1. Field of Invention
The present invention relates to a planar panel display and a manufacturing method thereof. More particularly, the present invention relates to an interferometric modulation pixel and a manufacturing method thereof.
2. Description of Related Art
Planar displays are extremely popular in the portable and limited-space display market because they are lightweight and small. To date, in addition to liquid crystal display (LCD), organic light-emitting diode (OLED) and plasma display panel (PDP) display panels, a module of the optical interference display has been investigated.
The features of an interferometric modulation pixel of the optical interference display include low electrical power consumption, short response time and bi-stable status. Therefore, the optical interference display can be applied in planar display panels, especially in portable products such as mobile phones, personal digital assistants (PDA), and portable computers.
U.S. Pat. No. 5,835,255 discloses a modulator array for visible light, and an interferometric modulation pixel of the modulator array can be used in a planar display panel.
A white light is usually used as an incident light source for the interferometric modulation pixel 100 and represents a mixture of various wavelengths (represented by λ) of light in the visible light spectrum. When the incident light shines through the bottom electrode 102 and enters the cavity 108, only the visible light with wavelength (λ1) corresponding to the formula 1.1 is reflected back, that is,
2D=Nλ1 (1.1),
wherein N is a natural number.
When twice the cavity depth, 2D, equals one certain wavelength λ1 of the incident light multiplied by any natural number, N, a constructive interference is produced, and a light with the wavelength λ1 is reflected back. Thus, an observer viewing the panel from the direction of the incident light will observe light with the certain wavelength λ1 reflected back at him. The display unit 100 here is in an “open” state, i.e. a “bright” state.
As described above, under the applied voltage, the top electrode 104 is flexed by electrostatic attraction toward the bottom electrode 102 such that the interferometric modulation pixel 100 is switched from the “open” state to the “closed” state. When the interferometric modulation pixel 100 is switched from the “closed” state to the “open” state, the voltage for flexing the top electrode 104 is removed, and the top electrode 104 elastically returns to the original state, i.e. the “open” state as illustrated in
In light of foregoing, the interferometric modulation pixel 100 is obtained by combining thin film interference principles of optics with the reflective plate and microelectromechanical system (MEMS) processes. In a MEMS process, the cavity 108 is formed by etching a sacrificial layer between the bottom electrode 102 and the top electrode 104. After removing the sacrificial layer, water vapor can be easily adsorbed within the cavity 108, creating an undesired electrostatic attractive force between the bottom electrode 102 and the top electrode 104. The electrostatic attractive force created by the water molecules can switch the “open” state of the display unit to its “closed” state. Hence, a display unit using interferometric modulation and a manufacturing method thereof are needed to avoid the adsorption of water molecules within the cavity 108 and thereby eliminate the possibility of forming an undesired electrostatic attractive force.
In one aspect, the present invention provides an interferometric modulation pixel and a manufacturing method of which a hydrophobic layer is formed on the bottom electrode to protect the upper surface of the bottom electrode from adsorbing water molecules.
In another aspect, the present invention provides an interferometric modulation pixel and a manufacturing method of which a hydrophobic layer is formed on the bottom electrode to maintain the distance between the bottom electrode and the top electrode such that the top electrode is not pulled toward the bottom electrode due to adsorbed moisture in the cavity.
In yet another aspect, the present invention provides an interferometric modulation pixel and a manufacturing method that enhances the image display quality of the planar optical interference display.
In accordance with the foregoing and other aspects of the present invention, the present invention provides a method of manufacturing an interferometric modulation pixel. A first electrode layer and a sacrificial layer are sequentially formed on a transparent substrate, wherein an uppermost layer of the first electrode layer is an insulating layer. At least two first openings are formed in the sacrificial layer and the first electrode layer to demarcate and define a first electrode. A photosensitive material is formed on the sacrificial layer and within the first openings and is then partially removed to leave supports in the first openings. A second electrode layer is formed on the sacrificial layer and the supports. Then, at least two second openings are formed in the second electrode layer to demarcate and define a second electrode such that the two second openings perpendicularly crisscross the two first openings. The sacrificial layer is then removed, and a hydrophobic layer is formed on the insulating layer.
In the foregoing, the hydrophobic layer is formed by adsorbing a layer of a hydrophobic organic compound having at least a hydrogen atom being capable of forming hydrogen bonds with oxygen or nitrogen atoms. The hydrophobic organic compound comprises silanes including hexamethyl disilane or silanols including trimethyl silanol.
In accordance with the foregoing and other aspects of the present invention, the present invention provides another method of manufacturing an interferometric modulation pixel. A first electrode layer, a hydrophobic layer and a sacrificial layer are sequentially formed on a transparent substrate, wherein an uppermost layer of the first electrode layer is an insulating layer. At least two first openings are formed in the sacrificial layer, the hydrophobic layer and the first electrode layer to demarcate and define a first electrode. A photosensitive material is formed on the sacrificial layer and in the first openings and is then partially removed to leave supports in the first openings. A second electrode layer is formed on the sacrificial layer and the supports. Then, at least two second openings are formed in the second electrode layer to demarcate and define a second electrode such that the two second openings perpendicularly crisscross the two first openings. The sacrificial layer is then removed.
In the foregoing, the hydrophobic layer may comprise a hydrophobic resin.
In accordance with the foregoing and other aspects of the present invention, the present invention provides an interferometric modulation pixel. The interferometric modulation pixel comprises a first electrode, a movable second electrode situated above the first electrode, two supports between the first electrode and the second electrode for forming a cavity between the first and second electrodes, and a hydrophobic layer on the cavity-side surface of the bottom electrode. Materials for use as the hydrophobic layer include a hydrophobic resin and a hydrophobic organic compound having at least a hydrogen atom being capable of forming hydrogen bonds with oxygen or nitrogen atoms. The hydrophobic organic compound comprises silanes including hexamethyl disilane or silanols including trimethyl silanol.
In light of the preferred embodiments of the present invention described above, a hydrophobic layer covers the insulating layer of the bottom electrode to prevent adsorption of water molecules. Hence, the distance between the bottom electrode and the top electrode is not decreased due to the adsorption of water molecules and thereby provides a high-quality image display.
It is to be understood that both the foregoing general description and the following detailed description are made by use of examples and are intended to provide further explanation of the invention as claimed.
The accompanying drawings are included to provide a better understanding of the invention and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention. In the drawings,
The bottom electrode of the prior art interferometric modulation pixel is made of a transparent conductive layer, a light-absorption layer and a silicon-based insulation layer. The silicon-based insulation layer is usually a silicon oxide layer or a silicon nitride layer, both of which are hydrophilic. The cavity depth of the interferometric modulation display unit is the distance between the bottom electrode and the top electrode after a sacrificial layer therebetween is etched away by a structural release etching process. The cavity depth is usually on the order of one micrometer or even smaller. Therefore, water vapor in the air is very easily adsorbed within the cavity to create an undesired electrostatic attractive force between the bottom and the top electrodes that permanently forces the interferometric modulation pixel to appear as the “closed” state and consequently produces image defects.
Therefore, this invention provides an interferometric modulation pixel and a manufacturing method thereof to solve the prior art problem of the adsorption of water molecules onto the bottom electrode. In a preferred embodiment of the present invention, the bottom electrode is covered by a hydrophobic layer in order to prohibit the bottom electrode from adsorbing water molecules.
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings.
Embodiment 1
The transparent conductive layer 205 is preferably made of indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide or indium oxide. The light-absorption layer 210 is preferably made of aluminum, silver or chromium. The insulating layer 215 may be comprised of silicon oxide or silicon nitride. The sacrificial layer 220 is made of metal, amorphous silicon, polysilicon or other suitable material.
In
Then, a photosensitive material 230 is coated on the sacrificial layer 220 and inside of the first openings 225. The photosensitive material 230 comprises positive photoresist, negative photoresist, or various kinds of photosensitive polymers such as polyimide, acrylic resins, or epoxy resins.
In
In
In a moisture-free environment or in a vacuum, a hydrophobic layer 250 is formed on the surface of the insulating layer 215. The method used for forming the hydrophobic layer 250 includes introducing a gas of a hydrophobic organic compound into a reaction chamber such that the gas condenses and adsorbs onto the insulating layer 215. The hydrophobic organic compound must have at least a hydrogen atom that can form a hydrogen bond with the lone pair electrons of oxygen or nitrogen atoms on the surface of the insulating layer 215. Consequently, the oxygen or nitrogen atoms in the insulating layer 215 are unable to form hydrogen bonds with water molecules, preventing adsorption of water molecules. The hydrophobic organic compound includes silanes, such as hexamethyl disilanes, or silanols, such as trimethyl silanol.
Embodiment 2
The transparent conductive layer 305 is preferably comprised of indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide or indium oxide. The light-absorption layer 310 is made of a metal such as aluminum, silver or chromium. The insulating layer 315 is preferably comprised of silicon oxide or silicon nitride. In this embodiment, the hydrophobic layer 320 is made of a hydrophobic resin. The sacrificial layer 325 preferably comprises metal, amorphous silicon or polysilicon.
In
In
In
In light of the preferred embodiments of the present invention described above, a hydrophobic layer covers the insulating layer of the bottom electrode to prohibit adsorption of water molecules. Hence, the distance between the bottom electrode and the top electrode is not decreased by the adsorption of water molecules and thereby provides a high-quality image display.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
92124388 | Sep 2003 | TW | national |