The present invention relates to interfolding apparatuses, and more specifically to the transfer of sheets onto interfolding rolls of the interfolding apparatuses.
Various combinations and types of rolls can be present in an interfolding apparatus. A typical interfolding apparatus includes at least two interfolding rolls, at least one knife or cutting roll, and at least one feed roll for pulling streams of web material into the interfolding apparatus. The web material is generally cut at or near the knife rolls and is eventually transferred to a nip between the interfolding rolls.
The succession of sheets entering the nip is such that a middle portion of a reference sheet on a first interfolding roll enters the nip at the same time as trailing and leading edges of downstream and upstream sheets, respectively, positioned on a second interfolding roll. The leading and trailing edges are positioned adjacent a tucker of the second interfolding roll. The tucker pushes or tucks the middle portion of the reference sheet into a gripper (either mechanical or vacuum) of the first interfolding roll as the tucker and gripper pass through the nip. The gripper receives the middle portion and the trailing and leading edges from the tucker, folds the middle portion capturing the leading and trailing edges within the fold, and conveys and releases the fold to an adjacent side of a stack of interfolded sheets being built below the interfolding rolls. As the interfolding rolls continue rotation, a gripper of the second interfolding roll receives a middle portion of the upstream sheet and the associated leading and trailing edges from a tucker of the first interfolding roll, folds the middle portion capturing the associated leading and trailing edges, and conveys and releases the fold to the adjacent side of the stack of interfolded sheets.
This process is repeated in an alternating fashion between the first and second interfolding rolls. To insure that the associated leading and trailing edges are properly folded within the middle portion of the sheet being folded, it is important to control the position of the leading and trailing edges on the interfolding rolls, and more particularly relative to the tucker of the interfolding roll.
Known interfolders attempt to maintain the position of the leading and trailing edges during interfolding by providing vacuum ports on the interfolding rolls. However, during interfolding as described above, a tucker forces a middle portion of a sheet into a recess of an opposite gripper. The length of sheet forced within the gripper must be compensated for by stretch or rupture of the sheet or by movement of one, or both, of the leading and trailing edges of the sheet being folded. In some cases, this will alter the position of the leading edge (i.e., draw it closer to the middle portion) such that the leading edge is pulled from the downstream gripper which performed the previous fold. In other cases, this will alter the position of the trailing edge such that the trailing edge is pulled from its respective vacuum port. In some extreme cases, tucking a middle portion of a sheet within an opposite gripper will cause the trailing edge of the sheet being folded to become freed from the gripper or the leading edge to become freed from the vacuum port. Where an edge moves or becomes freed, the edge is not tucked tightly within the fold and a visible discontinuity in the stack could result. In the case of a freed edge, interruption of the interfolding could occur.
Some embodiments of the invention provide an interfolding apparatus and a method of interfolding sheets of web material that improves the control of the position of the sheets on the interfolding rolls during interfolding.
In one embodiment, the invention provides an interfolding apparatus including a knife roll, a first interfolding roll, a second interfolding roll, and a transfer roll. The knife roll is rotatable about an axis and is operable to cut sheets from a stream of web material issuing from a source in a downstream direction. The first interfolding roll is positioned downstream of the knife roll and is adapted to receive the sheets. The first interfolding roll is rotatable in a first direction. The second interfolding roll is rotatable in a second direction and is disposed adjacent to the first interfolding roll to define a nip therebetween. The first and second interfolding rolls are rotatable to interfold the sheets with additional sheets received by the second interfolding roll. A transfer roll is positioned between the knife roll and the first interfolding roll. The transfer roll has a non-uniform surface configuration and is rotatable in the second direction. The transfer roll is operable to receive the sheets from the knife roll, to form a bend in each of the sheets received from the knife roll, and to transfer the formed sheets to the first interfolding roll.
In another embodiment, the invention provides a method of interfolding sheets of web material. The method includes issuing web material in a downstream direction from a source, cutting with a knife roll the stream of web material into sheets, transferring each sheet to a transfer roll, forming with the transfer roll a bend in the middle portion of each sheet, transferring each formed sheet to an interfolding roll, and interfolding the formed sheet on the interfolding roll with at least one other sheet from an adjacent interfolding roll.
Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.
An interfolder, or interfolding apparatus 10, of one embodiment of the present invention is illustrated in
The interfolding apparatus 10 is capable of interfolding streams of continuously flowing web material 42a, 42b. The interfolding apparatus 10 can be divided into two sides that are mirror images of one another. Therefore, only a side “b” will be described in detail, with the understanding that the other side “a” performs the same functions, only that the movement is opposite to that of side “b”. For example, clockwise rotation of a roll on side “b” would mean that the complementary roll on the side “a” would have counterclockwise rotation.
As more clearly shown in
The forming blades 52b of transfer roll 28b protrude from the periphery of transfer roll 28b and end at a point 54b. Vacuum ports 56b are located on opposite sides of the forming blade 52b. The transfer roll 28b also includes grooves 58b positioned between adjacent sets of forming blades 52b. Vacuum ports 60b are located on either side of each respective groove 58b.
The tuckers 64b of the interfolding roll 34b are similar to the forming blades 52b of transfer roll 28b in that the tuckers 64b protrude from the periphery of the interfolding roll 34b and end at a point 66b. Vacuum ports 68b are located on both sides of the tucker 64b. As shown in
The forming blades 52b are received within grooves 50b to pre-form the sheet 48 with a bend prior to creasing the sheet 48 with a gripper 70b. In some embodiments, the pre-forming operation of the forming blades 52b and grooves 50b does not leave a crease mark in the sheet 48 if the sheet 48 were to be removed from the interfolding apparatus 10 after being pre-formed by the forming blades 52b and the grooves 50b. In these embodiments, a crease forms at the middle portion 72 of sheet 48 when the gripper 70b of interfolding roll 34b pinches the bent portion of the sheet 48, as discussed in more detail below. In other embodiments, a crease can be formed by the transfer roll 28b.
As shown in
As shown in
As illustrated in
The second peripheral length of the sheet 48 on the transfer roll 28b is shorter than the first peripheral length of the sheet 48 on the knife roll 20b because as the forming blade 52b is inserted into the groove 50b, the sheet 48 is transferred across the protruding surface of the forming blade 52b. Since the forming blade 52b protrudes past the uniform radial surface of the roll, the peripheral length of the sheet 48 is shorted by the added distance required to cover the forming blade 52b. The circumference of the transfer roll 28b is less than ¾ of the circumference of the knife roll 20b. In other embodiments, the circumference of the transfer roll 28b is not equally divisible by the sheet length. For example, the circumference of the knife roll 20b is equal to four sheet lengths, but the circumference of the transfer roll 28b is not equally divisible by 3 sheets. Instead, the circumference of the transfer roll 28b is equal to a number between 2 and 3 sheet lengths.
The transfer roll 28b functions to pre-form sheets of material such that the circumferential length of the sheet along the transfer roll is that same as the circumferential length of the sheet along the interfolding roll to obtain a more accurate fold. This is accomplished by creating a bend in the sheet, and transferring the sheet from the transfer roll to the interfolding roll of the same size such that the bent portion is inserted within the gripper. Because the bent portion is positioned within the gripper, the sheet no longer moves on the interfolding roll to compensate for the amount of sheet forced within the gripper by the opposing tucker. This allows for more accurate control of the positions of the leading and trailing edges of the sheets on the interfolding rolls.
As sheets continue to progress through the interfolding apparatus 10, the interfolding rolls 34a, 34b will continue to interfold sheets of material in the manner described.
Number | Name | Date | Kind |
---|---|---|---|
843781 | Wheeler | Feb 1907 | A |
2092952 | Campbell | Sep 1937 | A |
2353445 | Crafts | Jul 1944 | A |
4475730 | Trogan | Oct 1984 | A |
4725469 | Summerfield | Feb 1988 | A |
4765604 | Trogan | Aug 1988 | A |
4778441 | Couturier | Oct 1988 | A |
4917665 | Couturier | Apr 1990 | A |
5088707 | Stemmler | Feb 1992 | A |
5147273 | Rottmann et al. | Sep 1992 | A |
5310398 | Yoneyama | May 1994 | A |
6010122 | Weber | Jan 2000 | A |
6024685 | Kirsch | Feb 2000 | A |
6165116 | White | Dec 2000 | A |
6179764 | Eckert | Jan 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
20070082801 A1 | Apr 2007 | US |