The present invention relates generally to the field of mirror elements for use in rearview mirror assemblies and visors for vehicles.
It is known to provide a mirror reflective element and a bezel for an interior or exterior rearview mirror assembly of a vehicle. The interior mirror reflective element is adjustably mounted to an interior portion of a vehicle, such as via a double ball pivot or joint mounting configuration where the mirror casing and reflective element are adjusted relative to the interior portion of a vehicle by pivotal movement about the double ball pivot configuration. Typically, and such as shown in
The present invention provides an interior rearview mirror assembly that has an electrically variable reflectance mirror reflective element (such as an electro-optic mirror reflective element, such as an electrochromic mirror reflective element) adjustably mounted at an interior portion of a vehicle and adjustable to adjust the driver's rearward view, such as through a rear window of the vehicle, via the driver viewing the mirror reflective element. The interior rearview mirror assembly includes a reduced thickness or low profile mirror head pivotally mounted or attached at a mirror mount that is configured to attach at an interior portion of a vehicle equipped with the interior rearview mirror assembly. The mirror head comprises a reduced profile mirror casing and does not include a circuit board or EC drive circuitry therein. Electrical connection of a vehicle wire harness or connector is made to the electrically conductive coatings or layers at the surfaces of the glass substrates of the reflective element via connection at a connector integrated into the molded mirror housing, with the connector being electrically connected to terminals that are electrically connected (at the rear of the reflective element) to respective ones of the electrically conductive coatings at the second surface of the front glass substrate and at the third surface of the rear glass substrate.
These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.
Referring now to the drawings and the illustrative embodiments depicted therein, an interior rearview mirror assembly 10 for a vehicle includes a mirror head 12 having a casing 14 and a reflective element 16 positioned at a front portion of the casing 14 (
The interior rearview mirror assembly of the present invention provides a thin or substantially reduced size mirror head or mirror casing, such as for an electro-optic (such as electrochromic or the like) reflective element. Thus, the mirror head of the present invention may have a reduced thickness dimension (the dimension between the front generally planar surface of the reflective element and the rear surface of the mirror casing at a generally central region of the mirror head), preferably less than about 25 mm, such as less than about 20 mm or less than about 15 mm or less than about 10 mm, and may have a casing that has radiused or tapered perimeter edge regions. The mirror assembly may utilize aspects of the mirror assemblies described in U.S. Publication Nos. US-2019-0047475 and/or US-2015-0334354, which are hereby incorporated herein by reference in their entireties.
The mirror head 12 is pivotally mounted at a mounting structure or stay 18, which is configured to mount at an interior structure of a vehicle (such as at a header of a vehicle or such as at a windshield of a vehicle) via an attaching structure. The mirror head 12 includes a pivot element (e.g., a socket) at the central rear portion of the mirror casing 14, while the mounting structure 18 includes a corresponding pivot element (e.g., a ball member), such that the socket pivotally receives the ball member to pivotally attach the mirror head at the mounting structure or stay.
The low profile mirror assembly 10 has circuitry or a circuit element or circuit board at or in the mounting arm or mounting structure or stay 18 of the mirror assembly (such as housed within a stay housing or casing 20), whereby a rearward viewing sensor or camera may be disposed in the housing 20 (and optionally a forward viewing sensor or camera may be disposed in the housing 20 for sensing forward of the mounting structure and through the windshield of the vehicle equipped with the mirror assembly). For example, a forward viewing sensor may be disposed at the circuit element and may view forwardly through a cover of the mounting structure or stay 18, such as through an aperture formed through the cover, and/or a rearward viewing sensor may be disposed at the circuit element and may view forwardly through the housing or casing 20 of the mounting structure or stay 18, such as through an aperture 20a formed through the housing 20 (
Intelligent dimming of the mirror reflective element moves the photosensors from the mirror head, which were detecting ambient light and glare conditions, to either photosensors at the mirror mounting structure or to the rear backup camera or other cameras of the vehicle. As this eliminates the primary function of the printed circuit board (PCB) in the mirror head, the mirror head PCB and associated wiring can be eliminated from the mirror head. In order to provide power for the EC cell, single piece stampings or wire-forms can be utilized.
Electrical connection to the electro-optic reflective element may be made via electrically conductive elements 22a, 22b disposed at the rear of the reflective element 16 and in electrical connection with the respective electrically conductive coating at the second or rear surface of the front substrate or at the third or front surface of the rear substrate. As shown in
The electrically conductive elements 22a, 22b may comprise stamped metallic terminals (
Thus, the reflective element includes wires or a stamping or the like that interfaces directly with the electro-optic reflective element or cell solder tabs. The connector terminal side of the conductive elements may be disposed at an integrated connector portion of the housing (and may readily be positioned at or received at the integrated connector portion as the mirror reflective element is attached at or adhered at the mirror casing). The vehicle side connector or wire may connect to the connector terminals of the conductive elements at the integrated housing connector. The electrically conductive connectors may comprise a metal stamping or other suitable construction that provides sufficiently rigid or non-flexible portions that extend or protrude from the rear side of the mirror reflective element.
In the illustrated embodiments, and such as shown in
The electrically conductive terminals are sufficiently rigid or non-flexing or non-bending, so that the distal ends insert into and make electrical connection at the connector portion of the mirror casing when the mirror reflective element is attached at the mirror casing. The electrical connector portion of the mirror casing may comprise a pair of receiving terminals that receive the distal ends of the electrically conductive terminals at one end and that are configured to receive pins or terminals of the wire or harness at the other end (the other end being exposed at or accessible at the exterior side of the mirror casing). The terminals of the connector portion may be insert molded during the injection molding process that forms the mirror casing, or may be insert molded in a connector portion that snap attaches at an aperture of the mirror casing to integrate the connector portion as part of the mirror casing before the mirror reflective element is attached at the mirror casing.
The non-flexible construction of the electrically conductive connectors allows the protruding distal ends of the electrically conductive terminals to be inserted into or received in the connector portion of the mirror casing as the mirror reflective element is attached at the mirror casing (such as via adhesive attachment of the mirror reflective element at an attaching portion or plate of the mirror casing). The attaching portion or attaching plate at the mirror casing includes one or more apertures therethrough so that the protruding distal ends of the electrically conductive terminals pass through the aperture(s) when the mirror reflective element is attached at the attaching portion or attaching plate. The protruding distal portions may also plug into or insert into the connector of the mirror casing as the mirror reflective element is attached at the attaching portion or attaching plate, or may plug into or insert into the connector of the mirror casing when the attaching portion or plate is attached at the mirror casing (if the attaching portion or plate is formed as a separate part of the mirror casing and separately attached to the mirror casing via a separate process or step after the mirror reflective element is attached to the attaching portion or plate).
Thus, the circuit board (and associated electrochromic dimming circuitry) is disposed outside of the mirror head or reflective element assembly, and is mounted in the single ball mirror mounting structure or stay. Such a configuration eliminates a wiring harness that would extend from the stay to the mirror head (with the exception that two wires may be routed through the single ball for electrical connection to the electrochromic mirror reflective element or cell). The sensors view out from behind the stay cover or mount cover and through respective apertures in the cover. Optionally, one or both sensors or sensing functions (glare light sensing and ambient light sensing) may be integrated in a respective camera (such as a rearward viewing or rear backup camera).
The mirror housing or casing comprises a cover element that has side regions that are configured to attach at the rear of the reflective element, such that the reflective element may be adhesively attached directly to the mirror housing. The center region of the mirror housing may also provide an attaching surface at which the center region of the mirror reflective element is adhesively attached. The housing may partially receive the reflective element therein, such that a perimeter portion of the housing circumscribes the rear glass substrate of the electro-optic reflective element, with the front glass substrate having a rounded or curved perimeter edge to provide a rounded transition from a planar front or first surface of the reflective element to a side surface of the housing. Optionally, the housing may extend over and circumscribe the perimeter edge of the front substrate, whereby the housing may provide a rounded or curved perimeter region to provide a rounded transition from the planar front or first surface of the reflective element to the side surface of the housing.
The mirror assembly may comprise any suitable construction, such as, for example, a mirror assembly with the reflective element being nested in the mirror casing and with a bezel portion that circumscribes a perimeter region of the front surface of the reflective element, or with the mirror casing having a curved or beveled perimeter edge around the reflective element and with no overlap onto the front surface of the reflective element (such as by utilizing aspects of the mirror assemblies described in U.S. Pat. Nos. 7,255,451; 7,289,037 and/or 7,360,932, which are hereby incorporated herein by reference in their entireties), or such as a mirror assembly having a rear substrate of an electro-optic or electrochromic reflective element nested in the mirror casing, and with the front substrate having curved or beveled perimeter edges, or such as a mirror assembly having a prismatic reflective element that is disposed at an outer perimeter edge of the mirror casing and with the prismatic substrate having curved or beveled perimeter edges (such as by utilizing aspects of the mirror assemblies described in U.S. Pat. Nos. 8,508,831; 8,730,553; 9,598,016 and/or 9,346,403, and/or U.S. Publication Nos. US-2014-0313563 and/or US-2015-0097955, which are hereby incorporated herein by reference in their entireties, and with electrochromic and prismatic mirrors of such construction are commercially available from the assignee of this application under the trade name INFINITY™ mirror).
As discussed above, the mirror assembly comprises an electro-optic or electrochromic mirror assembly that includes an electro-optic or electrochromic reflective element. The perimeter edges of the reflective element may be encased or encompassed by the perimeter element or portion of the bezel portion to conceal and contain and envelop the perimeter edges of the substrates and the perimeter seal disposed therebetween. The electrochromic mirror element of the electrochromic mirror assembly may utilize the principles disclosed in commonly assigned U.S. Pat. Nos. 8,503,061; 7,274,501; 7,255,451; 7,195,381; 7,184,190; 6,690,268; 5,140,455; 5,151,816; 6,178,034; 6,154,306; 6,002,544; 5,567,360; 5,525,264; 5,610,756; 5,406,414; 5,253,109; 5,076,673; 5,073,012; 5,117,346; 5,724,187; 5,668,663; 5,910,854; 5,142,407 and/or 4,712,879, which are hereby incorporated herein by reference in their entireties.
Optionally, the reflective element may include an opaque or substantially opaque or hiding perimeter layer or coating or band disposed around a perimeter edge region of the front substrate (such as at a perimeter region of the rear or second surface of the front substrate) to conceal or hide or the perimeter seal from viewing by the driver of the vehicle when the mirror assembly is normally mounted in the vehicle. Such a hiding layer or perimeter band may be reflective or not reflective and may utilize aspects of the perimeter bands and mirror assemblies described in U.S. Pat. Nos. 5,066,112; 7,626,749; 7,274,501; 7,184,190; 7,255,451; 8,508,831 and/or 8,730,553, and/or U.S. Pat. Pub. No. US-2006-0061008, which are all hereby incorporated herein by reference in their entireties.
The mirror assembly may comprise or utilize aspects of other types of casings or the like, such as described in U.S. Pat. Nos. 7,338,177; 7,289,037; 7,249,860; 6,439,755; 4,826,289 and/or 6,501,387, which are all hereby incorporated herein by reference in their entireties, without affecting the scope of the present invention. For example, the mirror assembly may utilize aspects of the flush or frameless or bezelless reflective elements described in U.S. Pat. Nos. 7,626,749; 7,360,932; 7,289,037; 7,255,451; 7,274,501 and/or 7,184,190, which are all hereby incorporated herein by reference in their entireties.
Changes and modifications in the specifically described embodiments may be carried out without departing from the principles of the present invention, which is intended to be limited only by the scope of the appended claims as interpreted according to the principles of patent law.
The present application claims the filing benefits of U.S. provisional application Ser. No. 62/980,462, filed Feb. 24, 2020, which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4712879 | Lynam et al. | Dec 1987 | A |
4826289 | Vandenbrink et al. | May 1989 | A |
5066112 | Lynam et al. | Nov 1991 | A |
5073012 | Lynam | Dec 1991 | A |
5076673 | Lynam et al. | Dec 1991 | A |
5140455 | Varaprasad et al. | Aug 1992 | A |
5142407 | Varaprasad et al. | Aug 1992 | A |
5151816 | Varaprasad et al. | Sep 1992 | A |
5253109 | O'Farrell et al. | Oct 1993 | A |
5406414 | O'Farrell et al. | Apr 1995 | A |
5525264 | Cronin et al. | Jun 1996 | A |
5567360 | Varaprasad et al. | Oct 1996 | A |
5572354 | Desmond | Nov 1996 | A |
5610756 | Lynam et al. | Mar 1997 | A |
5668663 | Varaprasad et al. | Sep 1997 | A |
5669698 | Veldman | Sep 1997 | A |
5724187 | Varaprasad et al. | Mar 1998 | A |
5910854 | Varaprasad et al. | Jun 1999 | A |
5971553 | Durnwald | Oct 1999 | A |
6002511 | Varaprasad et al. | Dec 1999 | A |
6154306 | Varaprasad et al. | Nov 2000 | A |
6158655 | DeVries, Jr. | Dec 2000 | A |
6178034 | Allemand et al. | Jan 2001 | B1 |
6439755 | Fant, Jr. et al. | Aug 2002 | B1 |
6501387 | Skiver et al. | Dec 2002 | B2 |
6690268 | Schofield et al. | Feb 2004 | B2 |
7184190 | McCabe et al. | Feb 2007 | B2 |
7195381 | Lynam et al. | Mar 2007 | B2 |
7249860 | Kulas et al. | Jul 2007 | B2 |
7255451 | McCabe et al. | Aug 2007 | B2 |
7274501 | McCabe et al. | Sep 2007 | B2 |
7289037 | Uken et al. | Oct 2007 | B2 |
7338177 | Lynam | Mar 2008 | B2 |
7360932 | Uken et al. | Apr 2008 | B2 |
7626749 | Baur et al. | Dec 2009 | B2 |
7657052 | Larson | Feb 2010 | B2 |
8508831 | De Wind et al. | Aug 2013 | B2 |
8730553 | De Wind et al. | May 2014 | B2 |
9346403 | Uken et al. | May 2016 | B2 |
9598016 | Blank et al. | Mar 2017 | B2 |
10967796 | Uken | Apr 2021 | B2 |
20050078389 | Kulas | Apr 2005 | A1 |
20060061008 | Kamer et al. | Mar 2006 | A1 |
20080310006 | Kelley | Dec 2008 | A1 |
20090097097 | Desmond | Apr 2009 | A1 |
20110096427 | Uken | Apr 2011 | A1 |
20110141543 | Uken | Jun 2011 | A1 |
20140313563 | Uken | Oct 2014 | A1 |
20150097955 | De Wind et al. | Apr 2015 | A1 |
20150334354 | Uken et al. | Nov 2015 | A1 |
20180056871 | Karner | Mar 2018 | A1 |
20190047475 | Uken et al. | Feb 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20210261056 A1 | Aug 2021 | US |
Number | Date | Country | |
---|---|---|---|
62980462 | Feb 2020 | US |