The present invention generally relates to machines with permanent magnets buried in the rotor core and, in particular, slotted rotors for interior magnet machines operating at variable frequencies under an electronic control or operating at a fixed frequency.
Interior magnet machines have the following characteristics.
First, many interior magnet machines have lower power density than surface mounted magnet machines. The surface area of the magnet is usually reduced when buried, requiring a larger motor or generator to obtain the same output power. The larger size motor or generator can cause packaging or performance problems in the final application.
Second, a trapezoidal air-gap flux distribution is usually generated by a interior magnet rotor. In applications where the winding currents are sinusoidal, the trapezoidal flux distribution results in significant torque ripple. The torque ripple contributes to noise and vibration in the final application. This can be minimized by selection of the correct slot and pole number, but this solution is not always practical.
Third, the abrupt transitions in the rotor flux distribution contribute to cogging torque. Techniques typically used to reduce cogging torque, such as skewing, result in lower power density.
Fourth, interior magnet machines have higher average inductance than surface magnet machines. The higher inductance reduces the power factor of the machine during operation, increasing the complex power (VA) required from the drive to produce a given output torque. Increasing the drive volt-ampere requirement can increase the drive cost if larger power devices must be used.
The output torque of an interior permanent magnet machine is proportional to the back-emf and winding current when the two are in phase. The winding current in a fixed bus voltage system is limited by the back-emf and machine resistance and inductance. A rotor geometry that results in higher back-emf or lower inductance allows the number of turns to be adjusted to obtain minimum current draw. The decrease in current may allow for the use of smaller power devices, reducing system cost.
Prior art solutions for interior magnet machines with power density greater than or equal to surface magnet machines include “V” magnet and spoke magnet designs. The designs can be difficult to magnetize and tend to have high cogging torque.
Prior art solutions for reducing the impact of a trapezoidal rotor flux distribution include machines with distributed windings. Stators with distributed windings tend to be larger than single tooth windings due to the end coils, and may not fit in the package required by some applications. Single tooth windings in which the number of electrical degrees per slot is not equal to 120 or 240 can also be used. The number of practical combinations is limited by the size of the machine.
Prior art solutions for reducing the cogging torque include shaping of the stator and rotor air-gap surfaces and skew. These solutions tend to reduce the power density of the machine.
Prior art solutions for reducing the average inductance of a interior magnet machine include adding slits to the rotor pole cap. These slits are placed perpendicular to the magnet surface in most cases.
Other objects and features will be in part apparent and in part pointed out hereinafter.
Corresponding reference characters indicate corresponding parts throughout the drawings.
In one embodiment, the invention comprises a machine having a stator and a rotor in magnetic coupling engagement with the stator, wherein the rotor has a geometry with angled slots between the magnet surface and the rotor outside diameter. In another embodiment, the invention comprises a rotor geometry with slots added between the magnet surface and the rotor outside diameter. The slots are placed at an angle and in a location that can increase the fundamental component of the rotor flux distribution. The slots may also decrease the cogging torque. A minimum of two slots per magnetic pole are added. Although any even number of slots is illustrated by the embodiments herein, those skilled in the art will recognize other configurations.
The addition of the slots changes the rotor flux distribution from a trapezoidal shape to a more sinusoidal distribution. The fundamental component of the more sinusoidal distribution can be greater than the fundamental component of the trapezoidal distribution, and the harmonic distortion of the distribution can be reduced. Appendix 1 is a mathematical construction of the invention. The first section shows the uniform (trapezoidal) rotor flux distribution without the slots. The FFT fundamental component of the flux distribution is 1.433 amplitude units. The total harmonic distortion of the distribution is 11.805%. The next section of Appendix 1 present a method for calculating the location of the slots. The method presented increases the fundamental component to 1.616 and reduces the THD to 4.263%.
A comparison of the mathematical model and FEA model can be made using the rotor shown in
The FEA model shows improvement in the shape of the flux distribution, the magnitude of the fundamental component of the flux distribution, average inductance, back-emf fundamental component magnitude, cogging torque magnitude, average torque, and torque ripple.
The location and angle of the slots have not been optimized at this time. Further work is required to optimize these parameters for torque production and cogging torque reduction.
The advantages described above also apply to line start permanent magnet machines. Examples of LSPM rotors are in
The invention reduces the cogging torque while maintaining or increasing the back-emf and average torque production. This is a highly unusual result. Most methods used for reducing cogging torque also reduce the back-emf and average torque.
The higher back-emf can be taken advantage of in two ways. First, it can be used to increase the power density of the machine, by increasing the torque supplied by a fixed motor or generator size, or by reducing the size of the motor or generator to produce the same torque.
Alternatively, the number of turns could be reduced to keep the same back-emf. The inductance of the machine is proportional to the square of the turns, so a substantial reduction in inductance is possible. A motor or generator using the rotor shown in
Thus,
In
Each interior magnet 74 has four associated slots 76 and 77 between the magnet 74 and a periphery 78 of the lamination wherein the longitudinal axis 80 and 81 of the slots are at an angle of less than 90 degrees relative to a longitudinal axis 82 of its associated interior magnet 74. In this embodiment, each interior magnet 74 has optional slotted ends 84 which may be filled with air or other non-magnetic material. In this embodiment, the two outer slots 76 form a smaller angle with the axis 82 than the two inner slots 77 and the two outer slots 76 are shorter in length than the two inner slots 77.
In the embodiment of
TABLE 1 illustrates finite element modeling results regarding the back emf and cogging for the embodiments of
TABLE 2 illustrates finite element modeling results regarding the back emf and cogging for the embodiments of
TABLE 3 illustrates finite element modeling results regarding the back emf and cogging for the embodiments of
TABLE 4 illustrates test results regarding the back emf and cogging for the embodiments of
Having described the invention in detail, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims.
When introducing elements of the present invention or the preferred embodiments(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
In view of the above, it will be seen that the several objects of the invention are achieved and other advantageous results attained.
As various changes could be made in the above constructions, products, and methods without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
IPM Flux Concentration
The torque produced by an electric machine results from the interaction of the stator and rotor magnetic fields. The majority of the torque is produced by the fundamental component of each field. For the interior permanent magnet rotor shown in
The total flux under the waveform shown is:
φr=A1p1 (1)
where A1 is the amplitude of the air-gap flux and p1 is the width of the flux waveform as a percentage of a pole pitch. The fundamental component of the air-gap flux is given by:
The invention changes the shape of the air-gap waveform so as to increase the fundamental component. The addition of one set of slots (
The total rotor air-gap flux remains unchanged since the magnet width, length, and operating conditions have not been changed, or
φr=A2p2+(A3−A2)p3 (3)
The fundamental component of this waveform is:
An example of the increase in the fundamental component due to the slots is given in Table 1. The flux from the magnets is the same for each of the waveforms in the example, since the area under the waveforms is 1.0 in each case. The fundamental component increases by 12.8%. The increase in the fundamental component of the air-gap flux results in greater back-emf and torque. The change in the air-gap flux distribution, as indicated by the change in total harmonic distortion, will also change the cogging torque.
The analysis above ignores motor non-linearity, stator slotting effects, and flux leakage. Each of these will affect the analysis above. Some modification of slot position is necessary to account for these effects.
FFT of Air-Gap Flux Distribution Calculation by Finite Element
Takes fourier transform of flux density versus angle waveform.
Read Data from Files
no_slot:=READPRN(“c:\projects:flux_focus\fea_slotflux_dist__s
slot:=READPRN(“c:\projectsflux_focus\feaflux_dist_sl”)
Extract Data from Files