception signal STot as a radio reception signal STot RF and to generate a radio transmission signal STx-RF. The radio transmission signal STx-RF and the radio reception signal STot-RF occupy at least partly non-overlapping frequency bands.
S102: The control device 300 obtains the transmission reference signal STx based on the radio transmission signal STx-RF.
S104: The control device 300 estimates an interference distortion component signal ŜCM. The interference distortion component signal ŜCM is estimated based on the transmission reference signal STx and on the model of nonlinearity in a radio circuit of the radio transceiver device 100. An example of this model h has been provided above.
S106: The control device 300 suppresses interference in the reception signal STot. Interference in the reception signal STot is suppressed by combining the reception signal STot with the distortion component signal ŜCM.
In general terms, combining the reception signal STot with the distortion component signal ŜCM results in a compensated reception signal SComp. According to an embodiment the compensated reception signal SComp is determined so as to compensate the reception signal STot for the internal leakage contribution due to h(STx-RF).
According to an embodiment the interference distortion component signal ŜCM represents at least one non-linear component, for example the nonlinear function ƒ, in the radio circuit of the radio transceiver device 100.
According to an embodiment the interference distortion component signal ŜCM is an estimation of cross modulation in a receiver branch of the radio transceiver device 100.
Embodiments relating to further details of suppressing interference in a received reception signal STot in the radio transceiver device 100 will now be disclosed.
Reference is now made to
One general task and purpose of the receiver is to derive information in SRx from the observed reception signal STot, i.e. to remove unwanted distortion and the adjacent channel (SAdj-RF). The cross modulation of STx-RF and SAdj-RF leaks into the desired reception signal SRx. Without any cross modulation SAdj-RF could be removed by filtering. Without any cross modulation STx-RF could also be removed by filtering.
Instead the control device 300 is configured to estimate the cross modulation SCM, i.e. to find ŜCM. From Equation (3) follows that the cross modulation SCM can be defined according to Equation (4):
SCM=2AsRx|h⊗STx-RF|2+2AsAdj|h⊗STx-RF|2 (4)
The radio transmission signal STx-RF can be assumed known or at least the complex base band version of it, i.e. the transmission signal STx, can be considered known. Thus, according to aspects, one task of the control device 300 is to find a function, r(STot,STx, β), where β denotes a parameter (which may be vector valued), that estimates ŜCM such that
ŜCM=r(STot, STx, β). (5)
The control device 300 could thereby estimate the cross modulation SCM using the estimator, r, and compensates the received signal STot with the estimated distortion ŜCM. According to an embodiment the interference distortion component signal ŜCM is estimated by minimizing an error signal e based on a difference between the compensated reception signal SComp and a receiver signal. As disclosed above, ŜRx is a filtered receiver signal and SRx,Dec is a detected receiver signal. Hence, according to an embodiment the control device 300 is configured to determine the filtered receiver signal ŜRx by performing step S108 and to process the filtered receiver signal ŜRx to obtain the detected receiver signal SRx,Dec by performing step S110:
S108: The control device 300 filters the compensated reception signal SComp, resulting in the filtered receiver signal ŜRx.
S110: The control device 300 processes the filtered receiver signal ŜRx by the detector, resulting in the detected receiver signal SRx,Dec.
The error signal e is then determined as a difference between the filtered receiver signal ŜRx and the detected receiver signal SRx,Dec. That is, according to an embodiment the error signal e is formulated as in Equation (6):
e=ŜRx−SRx,Dec. (6)
There can be different ways to use the error signal e to determine the interference distortion component signal ŜCM. According to an embodiment the interference distortion component signal ŜCM is estimated using a least means squares (LMS) estimate based on the error signal e. According to another embodiment the interference distortion component signal S is estimated using a recursive least squares (RLS) estimate based on the error signal e. In further detail, the square of the error signal e can be minimized in order to determine an optimum parameter set β for estimating ŜCM.
An LMS approach finding the parameters can be derived according to Equation (7):
E[e (n)e(n)*]=E└e(n)(SCM (n)−r(STot, STx, β))*┘. (7)
The intention is to minimize the square of this error signal finding the optimum parameter set β for estimating ŜCM. Thus to minimize the cost function in Equation (8):
J(n)=E[e (n)e(n)*] (8)
The resulting compensation then becomes according to Equation (9):
The LMS expression estimating the coefficients βk,i becomes:
βk,l(m+1)=βk,l(m)−μe(n)STot(n)*STx(n−k)*STx (n−l). (10)
In Equation (10) the symbol * denotes complex conjugation. Using a filter h with h=1 and appropriate configuration of A, the down converted compensated spectrum 810 and uncompensated spectrum 800 as illustrated in
where PTx-RF denotes the power of STx-RF where PRx-RF denotes the power of SRx-RF, and where PAdj-RF denotes the power of SAdj-RF.
In general terms, blind adaptation cannot rely on, for example detection, as disclosed above with reference to
Jblind (n)=E└eblind (n)eblind (n)*┘. (11)
Particularly, according to an embodiment the interference distortion component signal ŜCM is estimated by minimizing a blind error signal eblind (n) of the compensated reception signal SComp. According to an embodiment the interference distortion component signal ŜCM is estimated using a least means squares estimate or a recursive least squares estimate based on the blind error signal eblind (n). It is appreciated that least means squares and recursive least squares are only examples estimate methods, and other alternative methods known in the art are equally possible for minimizing cost functions like Equation (11).
Mechanisms for blind estimation of the parameters defined in Equation (9) will follow next. The proposed mechanisms introduce a nuisance parameter, denoted γ, which is assumed either to be known a priori or is estimated. Hence, according to an embodiment the blind error signal eblind is based on a nuisance parameter γ that is either known a priori or estimated. A method for estimating γ resulting in good performance in comparison to the LMS algorithm (as used in Equation (10)), will also be disclosed below.
One approach is to modify Equation (10) with a Constant Modulus Algorithm (CMA) type of error signal. The LMS adaptation would take the form:
βk,l(m+1)=βk,l (m)−μeblind (n)STot (n)*STx (n−k)STx (n−l)*. (12)
The blind error signal eblind (n) is here defined as:
eblind (n)=SComp (n)(|SComp (n)|N−γ). (13)
The exponent N can be chosen as N≥1. Hence, according to an embodiment the blind error signal eblind at time index n is defined as in Equation (13). Two examples choices of N are 1 and 2. As disclosed above, the constant γ is assumed to be provided a priori or be estimated. One method to estimate γ is to evaluate the gradient ∇blind (n, k, l) of Equation (12). Thus:
∇blind (n, k, l)=eblind (n)STot (n)*i STx (n−k)STx (n−l)*32SComp (n)(|SComp (n)|N−γ)STot (n)*STx (n−k)STx (n−l)*. (14)
For illustrative purposes, but without limitations and loss of generality, the gradient is hereinafter evaluated for a memoryless transmit signal, i.e. setting k=0 and l=0 in Equation (14). The memoryless gradient ∇blind (n) thus becomes:
∇blind (n)=SCcomp (n)(|SComp (n)|N−γ)STot (n)*STx (n)STx (n)*. (15)
The mean of the memoryless gradient becomes:
The compensated signal SComp (n) can be expressed as:
SComp (n)=SRx (n)+2ASRx (n)STx (n)*+ÂSTot (n)STx (n)STx (n)STx)(n)*=SRx (n)+2ASRx (n)STx (n)STx (n)*+Â(SRx (n)+2ASRx (n)STx (n)STx (n)*)STx (n)*STx (n)*. (17)
Using Equations (3), (16), (17), and assuming N=2 gives the following expression:
The functions ƒ1(SRx(n), STx (n); A, Â) and ƒ2(SRx (n), STx (n); A, Â) depend on the unknown parameter A and the parameter to be estimated Â. However, there are other parts not depending on either the unknown or the estimated parameter and the mean values of these are constant for a stationary system. If not cancelled these two terms will affect the gradient. The value of γ can thus be derived from:
E└|SRx (n)|4STx (n)*┘−γE└|SRx (n)|2STx (n)STx (n)*┘=0. (19)
An equivalent expression for γ is thus:
Equation (20) can be written as:
Further,
In scenarios where sRx (n) is not explicitly available, SComp (n) could be used as an approximation, thus yielding an expression for γ formulated as:
This is a reasonable approximation if SRx (n)≈SComp (n).
In some scenarios, γ is not assumed known. Instead γ is estimated from the received signal STot (n) (see
There are several mechanisms that could be used to estimate γ. Examples include, but are not limited to, estimating the components in Equation (22) or simplified versions of corresponding expressions. An alternative mechanism, relying on the cost function shown in Equation (11), is presented next. The signal observed by the estimator, after compensation, is a compensated version of STot (n) i.e., the above called SComp (n). The LMS compensation does not necessary converge to an unbiased result when looking at the parameters. Instead the LMS adaptation tries to minimize a cost function (such as in Equations (8) and (11)), in this case the power of an error signal. Thus, the compensated signal does not necessarily result in that SComp (n)=SRs (n). Instead of estimating a “true” γ, i.e., a γ based on the assumption that SComp (n)≅SRs (n), γ could be estimated by minimizing the same cost function related to the blind estimator of the unknown coefficients βk,l. One reason is that it could be beneficial that the estimation of γ tries to minimize the same cost function as the estimation of the unknown coefficients.
The blind cost function can be evaluated according to:
Jblind (n)=E└SComp (n)(|SComp (n)|N−γ)SComp (n)*(|SComp (n)|N−γ)┘. (23)
The gradient of γ then becomes
Performing an iterative search (using LMS), γ can be expressed iteratively as
{circumflex over (γ)}m+1={circumflex over (γ)}m+μγ|SComp (n)|2(|SComp (n)|N−{circumflex over (γ)}m), (25)
where μγ is the step length of the LMS adaptation. Hence, according to an embodiment the nuisance parameter γ is estimated from the reception signal STot.
The proposed blind estimator disclosed above might not estimate the imaginary part of complex non-linear parameters. Hereinafter will be disclosed how the imaginary part could be estimated separately. This component will be denoted as Phase Modulation (PM) cross modulation. An error signal comprising the PM cross modulation is therefore defined. Using such an error signal, an LMS estimator for the PM cross modulation is derived by minimizing a cost function.
If the real part of the non-linearity ARe is comparatively small an estimation of the imaginary part Â′Im of the PM cross modulation can be approximated as:
Â′Im (m+1)=Â′Im (m)−μIm (Θ(n)−Θ(n−k))(|{circumflex over (C)}AM (n)|−|ĈAM (n−k)|) (26)
Equation (26) is an approximation of Equation (2) which can be used to iterative search for the unknown parameter Â′Im. Equation (27) further provides a definition of ĈAM representing a blind estimation of the compensation as defined in Equation (9) by using Equation (12) and a definition of Θ representing the measured phase of the signal SComp:
where μIm is the step length of the LMS adaptation for the imaginary part.
Particularly, the processing circuitry 1110 is configured to cause the control device 300 to perform a set of operations, or steps, S102-S110, as disclosed above. For example, the storage medium 1130 may store the set of operations, and the processing circuitry 1110 may be configured to retrieve the set of operations from the storage medium 1130 to cause the control device 300 to perform the set of operations. The set of operations may be provided as a set of executable instructions.
Thus the processing circuitry 1110 is thereby arranged to execute methods as herein disclosed. The storage medium 1130 may also comprise persistent storage, which, for example, can be any single one or combination of magnetic memory, optical memory, solid state memory or even remotely mounted memory. The control device 300 may further comprise a communications interface 1120 at least configured to obtain STx, Θ, STot, and to provide SComp. As such the communications interface 1120 may comprise one or more transmitters and receivers, comprising analogue and digital components. The processing circuitry 1110 controls the general operation of the control device 300 e.g. by sending data and control signals to the communications interface 1120 and the storage medium 1130, by receiving s data and reports from the communications interface 1120, and by retrieving data and instructions from the storage medium 1130. Other components, as well as the related functionality, of the control device 300 are omitted in order not to obscure the concepts presented herein.
In general terms, each functional module 1110a-1110e may in one embodiment be implemented only in hardware or and in another embodiment with the help of software, i.e., the latter embodiment having computer program instructions stored on the storage medium 1130 which when run on the processing circuitry makes the control device 300 perform the corresponding steps mentioned above in conjunction with
The control device 300 may be provided as a standalone device or as a part of at least one further device. For example, the control device 300 may be provided in the radio transceiver device 100. Hence, according to an embodiment there is provided a radio transceiver device 100 as herein disclosed comprising a control device 300 as herein disclosed.
Alternatively, functionality of the control device 300 may be distributed between at least two devices, or nodes. Thus, a first portion of the instructions performed by the control device 300 may be executed in a first device, and a second portion of the of the instructions performed by the control device 300 may be executed in a second device; the herein disclosed embodiments are not limited to any particular number of devices on which the instructions performed by the control device 300 may be executed. Hence, the methods according to the herein disclosed embodiments are suitable to be performed by a control device 300 residing in a cloud computational environment. Therefore, although a single processing circuitry 1110 is illustrated in
In the example of
The inventive concept has mainly been described above with reference to a few embodiments. However, as is readily appreciated by a person skilled in the art, other embodiments than the ones disclosed above are equally possible within the scope of the inventive concept, as defined by the appended patent claims.
Number | Date | Country | Kind |
---|---|---|---|
PCT/EP2016/057404 | Apr 2016 | WO | international |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/053325 | 2/14/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/174240 | 10/12/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5218448 | Honjo | Jun 1993 | A |
5848105 | Gardner et al. | Dec 1998 | A |
7916671 | Zortea | Mar 2011 | B1 |
9209891 | Mandell | Dec 2015 | B1 |
20030160896 | Ho Kim | Aug 2003 | A1 |
20070184782 | Sahota et al. | Aug 2007 | A1 |
20070254590 | Lopez | Nov 2007 | A1 |
20100277236 | Horiguchi | Nov 2010 | A1 |
20110195672 | Pratt et al. | Aug 2011 | A1 |
20140126675 | Monsen | May 2014 | A1 |
20140194071 | Wyville | Jul 2014 | A1 |
20140194073 | Wyville et al. | Jul 2014 | A1 |
20150180685 | Noest et al. | Jun 2015 | A1 |
20170104506 | Liu | Apr 2017 | A1 |
20170207812 | Wyville | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
2017174116 | Oct 2017 | WO |
Entry |
---|
Kay, Steven M., et al., “Fundamentals of Statistical Signal Processing: Estimation Theory,” Prentice Hall Signal Processing Series, vol. 1, Prentice Hall PTR, Upper Saddle River, NJ, 1993, 595 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/EP2016/057404, dated Nov. 30, 2016, 9 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/EP2017/053325, dated Apr. 18, 2017, 11 pages. |
Non-Final Office Action for U.S. Appl. No. 16/083,176, dated Feb. 19, 2019, 17 pages. |
Number | Date | Country | |
---|---|---|---|
20190089403 A1 | Mar 2019 | US |