The following generally relates to grating-based x-ray imaging, which, herein, refers to grating-based phase contrast imaging, which provides three contrasts in a scanned object—attenuation, phase, and dark-field, and thus can also be referred as grating-based phase contrast and/or dark-field contrast imaging. More particularly, the following relates to an interferometer grating support for grating-based x-ray imaging and/or a support bracket for the interferometer grating support, and is described with particular application to computed tomography (CT).
In conventional CT imaging, contrast is obtained through the differences in the absorption cross-section of the constituents of the scanned object. This yields good results where highly absorbing structures such as bones are embedded in a matrix of relatively weakly absorbing material, for example the surrounding tissue of the human body. However, in cases where different forms of tissue with similar absorption cross-sections are under investigation (e.g., mammography or angiography), the X-ray absorption contrast is relatively poor. Consequently, differentiating pathologic from non-pathologic tissue in an absorption radiograph remains difficult for certain tissue compositions. Grating-based x-ray imaging overcomes this limitation. Grating-based x-ray imaging utilizes X-ray gratings, which allow acquisition of X-ray images in phase contrast, which provides additional information about the scanned object. Another advantage of grating-based x-ray imaging is that it is also sensitive to small-angle scattering, often called dark-field contrast. Dark-field contrast is generated by small structures like alveoli in the lung or the fine sponge-type structure in bones.
Grating-based x-ray imaging uses three gratings, a source grating close to the X-ray source, an absorber grating close to the detector, and a phase or absorber grating disposed depending on whether configured with conventional, inverse, or symmetric geometry. Certain distances between gratings, grating shapes, grating locations, etc. need to be established and maintained for imaging. Unfortunately, this may be difficult. For example, there is a limited amount of free space in which the gratings can be added. Furthermore, in addition to the gratings, other X-ray beam conditioning components are between the X-ray tube output window and the examination area. This includes a low energy filter, a bow-tie shaped attenuator, and a beam collimator. Hence, these other components must also be considered and may further limit the space for the gratings. In view of at least the foregoing, there is an unresolved need for an approach to facilitate meeting and/or maintaining the requirements for the gratings for grating-based x-ray imaging.
Aspects described herein address the above-referenced problems and others.
In one aspect, an interferometer grating support of an imaging system configured for grating-based x-ray imaging includes at least two elongate supports separated from each other by a non-zero distance. The grating support further includes a first arc shaped grating affixed to a first end of the at least two elongate supports. The grating support further includes a second arc shaped grating affixed to a second end of the at least two elongate supports.
In another aspect, an imaging system configured for grating-based x-ray imaging includes a gantry, a radiation source, a detector array disposed across an examination region from the radiation source; a grating support disposed between the radiation source and the examination region, and an interferometer. The interferometer includes a source grating G0, a phase or absorber grating G1, and absorber grating G2. The grating support supports gratings G0 and G1. The grating G2 is disposed between the examination region and the detector array.
In another aspect, a non-transitory computer readable medium is configured with computer executable instructions which when executed by a processor of a computer cause the processor to: move a grating support, which supports G0 and G1 gratings of an interferometer and a bowtie filter, into a region between a low energy photon filter and a beam collimator, which are between a radiation source and an examination region, for a grating-based x-ray imaging scan.
Those skilled in the art will recognize still other aspects of the present application upon reading and understanding the attached description.
The invention may take form in various components and arrangements of components, and in various steps and arrangements of steps. The drawings are only for purposes of illustrating the preferred embodiments and are not to be construed as limiting the invention.
An X-ray imaging interferometer is also rotatably supported by the rotating gantry 104 and rotates with the rotating gantry 104. The X-ray imaging interferometer includes three gratings. In
Continuing with
Returning to
An example of reconstruction of conventional CT, dark field and/or phase images is described in patent application publication US 2015/0117598 A1, filed Dec. 4, 2014, and entitled “Grating-Based Differential Phase Contrast Imaging,” which is incorporated herein by reference in its entirety. Another example of x-ray imaging is described in U.S. Pat. No. 9,084,528 B2, filed Dec. 3, 2010, and entitled “Phase Contrast Imaging,” which is incorporated herein by reference in its entirety. Another example of dark field imaging is described in patent application publication US 2015/0124927 A1, filed May 13, 2013, and entitled “Dark field computed tomography imaging,” which is incorporated herein by reference in its entirety.
A subject support 124, such as a couch, supports the object 115 in the field of view 114 before, during and/or after scanning a subject or object. A general-purpose computing system or computer serves as an operator console 126. The console 126 includes a human readable output device such as a monitor and an input device such as a keyboard, mouse, etc. Software resident on the console 126 allows the operator to interact with and/or operate the imaging system 100 via a graphical user interface (GUI) or otherwise. This includes selecting an imaging protocol, e.g., a grating-based x-ray imaging protocol, initiating scanning, etc. In one instance, as described in greater detail below, the console 126 sends a signal which cause the grating support 118 and the G2 grating 120 to move into position for a grating-based x-ray imaging scan or a position for a conventional CT scan.
The grating support 118 includes at least two elongate supports 302 and 304 that are separated from each other in a direction 306, which is transverse to a vertical line 308 from a center of the focal spot 110 to the detector array 112, by a non-zero distance at least equal to a length of the bowtie filter 206. The at least two supports 302 and 304 are symmetrically disposed about the vertical line 308 and taper. The non-zero distance varies from a distance 310 at an end 312 of the grating support 118 which is disposed adjacent the nearer the focal spot 110 to a distance 314 at an opposing end 316 of the grating support 118, which is farther from the focal spot 110. The non-zero distance varies linearly. In a variation, the non-zero distance varies non-linearly. The non-zero distance is at least large enough so that the bowtie filter 206 fits there between. The illustrated size and shape of the at least two supports 302 and 304 is not limiting.
The G0 grating 202 is coupled at the end 312 of the grating support 118. The G0 grating 202 can be coupled thereto via a fastener such as an adhesive (e.g., glue), a screw, a rivet, a clamp, and the like. In this embodiment, the G0 grating 202 is arc shaped and follows a circle 318 having a center or midpoint 320 at a center of the focal spot 110. The G1 grating 204 is coupled to the opposing end 316 of the grating support 118. Likewise, the G1 grating 204 can be coupled via a fastener such as an adhesive (e.g., glue), a screw, a rivet, a clamp, and the like. In this embodiment, the G1 grating 204 is also arc shaped and follows a circle 322 (which is concentric to the circle 318) sharing the center or midpoint 320. The G0 and G1 gratings 202 and 204 can be pre-formed with the arc shape and/or bent during installation on the at least two supports 302 and 304.
In this embodiment, the G0 and G1 gratings 202 and 204 are separated from each other along the line 308 by a distance of ten centimeters (10 cm). In a variation, this distance is twenty centimeters (20 cm). In a variation, this distance is value between eight and thirty centimeters (8-30 cm). Generally, the separation corresponds to the Talbot distance. In one instance, this distance is static. In another instance, this distance is variable and can be manually and/or automatically adjusted. The grating support 118 includes a material with a temperature expansion coefficient such that the G0 and G1 gratings 202 and 204 maintain their positions. A suitable material is a nickel-iron alloy having a low coefficient of thermal expansion such as Invar®, a product of Imphy Alloys, France, and/or product. Furthermore, the grating support 118 can maintain the suitable positions under centrifugal forces of a CT scanner (e.g., 2 g to 6 g, 4 g, etc.).
A volume 324 bound by the G0 grating 202 and the bow-tie filter 206 is free of any x-ray attenuating material. A volume 326 bound by the G1 grating 204, the at least two supports 302 and 304, and the bow-tie filter 206 is also free of any x-ray attenuating material. A suitable bow-tie filter 206 includes a conventional bowtie filter that combines strong attenuation areas with reduced beam hardening. In one instance, this includes a bowtie filter that is relatively thick such as seven centimeters (7 cm) of a low Z material such as Teflon®, a product of Chemours, USA. In another embodiment, the bowtie filter may be made of a different material and/or have a different thickness. In yet another instance, the bowtie filter 206 is omitted. The bowtie filter 206 can be part of an assembled grating support 118 and/or installable therein.
The grating support 118 in
The grating support 118 in
The grating support 118 in
In one instance, the grating support 118 is releasably affixed to the bracket 802 and can be readily removed therefrom, e.g., to replace the grating support 118 and/or a component thereof (e.g., the bowtie filter 206). In another instance, the bracket 802 is releasably affixed in the system 100 and can be readily removed therefrom, e.g., to replace the bracket 802 and/or a component thereof (e.g., the grating support 118). The bracket 802 can be affixed to the source 108 and/or the rotating gantry 104 (
The grating support 118 and the bowtie filters 904 and 906 are affixed in an assembly 908. The assembly 908 is translatably coupled to at least one rail 910 via at least one bearing 912. A controller (not visible) controls a motor (not visible) to drive a drive system (not visible) such as a lead screw, ball screw, gear(s), chain, etc. to translate the assembly 908 to move at least between: 1) a position (shown) in which the bowtie filter 904 is between blades 914 of the collimator 212 and the low energy photon filer 208 (not visible); 2) a position in which the bowtie filter 906 is between the blades 914 and 916 of the collimator 212 and the low energy photon filer 208, and 3) a position in which the grating support 118 is between blades 914 of the collimator 212 and the low energy photon filer 208.
The particular one of the alternative x-ray beam conditioners positioned between the blades 914 of the collimator 212 and the low energy photon filer 208 depends on the particular scan to be performed. For example, where a grating-based x-ray imaging scan is to be performed, which can be selected at the console 126 (
The blades 914 and 916 of the collimator 212 are translatably affixed to at least one other rail 918 via at least one bearing 920. A controller (not visible) controls a motor 922 to drive a drive system (not visible) such as a lead screw, ball screw, gear(s), chain, etc. to translate the blades 914 and 916. The blades 914 and 916 of the collimator 212, in one instance, move to a first position where the blades 914 and 916 contact each other and block x-rays from passing to the examination region 106 (
In one instance, at least the grating support 118 is releasably affixed to the support bracket 902 and can be readily removed therefrom, e.g., to replace the grating support 118 and/or a component thereof (e.g., the bowtie filter 206). Additionally or alternatively, at least one of the collimator 212 and/or the low energy photon filer 208 is releasably affixed to the bracket 902 and can be readily removed therefrom, e.g., to replace the collimator 212 and/or the low energy photon filer 208. Additionally or alternatively, the bracket 902 is releasably affixed in the system 100 and can be readily removed therefrom, e.g., to replace the bracket 902 and/or a component supported thereby.
The illustrated support bracket 902 is shaped similar to a box with a bottom 924, four sides 926 (a front side is rendered transparent so that the grating support 118 and other components can be seen), and a top (which is rendered transparent so that the grating support 118 and other components can be seen). This configuration is non-limiting, and other structural configurations, such as non-box shaped, are contemplated herein. The illustrated support bracket 902 also includes mounting members 928 and 930. The bracket 902 can be affixed to the source 108 and/or the rotating gantry 104 (
For a configuration in which the system 100 is configured with the support bracket 902, the G2 grating 120 is configured to move in the beam path between the examination region 106 and the detector array 112 and out of the beam path between the examination region 106 and the detector array 112. For example, for a grating-based x-ray imaging scan, the G2 grating 120 is moved into a region between the examination region 106 and the detector array 112 and in the beam path, and for a conventional CT scan, the G2 grating 120 is moved out the region between the examination region 106 and the detector array 112 and one of the bowtie filters 904 or 906 is moved into the region between the examination region 106 and the detector array 112 and in the beam path. The G2 grating 120 can be moved via an electro-mechanical system, which may include a controller, a motor, a drive system, and/or other components.
It is to be appreciated that the ordering of the acts is not limiting. As such, other orderings are contemplated herein. In addition, one or more acts may be omitted and/or one or more additional acts may be included.
At 1002, an input signal indicating a grating-based x-ray imaging scan is to be performed is received at the console 126 of the imaging system 100.
At 1004, the grating support 118, which includes the gratings G0 and G1 202 and 204 and the bowtie filter 206, is positioned between the low energy photon filter 208 and the collimator 212, via electro-mechanical control.
At 1006, the grating G2 116 is positioned between the examination region 106 and the detector array 112.
At 1008, a radiation source 108 is controlled to emit x-ray radiation.
At 1010, a detector array 112 is controlled, in coordination with the control of the radiation source 108, to detect emitted x-ray radiation traversing the examination region 106 and generate a signal indicative thereof.
At 1012, the signal is reconstructed to generate a phase contrast image(s) and/or a dark field image(s).
It is to be appreciated that the ordering of the acts is not limiting. As such, other orderings are contemplated herein. In addition, one or more acts may be omitted and/or one or more additional acts may be included.
At 1102, a radiation source 108 is controlled to emit x-ray radiation, which traverses the grating support 118, which includes the gratings G0 and G1 202 and 204 and the bowtie filter 206, the examination region 106, and the grating G2 116.
At 1104, a detector array 112 is controlled to detect emitted x-ray radiation traversing the examination region 106 and generate a signal indicative thereof.
At 1106, the signal is reconstructed to generate a phase contrast image(s) and/or a dark field image(s).
The above may be implemented by way of computer readable instructions, encoded or embedded on computer readable storage medium, which, when executed by a computer processor(s), cause the processor(s) to carry out the described acts. Additionally or alternatively, at least one of the computer readable instructions is carried by a signal, carrier wave or other transitory medium, which is not computer readable storage medium.
The invention has been described with reference to the preferred embodiments. Modifications and alterations may occur to others upon reading and understanding the preceding detailed description. It is intended that the invention be constructed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/080889 | 11/30/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/104132 | 6/14/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5812629 | Clauser | Sep 1998 | A |
7639786 | Baumann et al. | Dec 2009 | B2 |
9084528 | Geller et al. | Jul 2015 | B2 |
20070183559 | Hempel | Aug 2007 | A1 |
20100091936 | David et al. | Apr 2010 | A1 |
20140037059 | Suft | Feb 2014 | A1 |
20140226785 | Stutman et al. | Aug 2014 | A1 |
20150023465 | Sato | Jan 2015 | A1 |
20150071402 | Nanda | Mar 2015 | A1 |
20150117598 | Proksa | Apr 2015 | A1 |
20150124927 | Koehler et al. | May 2015 | A1 |
20150294749 | Gorelick | Oct 2015 | A1 |
Entry |
---|
PCT International Search Report, International application No. PCT/EP2017/080889, dated Apr. 13, 2018. |
Donath T. et al, “Inverse Geometry for Grating-Based X-Ray Phase-Contrast Imaging”, Journal of Applied Physics 106, pp. 054703-1-054703-7, Oct. 2009. |
Number | Date | Country | |
---|---|---|---|
20190336086 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
62430402 | Dec 2016 | US |