Interior rearview mirror system

Information

  • Patent Grant
  • 7815326
  • Patent Number
    7,815,326
  • Date Filed
    Friday, April 23, 2010
    14 years ago
  • Date Issued
    Tuesday, October 19, 2010
    13 years ago
Abstract
An interior rearview mirror system for a vehicle includes an interior rearview mirror assembly, a casing, a transflective reflective element, a compass sensor and a control. An information display disposed behind said reflective element whereby information displayed by the information display is viewable through the transflective reflector by a driver of a vehicle when the information display is displaying information. At least a portion of the control is disposed within the mirror casing and behind the reflective element, and another portion of the control is disposed at the mounting structure. The other portion of control may include a forward facing imaging array that is part of at least one of (a) a headlamp controller of the vehicle, (b) an object detection system of the vehicle, (c) a rain sensor of the vehicle and (d) a lane departure warning system of the vehicle.
Description
FIELD OF THE INVENTION

The present invention relates generally to interior rearview mirror assemblies for vehicles and, more particularly, to an interior rearview mirror assembly which includes a compass system.


BACKGROUND OF THE INVENTION

Interior rearview mirror assemblies which include a directional or compass display are known, such as the types disclosed in U.S. Pat. No. 5,802,727, which is hereby incorporated herein by reference. Typically, such mirror assemblies include a compass sensor, such as a magnetoresistive sensor, a magnetocapacitive sensor, a magnetoinductive sensor, a Hall effect sensor, or a flux gate sensor or the like, which is fixedly attached to the mirror mount that attaches the mirror assembly to a mirror assembly mounting element, such as a conventional mounting button mounted on an interior surface of the windshield of the vehicle. The mirror assemblies also include processing circuitry and a compass information display, typically included in the interior mirror casing (that includes the mirror reflector) which is pivotally adjustable by the driver to suit his or her rearward field of view.


Predominantly, compass mirror assemblies in the market today involve the fixed placement of the compass sensor (and any locally associated sensor circuitry), such as at the mirror mount where the mirror attaches to the windshield or headliner of the vehicle. The compass system typically involves a cable/harness connection to the processing circuitry (which is typically in the pivotable housing of the mirror assembly), which may include the compass compensation circuitry and the like, which feeds or connects to a display (such as a vacuum fluorescent (VF) display or the like) that is typically included in the adjustable mirror casing (such as behind the reflective element so as to display from behind and through the reflective element, or at an eyebrow or chin region of the bezel area of the mirror casing). The display then typically displays an output of the directional heading of the vehicle to the driver or passenger of the vehicle, such as an eight point display, such as N, S, E, W, NE, NW, SE, SW, or the like.


It has been proposed in the art to mount the compass sensor within the movable housing of the rearview mirror assembly. Processes have also been proposed to compensate for movement of the sensor during normal use of the mirror, such as when the mirror head or casing is adjusted by the driver. Such proposed systems, such as described in U.S. Pat. Nos. 6,140,933 and 6,023,229, which are hereby incorporated herein by reference, are often implemented with a specially adapted single ball mount or single pivot mirror assembly. Such compass mirror assemblies can be costly and often involve special tooling and complicated adaptation of the mirror assembly itself and the casing of the mirror assembly. Also, such compass systems as described in the patents referenced above are not readily adapted for use with double ball or double pivot mirror assemblies. Other compass systems and compass compensation systems, such as the types described in U.S. Pat. Nos. 4,581,827; 5,339,529; 5,455,716; 5,699,044; 5,737,226; and 5,808,197, and/or in PCT Publication No. WO 2004/076971 A2, published Sep. 10, 2004; and/or in PCT Publication No. WO 2003/044540 A2, published May 30, 2003; and/or in PCT Publication No. WO 2003/074969 A3, published Sep. 12, 2003 (which are all hereby incorporated herein by reference), may be implemented in interior rearview mirror assemblies, but may be costly and difficult to implement within the movable mirror head of an interior rearview mirror assembly with a single or double ball mounting arrangement.


Therefore, there is a need in the art for an interior rearview mirror assembly having a compass system associated therewith that overcomes the shortcomings of the prior art.


SUMMARY OF THE INVENTION

The present invention is intended to provide an interior rearview mirror system which includes a compass system having a display which indicates the general direction in which the vehicle is traveling.


According to an aspect of the present invention, a mirror and compass system includes an interior rearview mirror assembly having a reflective element and a casing that are adjustable relative to a mounting structure. A compass sensor having at least two magnetoresponsive sensing elements is positioned within the mirror casing and at a position and orientation that reduces the effect of adjustment of the mirror on the compass sensor output.


The compass sensor is preferably positioned at a generally central location of the mirror and at or near the centerline of the mirror head. Preferably, the compass sensor is positioned at or near a lower region of the mirror casing to position the sensor remotely from the roof of the vehicle and any wiring or lights or the like that may be positioned at the roof of the vehicle, in order to reduce the effect of such items on the compass sensor performance.


Preferably, the compass sensor is oriented such that one of the sensing elements is generally along a longitudinal axis of the vehicle and the other sensing element is generally along a cross car axis of the vehicle when the mirror is oriented at a typical in-use position (such as at an angle of about 20 degrees rotation toward the driver side and at an angle of about 9 degrees tilt downward). Optionally, the system may determine when a prismatic mirror is flipped or toggled between the daytime and nighttime orientations and may compensate or adjust the processing of the compass sensor output to compensate for the known movement (such as about 4½ degrees upward or downward) of the mirror head/reflective element and compass sensor.


Optionally, the compass sensor may be positioned in close proximity to the mirror ball of the mounting arm (the ball that is received in the socket at the mirror casing or reflective element or toggle portion of the mirror assembly) so as to reduce movement of the compass sensor when the mirror is adjusted, in order to reduce the effects of mirror adjustment on the compass sensor performance. Optionally, the compass sensor may be generally fixedly positioned relative to the mirror ball of the mounting arm so that the compass sensor is generally fixed and do not move during adjustments of the mirror head/reflective element when the driver gasps and moves the mirror head/reflective element to adjust to his or her preferred field of view rearward through the rear window of the vehicle.


Optionally, the mirror and compass system may operate to enter a rapid compensating and aggressive calibration mode in response to a detection of an abrupt movement of the mirror head and compass sensor. The system may determine when such an abrupt movement is indicative of a mirror adjustment (such as an adjustment between the daytime and nighttime orientations for a prismatic mirror or an adjustment of the mirror by a person who has just entered the vehicle or started the vehicle ignition), and then may enter the aggressive calibration mode in response to such a determination. The system thus may discern, such as algorithmically via software and/or aided via a movement/mechanical adjust detector/sensor element, between a change in sensor output that is indicative of a mirror adjustment and a change in sensor output that is indicative of a change in vehicle direction and may enter the aggressive calibration mode when the change in sensor output is indicative of a mirror adjustment. Such a mirror adjustment typically occurs rapidly (such as in less than one second) and has a predictable range and/or direction, so that the compass system can discern when a change in sensor output is indicative of a mirror adjustment versus a detection of a magnetic field anomaly or the like or versus a change in directional heading of the vehicle.


According to another aspect of the present invention, an interior rearview mirror system for a vehicle includes an interior rearview mirror assembly, a casing having a reflective element, a compass sensor and a control. The casing is adjustable relative to a mounting structure that mounts the interior rearview mirror assembly to an interior portion of the vehicle. The compass sensor has a first magnetoresponsive sensing element and a second magnetoresponsive sensing element. The compass sensor is disposed within the mirror casing. The control receives a first signal indicative of a magnetic field sensed by the first magnetoresponsive sensing element and receives a second signal indicative of a magnetic field sensed by the second magnetoresponsive sensing element. The control determines a directional heading of the vehicle based on the first and second signals. The control automatically compensates for a deviating magnetic field of the vehicle and generates a signal indicative of the directional heading of the vehicle. The control determines that the casing is adjusted by an occupant of the vehicle in response to a change in the first and second signals being indicative of an abrupt movement of the casing about the mounting structure by an occupant of the vehicle (such as when the driver or occupant of the vehicle adjusts the mirror reflective element to provide a desired reflector rearward field of view). The control is operable to enter a rapid compensating mode to compensate for the mirror adjustment in response to the control determining that the casing is adjusted by an occupant of the vehicle.


According to another aspect of the present invention, an interior rearview mirror system for a vehicle includes an interior rearview mirror assembly, a casing having a reflective element, a compass sensor and a control. The casing is adjustable relative to a mounting structure that mounts the interior rearview mirror assembly to an interior portion of the vehicle. The compass sensor has a first magnetoresponsive sensing element and a second magnetoresponsive sensing element. The compass sensor is disposed within the mirror casing. The control receives a first signal indicative of a magnetic field sensed by the first magnetoresponsive sensing element and a second signal indicative of a magnetic field sensed by the second magnetoresponsive sensing element. The control determines a directional heading of the vehicle based on the first and second signals and automatically compensates for a deviating magnetic field of the vehicle and generates a signal indicative of the directional heading of the vehicle. The control is operable to enter a rapid compensating mode in response to an ignition cycle of the vehicle. The control automatically exits the rapid compensating mode and enters a less aggressive calibration mode that distinguishes the Earth's magnetic field from magnetic anomalies and non-abrupt changes in the vehicle magnetic signature. The control automatically exits the rapid compensating mode after a predetermined period of time has elapsed since the ignition cycle.


Therefore, the present invention provides a mirror and compass system that positions the compass sensor within the movable head portion of the mirror assembly. The compass sensor is positioned in a manner that reduces the effects of mirror adjustment on the sensor performance. The system may adjust processing in response to known movements of the mirror head to compensate for such known movements. The system may enter an aggressive calibration mode to calibrate the compass sensor when the mirror has been adjusted by a user. The compass system may distinguish between the anomaly signature or pattern and the mirror adjustment signature or pattern and may enter the calibration mode when the mirror adjustment is detected.


These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a forward facing elevation of an interior rearview mirror assembly in accordance with the present invention, as facing forward with respect to a direction of travel of a vehicle;



FIG. 2 is a forward facing elevation of a interior rearview mirror assembly of the present invention;



FIG. 3 is a sectional view of the interior rearview mirror assembly taken along the line III-III in FIG. 2;



FIG. 4 is a top plan view of the interior rearview mirror assembly of the present invention;



FIG. 5 is a sectional view of the interior rearview mirror assembly of FIG. 4;



FIG. 6 is a sectional view of another interior rearview mirror assembly in accordance with the present invention; and



FIG. 7 is a sectional view of another interior rearview mirror assembly and mounting assembly in accordance with the present invention.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to the drawings and the illustrative embodiments depicted therein, a compassized prismatic interior rearview mirror assembly or system 10 includes a double pivot or double ball mounting arrangement 12 for pivotally or adjustably mounting a casing 14, bezel portion 15 and prismatic reflective element 16 of mirror assembly 10 relative to an interior portion of a vehicle, such as to an interior surface of a windshield 11 of a vehicle or the like (FIGS. 1-3). The mirror assembly 10 includes a compass system 18, which includes a magnetoresponsive compass sensor 20 and a display 22 for providing a display or indication of the directional heading of the vehicle, such as at the reflective element 16 of the mirror.


The mirror casing or housing 14 may comprise a polypropylene material or the like and is adjustably mounted to a mirror mount (not shown) positioned at an interior portion of a vehicle, such as a mirror mounting button on a windshield of the vehicle or any other mounting member at the windshield or at a headliner or overhead console of the vehicle or the like. The mirror housing may be adjustably mounted at the vehicle via connection to a single or double ball mounting arrangement, or via connection to any other mounting arrangement, without affecting the scope of the present invention. The mirror housing 14 may then pivot or actuate around one or more ball and socket joints or connections to be adjusted relative to the interior portion of the vehicle to a desired orientation by the driver of the vehicle.


As shown in FIGS. 1 and 3, the double ball or double pivot mirror mounting arrangement 12 includes a mounting arm 12a which is pivotally mounted at opposite ends to a mirror mount 12b (mounted at the windshield or headliner of the vehicle, such as at a mounting button at the interior surface of the vehicle) and a mirror casing mount 12c. Examples of double pivot or double ball mounting arrangements are described in commonly assigned U.S. Pat. Nos. 4,646,210 and 6,331,066, which are hereby incorporated herein by reference. Preferably, the mirror mounting components provide a breakaway type connection or mount, such as the types disclosed in U.S. Pat. Nos. 6,774,810; 6,642,851; 6,483,438; 6,366,213; 6,326,900; 6,222,460; 6,172,613; 6,087,953; 5,820,097; 5,377,949; and/or 5,330,149, which are hereby incorporated herein by reference. Optionally, the mirror assembly may incorporate a mounting arrangement of the types described in U.S. provisional applications Ser. No. 60/692,113, filed Jun. 20, 2005; Ser. No. 60/677,990, filed May 5, 2005; Ser. No. 60/653,787, filed Feb. 17, 2005; Ser. No. 60/642,227, filed Jan. 7, 2005; Ser. No. 60/638,250, filed Dec. 21, 2004; Ser. No. 60/624,091, filed Nov. 1, 2004, and Ser. No. 60/609,642, filed Sep. 14, 2004; and Ser. No. 60/729,430, filed Oct. 21, 2005 by Hook for MOUNTING ASSEMBLY FOR VEHICLE INTERIOR MIRROR; and/or PCT Application No. PCT/US04/015424, filed May 18, 2004 by Donnelly Corp. et al. for MIRROR ASSEMBLY FOR VEHICLE, and published on Dec. 2, 2004, as International Publication No. WO 2004/103772; and U.S. patent application Ser. No. 10/933,842, filed Sep. 3, 2004, now U.S. Pat. No. 7,249,860; and/or Ser. No. 11/226,628, filed Sep. 14, 2005 which are hereby incorporated by reference herein. Optionally, and as shown in FIGS. 3-5, the mounting arrangement may comprise a single ball mounting arrangement, without affecting the scope of the present invention.


In the illustrated embodiment, the reflective element 16 comprises a prismatic reflective element. The prismatic interior rearview mirror assembly may comprise any type of prismatic interior rearview mirror assembly, such as the types described in U.S. Pat. Nos. 6,318,870; 6,598,980; 5,327,288; 4,948,242; 4,826,289; 4,436,371; and 4,435,042; and PCT Application No. PCT/US2004/015424, filed May 18, 2004 by Donnelly Corporation et al. for MIRROR ASSEMBLY FOR VEHICLE, and published on Dec. 2, 2004, as International Publication No. WO 2004/103772; and U.S. patent application Ser. No. 10/933,842, filed Sep. 3, 2004 by Kulas et al. for INTERIOR REARVIEW MIRROR ASSEMBLY, now U.S. Pat. No. 7,249,860, which are hereby incorporated herein by reference. Optionally, the prismatic reflective element may comprise a conventional prismatic reflective element or prism or may comprise a prismatic reflective element of the types described in U.S. patent application Ser. No. 10/528,269, filed Mar. 17, 2005, now U.S. Pat. No. 7,274,501; Ser. No. 10/709,434, filed May 5, 2004 by Lynam for MIRROR REFLECTIVE ELEMENT, now U.S. Pat. No. 7,420,756; Ser. No. 10/933,842, filed Sep. 3, 2004 by Kulas et al. for INTERIOR REARVIEW MIRROR ASSEMBLY, now U.S. Pat. No. 7,249,860; Ser. No. 11/021,065, filed Dec. 23, 2004, now U.S. Pat. No. 7,255,451; and/or Ser. No. 10/993,302, filed Nov. 19, 2004 by Lynam for MIRROR REFLECTIVE ELEMENT FOR A VEHICLE, now U.S. Pat. No. 7,338,177; and/or PCT Application No. PCT/US03/29776, filed Sep. 19, 2003 by Donnelly Corp. et al. for MIRROR REFLECTIVE ELEMENT ASSEMBLY; and/or PCT Application No. PCT/US2004/015424, filed May 18, 2004 by Donnelly Corporation et al. for MIRROR ASSEMBLY FOR VEHICLE, and published on Dec. 2, 2004, as International Publication No. WO 2004/103772; and U.S. provisional application Ser. No. 60/525,952, filed Nov. 26, 2003 by Lynam for MIRROR REFLECTIVE ELEMENT FOR A VEHICLE, which are all hereby incorporated herein by reference, without affecting the scope of the present invention. A variety of mirror accessories and constructions are known in the art, such as those disclosed in U.S. Pat. Nos. 5,555,136; 5,582,383; 5,680,263; 5,984,482; 6,227,675; 6,229,319; and 6,315,421 (the entire disclosures of which are hereby incorporated by reference herein), that can benefit from the present invention.


The prismatic reflective element 16 may be formed from various materials such as plastic or glass, but preferably is glass, and preferably has a planar front surface 16a extending at an angle to a planar rear surface 16b (FIG. 3). Rear surface 16b is preferably coated with a reflective layer of metal such as chromium, aluminum or alloys thereof as is conventionally known in the industry. The mirror casing 14 is pivotable relative to mounting arm 12a and mirror mount 12b to pivot the reflective element 16 in order to reduce glare during nighttime conditions. When the mirror casing is pivoted (such as via adjustment or movement of a toggle tab or actuator 24) from a full reflectivity daytime position to a reduced reflectivity nighttime position, the reflective surface 16b is rotated or pivoted such that the uncoated front surface 16a of reflective element 16 is aligned for viewing by the vehicle driver instead of reflective surface 16b. Preferably, reflective surface 16b reflects at least about 60 percent to 95 percent of the light incident thereon, while the uncoated front surface 16a reflects about 4 percent of the light incident thereon, such that the reflective element significantly reduces glare from headlights or other bright lights rearward of the vehicle to the driver's eyes when pivoted to the nighttime position. Although shown and described as having a prismatic reflective element, it is envisioned that many aspects of the present invention may be equally suitable and applicable to electro-optic or electrochromic interior rearview mirror assemblies having electro-optic or electrochromic reflective elements, such as described below.


As shown in FIGS. 4 and 5, when installed in the vehicle and adjusted for viewing by a typical sized driver, the reflective element 16 is angled approximately 20 to 22 degrees toward the driver side (from a longitudinal axis 26 of the vehicle) and approximately 9 degrees downward (from a generally horizontal plane 28) toward the floor of the vehicle. This is the nominal or typical position of the reflective element when set to the daytime orientation. When the toggle 24 is flipped to set the reflective element to the nighttime orientation, the mirror head (including the reflective element and casing and circuit board and circuitry) is pivoted about 4½ degrees or thereabouts upward or downward. Typically, prism flip angles range from about 3½ degrees to about 5 degrees, and most typically are about 4¼ to about 4½ degrees.


The compass sensor 20 of compass system 18 functions to detect a directional heading of the vehicle relative to the Earth's magnetic field, as is known in the art. The compass system and sensor may utilize aspects of the compass systems described in U.S. patent application Ser. No. 10/352,691, filed Jan. 28, 2003 by Schierbeek et al. for VEHICLE COMPASS COMPENSATION, now U.S. Pat. No. 6,922,902; Ser. No. 10/933,842, filed Sep. 3, 2004 by Kulas et al. for INTERIOR REARVIEW MIRROR ASSEMBLY, now U.S. Pat. No. 7,249,860; and/or Ser. No. 10/456,599, filed Jun. 6, 2003 by Weller et al. for INTERIOR REARVIEW MIRROR SYSTEM WITH COMPASS, now U.S. Pat. No. 7,004,593, and/or U.S. Pat. Nos. 4,546,551; 5,699,044; 4,953,305; 5,576,687; 5,632,092; 5,677,851; 5,708,410; 5,737,226; 5,802,727; 5,878,370; 6,087,953; 6,173,508; 6,222,460; 6,513,252; and 6,642,851, and/or PCT Application No. PCT/US2004/015424, filed May 18, 2004 by Donnelly Corp. et al. for MIRROR ASSEMBLY FOR VEHICLE, and published on Dec. 2, 2004, as International Publication No. WO 2004/103772, and/or European patent application, published Oct. 11, 2000 under Publication No. EP 0 1043566, and/or Ser. No. 11/226,628, filed Sep. 14, 2005; U.S. provisional applications Ser. No. 60/624,091, filed Nov. 1, 2004 by Karner et al. for MOUNTING ASSEMBLY FOR MIRROR AND METHOD OF MAKING SAME; and/or Ser. No. 60/630,061, filed Nov. 22, 2004 by Lynam et al. for MIRROR ASSEMBLY WITH VIDEO DISPLAY, which are all hereby incorporated herein by reference. The compass circuitry may include the compass sensor, such as a magneto-responsive sensor, such as a magneto-resistive sensor, such as the types disclosed in U.S. Pat. Nos. 5,255,442; 5,632,092; 5,802,727; 6,173,501; 6,427,349; and 6,513,252 (which are hereby incorporated herein by reference), a magneto-capacitive sensor, a Hall-effect sensor, such as the types described in U.S. Pat. Nos. 6,278,271; 5,942,895 and 6,184,679 (which are hereby incorporated herein by reference), a magneto-inductive sensor, such as described in U.S. Pat. No. 5,878,370 (which is hereby incorporated herein by reference), a magneto-impedance sensor, such as the types described in PCT Publication No. WO 2004/076971 A2, published Sep. 10, 2004 (which is hereby incorporated herein by reference), or a flux-gate sensor or the like, and/or may comprise a compass chip, such as described in U.S. patent application Ser. No, 11/226,628, filed Sep. 14, 2005; and U.S. provisional applications Ser. No. 60/624,091, filed Nov. 1; 2004 by Karner et al. for MOUNTING ASSEMBLY FOR MIRROR AND METHOD OF MAKING SAME; and/or Ser. No. 60/630,061, filed Nov. 22, 2004 by Lynam et al. for MIRROR ASSEMBLY WITH VIDEO DISPLAY, which are hereby incorporated herein by reference.


The sensor circuitry and/or the circuitry in the mirror housing and associated with the compass sensor may include processing circuitry. For example, and as shown in FIGS. 1 and 2, compass system 18 may include a printed circuit board (PCB) 30, which may be mounted or positioned or bonded along the rear surface 16b of the reflective element 16. The printed circuit board 30 may include all of the processing circuitry and the compass sensor. The processing circuitry may include compensation methods, such as those described in U.S. Pat. Nos. 4,546,551; 5,699,044; 4,953,305; 5,255,442; 5,576,687; 5,632,092; 5,677,851; 5,708,410; 5,737,226; 5,802,727; 5,878,370; 6,087,953; 6,173,508; 6,222,460; 6,513,252; and 6,642,851, and U.S. patent application Ser. No. 10/352,691, filed Jan. 28, 2003 by Schierbeek et al. for VEHICLE COMPASS COMPENSATION, now U.S. Pat. No. 6,922,902; and Ser. No. 10/456,599, filed Jun. 6, 2003 by Weller et al. for INTERIOR REARVIEW MIRROR SYSTEM WITH COMPASS, now U.S. Pat. No. 7,004,593, and European patent application, published Oct. 11, 2000 under Publication No. EP 0 1043566, which are all hereby incorporated herein by reference. The compass sensor may be incorporated in or associated with a compass system and/or display system for displaying a directional heading of the vehicle to the driver, such as a compass system of the types described in U.S. Pat. Nos. 5,924,212; 4,862,594; 4,937,945; 5,131,154; 5,255,442; and/or 5,632,092, and/or U.S. patent application Ser. No. 10/456,599, filed Jun. 6, 2003 by Weller et al. for INTERIOR REARVIEW MIRROR SYSTEM WITH COMPASS, now U.S. Pat. No. 7,004,593, and/or Ser. No. 11/284,543, filed Nov. 22, 2005 by DeWind et al, for INTERIOR MIRROR ASSEMBLY WITH DISPLAY, now U.S. Pat. No. 7,370,983, and/or PCT Application No. PCT/US2004/015424, filed May 18, 2004 by Donnelly Corp. et al. for MIRROR ASSEMBLY FOR VEHICLE, and published on Dec. 2, 2004, as International Publication No. WO 2004/103772, and/or U.S. provisional applications Ser. No. 60/630,061, filed Nov. 22, 2004 by Lynam et al. for MIRROR ASSEMBLY WITH VIDEO DISPLAY; and/or Ser. No. 60/667,048, filed Mar. 31, 2005, which are all hereby incorporated herein by reference.


When an interior rearview mirror that includes a compass system (such as a known compass system) is first installed in a vehicle at a vehicle assembly plant (such as when the mirror assembly (including the compass sensor and circuitry) is attached to a mounting button at a vehicle windshield or other mounting portion at an interior portion of the vehicle) and first powered, known compass systems, which typically have the compass sensor fixedly mounted at the mirror foot or base or mount, include an initial calibration mode intended to allow the vehicle to be delivered from the assembly plant to an automobile dealership with the compass appropriately calibrated. Taking, for example, such a known interior mirror compass system currently supplied by the assignee to automakers, the compass system enters an aggressive calibration mode or rapid calibration/compensating mode (such as the Cal-1 mode as described in U.S. Pat. No. 6,513,252, and U.S. patent application Ser. No. 10/352,691, filed Jan. 28, 2003 by Schierbeek et al. for VEHICLE COMPASS COMPENSATION, now U.S. Pat. No. 6,922,902, which are hereby incorporated herein by reference) to calibrate the compass as the vehicle on the assembly line weaves and turns on the assembly conveyor line and as the vehicle is driven through the assembly plant and through the staging or storage lot and onto a truck for shipping to a dealer. In so doing, the assignee's compass system determines three cardinal points (other competitive compass systems require detection of all four cardinal (N, W, S, E) points) and then deduces the true directional heading of the vehicle, compensating for the magnetic deviation inherent in the vehicle. After the vehicle is shipped to a dealer and purchased, the compass system is calibrated and the correct heading is shown on the compass display typically provided at the mirror reflector or at the mirror bezel. After this initial Cal-1 or aggressive calibration has been completed, calibration and/or compensation for stray magnetic fields and other magnetic anomalies, such as typically encountered exterior the vehicle during driving (and from the likes of metal bridges, subway lines, cellular telephone towers, large metal structures and the like), are compensated for via other less aggressive calibration/compensation modes. Thus, for example, and referring to U.S. Pat. No. 6,513,252 and U.S. patent application Ser. No. 10/352,691, filed Jan. 28, 2003 by Schierbeek et al. for VEHICLE COMPASS COMPENSATION, now U.S. Pat. No. 6,922,902, and/or Ser. No. 10/456,599, filed Jun. 6, 2003 by Weller et al. for INTERIOR REARVIEW MIRROR SYSTEM WITH COMPASS, now U.S. Pat. No. 7,004,593, which are hereby incorporated herein by reference, the compass system may initially operate in the aggressive Cal-1 calibration mode, and then may later function in a less aggressive calibration/compensation mode, such as Cal-2 or Cal-3 calibration modes.


Using the compass system of the present invention, as the vehicle is typically driven on highways (and with the compass system of the present invention in its normal operating mode or non-calibration mode), the compass system is exposed to and may be affected by the various magnetic anomalies, such as from bridges, cell towers, and/or the like referenced above. Such magnetic anomalies, however, have a particular, and often predictable, anomaly signature and/or pattern. The magnetic anomalies may impact the compass system performance and may lead to temporary inaccurate compass readings and/or an erroneous compensation of the compass system, and thus lead to display of erroneous/inaccurate compass display headings.


The compass system of the present invention includes an algorithm expressed in software processed by a microprocessor that includes a mirror adjust detection routine. This mirror adjust detection routine takes advantage of the fact that magnetic anomalies/stray magnetic fields, which emanate from structures typically external to the vehicle as it passes by such structures and objects along a road or highway, are typically temporary and relatively short lived because of the speed of passage of the vehicle. The mirror adjust detection routine further takes account of the fact that mirror adjustments by a driver of a vehicle are relatively predictable events that occur abruptly and that remain adjusted typically for the duration of that particular journey. Thus, the mirror adjust detection routine of the present invention algorithmically reduces or prevents or suppresses confusion of a mirror adjust event from other stray magnetic field/magnetic anomaly effects that are external to the vehicle. For example, the compass system of the present invention (via software operated by a microprocessor of the control of the compass system) may distinguish and/or learn the pattern and signature of such stray magnetic fields/magnetic anomalies and may ignore such and/or avoid entering particular calibration mode or modes or portions of modes when such anomalies are detected and recognized/distinguished by the compass system.


Optionally, the compass sensing device or sensor 20 may comprise a two-axis sensor (comprising two magneto-responsive sensing elements disposed at a fixed angle relative to each other, such as orthogonally to each other, and disposed on a platform or circuit board or substrate 32 so that they are positioned generally parallel to the floor plane of the vehicle so as to be sensitive to the horizontal component of the Earth's magnetic field), or the sensor may comprise a three-axis sensor (comprising two magneto-responsive sensing elements disposed orthogonally to each other and disposed in the mirror casing cavity, and a third magneto-responsive sensing element, sometimes referred to as a z-axis sensing element, at a right angle (approximately ninety degrees) to the two sensing elements and disposed in the cavity, so that the three-axis sensor is sensitive to the horizontal component and to the vertical component of the Earth's magnetic field), without affecting the scope of the present invention. The third axis sensing element is an optional and not necessary addition to the sensor of the compass system of the present invention. However, the z-axis sensing element may be helpful in detecting and distinguishing magnetic anomalies exterior to the vehicle (as discussed above), but is not needed for the primary compass direction determination and/or the detection of a tilt or rotation of the mirror. The compass sensor may be arranged at a desired angle to provide enhanced sensing in the horizontal directions when the mirror assembly is installed in the vehicle, as discussed below.


In the illustrated embodiment of FIGS. 4 and 5, the compass sensor 20 includes a pair of sensing elements 20a, 20b positioned generally orthogonal to one another. The pair of generally orthogonal sensing elements are preferably oriented relative to the vehicle such that one of the sensing elements (20a) is generally parallel to the floor of the vehicle and pointing generally forwardly in the direction of travel of the vehicle, while the other sensing element (20b) is generally orthogonal or perpendicular to the first sensing element and preferably also generally parallel to the floor of the vehicle. The compass sensor provides an output signal to compass processing circuitry, which is operable to process the output signal to determine the vehicle heading and to actuate or control or adjust an output of the display in response to the output signal.


Optionally, and desirably, the compass sensor may be positioned at a compass sensor board or substrate 32 that may extend generally horizontally from the printed circuit board 30 at the rear of the reflective element 16. The compass sensor 20 may comprise a pair of generally orthogonal sensing elements and thus may provide a two axis sensing ability and function to provide direction sensing throughout the range of mirror adjustment with reduced or minimal impact on the accuracy of the directional sensing during such adjustment. The impact may be further reduced by various mounting arrangements or configurations and algorithms and the like, as discussed below.


As shown in FIGS. 2 and 4, the compass sensor is desirably positioned generally centrally from side to side within the mirror assembly, such as along a centerline of the mirror assembly or along the longitudinal axis 26, in order to reduce or minimize the affects or angular impact of the mirror adjustments on the compass sensor output. The compass sensor is also desirably positioned at or near a lower region of the circuit board and mirror assembly, so as to be positioned further from the upper sheet metal or roof of the vehicle and further from the overhead wiring or lighting, or other devices or systems that may provide dynamic magnetic disturbances, for enhanced performance of the compass sensor.


One of the sensing elements 20a of the compass sensor 20 is preferably oriented generally along or parallel to the longitudinal axis 26 of the vehicle and the other sensing element 20b is preferably oriented along or generally parallel to a lateral or cross-car axis 34 of the vehicle (in a side to side orientation and generally parallel to the vehicle floor), with the sensing elements being generally normal or at a right angle to one another. Optionally, and as shown in FIG. 4, the compass sensing elements 20a, 20b may be oriented relative to the mirror reflective element so that the sensing element 20a is generally parallel to the longitudinal axis 26 of the vehicle, while the other sensing element 20b is generally parallel to the lateral or cross-car axis 34 of the vehicle when the reflective element is angled or oriented at the typical viewing position. The orthogonally oriented compass sensing elements 20a, 20b are thus positioned at their optimal angle for the typical setting or position or orientation of the mirror assembly during typical use of the mirror assembly in the vehicle.


For example, and as shown in FIGS. 4 and 5, the reflective element is typically rotatably angled horizontally and sidewardly toward the driver at an angle A, which is typically about 20 degrees (for a typical driver) relative to the cross car axis, and the reflective element is typically tiltably angled vertically and downwardly at an angle B, which is typically about 9 degrees (for a typical driver) relative to a vertical plane 36. Because the mirror casing and reflective element may be pivoted to be angled generally toward the head of the driver of the vehicle, such as, for example, rotatably angled approximately 17-25 degrees toward the driver side of the vehicle and tiltably angled approximately 6 to 12 degrees downward, the compassized interior rearview mirror assembly of the present invention thus may be adapted to mount the compass sensor on a physical mount or tilt/rotation offset element at the printed circuit board which compensates for or approximates and effectively cancels the approximate angle of the mirror casing so as to orient the compass sensor generally in the desired orientation, even when the mirror casing and reflective element are angled toward the driver of the vehicle (such as described in U.S. patent application Ser. No. 10/456,599, filed Jun. 6, 2003 by Weller et al. for INTERIOR REARVIEW MIRROR SYSTEM WITH COMPASS, now U.S. Pat. No. 7,004,593, which is hereby incorporated herein by reference).


For example, a printed circuit board or equivalent may be positioned at and attached to the rear surface of the reflective element (the surface within the casing of the mirror assembly and facing away from the driver of the vehicle when the mirror assembly is installed in the vehicle), such as via adhesive or an attachment or backing plate or the like. The circuit board may comprise a generally flat, rectangular element or substrate with conductive traces and circuitry disposed thereon. When the mirror head and reflective element are arranged so that the reflective surface (the flat rear surface) of the reflective element is generally vertical, the circuit board is also generally vertically oriented. Where a compass sensor chip (which may include a pair of orthogonally oriented sensing elements arranged in a common plane) is disposed on and along the substrate or circuit board (PCB), the chip itself (and hence the sensing elements disposed therein) may be placed on the PCB in any orientation chosen by the PCB manufacturer. Thus, the compass sensor chip may be oriented such that the principal axis of one sensor is generally horizontal and toward a side of the vehicle, while the principal axis of the other sensor may be generally vertically oriented when the PCB is attached to a reflective element and the reflective element is generally vertically oriented. Thus, the actual placement of the compass chip itself thus may largely or substantially take care of or account for the rotational orientation of the mirror head.


Because it is desired to provide sensing in the x-y directions (or in a horizontal plane), the compass sensor is preferably disposed on a compass sensor mount or board that extends at an angle from the circuit board and/or rear surface of the reflective element so that the compass sensor elements are generally horizontal when the mirror assembly is installed in the vehicle at its nominal (such as about 20 degree sideward and 9 degree downward) orientation. Preferably, the compass sensor mount is mounted to the circuit board such that the compass sensor mount is oriented at about a 9 degree downward angle from being perpendicular or normal to the circuit board, such that the compass sensor mount or chip is substantially horizontal relative to the floor of the vehicle and thus the ground when the mirror head and reflective element are oriented at the typical or nominal orientation with about a 9 degree downward tilt toward the typical driver's head location. Likewise, the compass sensor is preferably mounted to the compass sensor mount at an angle so that the principal axes of the compass sensing elements are at a desired respective angle relative to the reflective element. For example, a first one of the sensing elements may be at an angle of about 20 degrees toward the driver side of the mirror assembly relative to the longitudinal axis of the vehicle, while a second sensing element may be generally orthogonal to the first sensing element and along the plane of the compass sensor mount. Thus, when the mirror head and reflective element are oriented at the typical or nominal orientation with about a 9 degree downward tilt and about a 20 degree sideward rotation toward the typical driver's head location, the sensing elements are oriented along a generally horizontal plane and are oriented such that the principal axis of the first sensing element is in the direction of travel of the vehicle, while the principal axis of the second sensing element is normal to the first principal axis and directed toward the side of the vehicle. The compass sensor mount may be mounted to the printed circuit board and/or the reflective element via a generally wedge-shaped mounting element or offset element (or via other mounting means) or the compass sensor itself may be attached to or mounted to the printed circuit board at the desired angle, such as via other mounting attachment means, to provide the desired orientation of the compass sensor relative to the reflective element. It is further envisioned that the tilt/rotation offset element may be otherwise formed (or the compass sensor may be otherwise mounted to the circuit board) to provide other offset angles depending on the particular application of the mirror assembly and the nominal orientation of the reflective element that directs the reflective element generally toward the location of a typical driver to provide the typical driver with the appropriate or desired field of view rearward and through the rear window of the vehicle.


Thus, by using the tilt/rotation offset element of the present invention, typically a plastic molding that, for example, attaches to the rear of the reflective element, an angled shelf or ledge is created upon which rests the compass sensor itself and/or its printed circuit board (PCB). Thus, when the interior rearview mirror assembly is installed in a vehicle, such as at the assembly plant (and adjusted at a generally nominal position for viewing by a driver, such that the algorithm can take over and generally or substantially calibrate the compass system as the vehicle is moved through the vehicle assembly plant), and/or is used by the average or typical driver, the tilt/rotation offset element compensates for the nominal 20 degree sideward rotation/9 degree downward tilt, such that the magneto-responsive sensing elements are oriented in the vehicle in which the mirror assembly is mounted with the principal axis of a first one of the magnetoresponsive sensing elements pointing directly forward through the windshield in the direction of travel of the vehicle, and with the principal axis of a second magnetoresponsive sensing element at 90 degrees relative thereto and pointed sidewardly toward a side of the vehicle, and with both the first and second principal axes/magnetoresponsive sensing elements lying in the same plane, and with that plane being generally horizontal with the floor of the vehicle and thus with the road being traveled. Thus, the tilt/rotation offset element and/or the physical tilt and rotation offset means (that may be tied to or separate from the offset element and/or sensor mount) of the present invention physically ensures that the compass sensor has at least two magnetoresponsive sensing elements oriented generally horizontal to the ground (with one facing forward of the vehicle and one facing orthogonally sideward). Thus, at the nominal (about 20 degree sideward/9 degree downward) mirror orientation or setting, the compass sensor is oriented in a known orientation relative to the Earth's horizontal magnetic field. The mirror adjust detection algorithm or routine of the present invention may reference against this as a base or reference orientation from which minor/sensor adjustment is estimated and/or accommodated/compensated against.


Optionally, in order to reduce the affect of mirror adjustment on the compass sensor, the compass sensor may be mounted or positioned in close proximity to the mirror ball (the ball (referred to at 13a in FIG. 5) that is pivotally received at the mirror casing or toggle element of the mirror assembly). Optionally, the compass sensor may be fixedly positioned relative to the mirror ball (or may be mounted at the end of the mounting arm and mirror ball) so that there is reduced or little or no movement of the compass sensor during minor adjustments of the reflective element, such as when the reflective element is toggled or flipped between the daytime and nighttime orientations. For example, and as shown in FIG. 6, the compass sensor may be disposed on a circuit board or platform 32′ that is attached to a portion of the mirror ball 13a′ of the mounting arm 13′, such as at a lower portion of the ball (to position the sensors remote from the roof of the vehicle). An electrical connector or wire or lead 38 may connect the compass sensor to the circuitry and display elements at the circuit board 30′ at the reflective element 16. As shown in FIG. 5, the mounting arm 13′ is part of a single ball mounting arrangement, but may be a mounting arm of a double ball mounting arrangement, such as the type shown in FIGS. 1 and 3, without affecting the scope of the present invention.


Optionally, and as described in U.S. patent application Ser. No. 10/456,599, filed Jun. 6, 2003 by Weller et al. for INTERIOR REARVIEW MIRROR SYSTEM WITH COMPASS, now U.S. Pat. No. 7,004,593, which is hereby incorporated herein by reference, the printed circuit board 30 may be mounted at a physical mount at the reflective element to accommodate the approximate angle of the mirror casing. The physical mount may be a wedge shaped mounting element or bracket or any other means for orienting the compass sensor relative to the reflective element to accommodate for the typical angle of tilt of the mirror head toward a driver of a vehicle. The typical angle or tilt of the mirror head or casing may be calculated or otherwise determined or approximated and the physical mount may then be formed to compensate or cancel the typical angle of the mirror. The desired mounting orientation may vary depending on the particular vehicle in which the compassized mirror assembly is being installed, since the mirror assembly may be mounted at different heights along the windshield or at the headliner of different vehicle models. In lieu of a physical orientation as described above, software compensation, as known in the art, can be used to negate or cancel out the above effects.


Optionally, in applications where illumination sources or lights or any other electrically conducting/powered electrical accessory or the like may be sufficiently close to the compass sensor such that operation of the lights may impact the compass performance (due to the magnetic field generated by the current going through the lights), the lights may be controlled or modulated via a pulse width modulation (PWM) control, so that the lights are modulated between “on” and “off” settings by the PWM control. The PWM control may be optimized to minimize emissions and to maintain vehicle lighting requirements. The compass algorithm or control or microprocessor may monitor the PWM control and may enter a different operation mode when the lights are being PWM controlled. For example, the compass control may optimize the hardware for through put and may synchronize the light's PWM “off” time with the data collection by the compass sensors, in order to reduce or minimize the impact of the field generated by the current passing through the wires when the lights are on or energized. Preferably, the lighting requirements may be maintained while allowing sufficient time for the compass system signals to settle after the PWM signal for the light is shut down or off. The preferred or desirable settings may be selected based on a compromise between the emission of the illumination source or sources and the ability to successfully read the compass sensor signals or output at the desired accuracy.


As described above, adjustment of the mirror housing (that includes the mirror reflective element) about its pivot connection to its support (typically a double-ball support arm as described above, although a single-ball support arm can also be used, without affecting the scope of the present invention) to the windshield (or to a header region at the joint of the windshield and the roof of the interior cabin of the vehicle) can cause the compass direction sensing sensor attached to the rear of the mirror reflective element to also move. Thus, the compass control circuitry may detect a change in sensed compass directional signal (for example, about 3 degrees to about 8 degrees or thereabouts) when the mirror is adjusted by a driver of the vehicle. Should the vehicle be heading in a direction that is close to half-way between one octant or another in an eight-octant resolving compass display system, this adjustment by the driver of the mirror housing to set the rearward field of view of the mirror reflective element to suit that driver's needs/preference (typically occurring when the driver starts the journey) may cause the heading displayed to the driver to change from, for example, NW to N, because the adjustment by the driver of the mirror housing has changed the orientation/alignment of the magnetic field detecting elements of the compass sensor (for example, a magnetoresistive sensor or Hall effect sensor) relative to the Earth's magnetic field. Modern automatic automotive compass control systems, such as those described in U.S. Pat. Nos. 4,546,551; 5,699,044; 4,953,305; 5,576,687; 5,632,092; 5,677,851; 5,708,410; 5,737,226; 5,802,727; 5,878,370; 6,087,953; 6,173,508; 6,222,460; and 6,513,252, U.S. patent application Ser. No. 10/352,691, filed Jan. 28, 2003 by Schierbeek et al, for VEHICLE COMPASS COMPENSATION, now U.S. Pat. No. 6,922,902, and European patent application, published Oct. 11, 2000 under Publication No. EP 0 1043566, which are all hereby incorporated herein by reference, comprise processing circuitry that includes compensation methods that correct for such changes in sensed compass heading. Thus, and as indicated in U.S. Pat. No. 6,642,851, which is hereby incorporated herein by reference, such known compensation methods can be used to recalibrate the compass mirror system of the present invention after adjustment of the mirror housing by the driver.


Techniques and methods for compensating for such adjustments, such as suggested in U.S. Pat. No. 6,418,376 (the entire disclosure of which is hereby incorporated herein by reference), may be used in conjunction with the present invention. Such methods use a position sensor (such as a tilt sensor) that determines displacement of the mirror housing with respect to a generally horizontal plane. For example, the compass system of the present invention may incorporate a tilt sensor or position sensor or rotation sensor or sensing means or element (such as a tilt sensor, a clinometer or a protractor or the like) that is operable to detect the position or orientation or movement of the mirror and compass sensors relative to a generally horizontal plane and/or a generally vertical plane. For example, the compass system may incorporate an electronic tilt sensor or clinometer, such as the types commercially available from various sources, such as, for example, from Schaevitz® Sensors of Hampton, Va., such as an AccuStar® electronic clinometer or the like, and which may have a have a resolution of about 0.001 degrees and a range of about 60 degrees or thereabouts, and that may provide a analog, ratiometric, digital pulse width, or serial output. Optionally, for example, the compass system may incorporate an electrolytic tilt sensor, which includes electrically conductive fluid that remains substantially level as the sensor body is tilted, whereby the conductivity between a pair of electrodes within the sensor body is proportional to the length or amount of the electrode immersed in the conductive fluid, such that the degree of tilt may be determined. Such electrolytic tilt sensors are commercially available from various sources and may provide accurate pitch and roll measurements and enhanced repeatability, stability, and accuracy when operating at low frequencies. For example, a dual-axis, or 5-pin, sensor may be packaged in a cylindrical vial that stands between about ½ inch to about 1 inch high, and that provides an operating range of tilt from about ±10 degrees to about ±75 degrees. Optionally, the compass system may incorporate an AMR (anisotropic magnetoresistive) magnetic field sensor or the like, which may provide a tilt detection/determination. Other tilt sensors, clinometers, protractors, electrolytic sensors and/or the like may be implemented with the compass system, without affecting the scope of the present invention.


Optionally, the mirror ball and/or mirror socket may include a transducer/sensor that may determine the orientation of the mirror ball relative to the mirror socket. As the ball rotates in the socket (such as due to adjustment of the mirror head/reflective element by the driver), the orientation of the ball relative to the socket is detected and transmitted or communicated to the control/microprocessor of the compass system. The compass system may then determine the angular adjustment and may adjust the sensor processing and/or compensate for the angular change in response to the detected angular change in the position/orientation of the mirror head relative to the ball of the mounting arm.


The control or circuitry or microprocessor may adjust the degree of compensation of the compass sensor output in response to the output or outputs of the position sensor/sensors. Optionally, other techniques, such as the techniques and methods described in U.S. Pat. Nos. 6,140,933 and 6,023,229, which are hereby incorporated herein by reference, may also or otherwise be implemented.


Optionally, a magnetic field emitter or radiator or generator may be placed in a known fixed location within the vehicle interior cabin (for example, the magnetic field emitter may be placed as part of the mirror foot or mount or base that fixedly attaches to the mirror mounting button or may be otherwise fixedly positioned relative to the vehicle). The magnetic field emitter may optionally be operated to emit a magnetic field in a pulsed and/or coded magnetic field signature. The magnetic field signature/signal emitted by the fixed magnetic field emitter or source will be picked up by the x-y orthogonally oriented magnetoresponsive sensing elements of the compass sensor (that are positioned within the movable mirror head and that move with the mirror head as it is pivoted about its single or double ball joint support), and thus that move relative to the fixed magnetic field emitter. Because the physical location of the fixed magnetic field emitter is known, the emitter can function as a homing beacon for the movable head/sensing elements, and thus a triangulation algorithm or the like can be used to determine the particular orientation of the sensing elements and any deviation from a known orientation. The compass sensor thus may detect the emitted magnetic field (such as when the emitter is pulsed) and the control or circuitry or microprocessor may process the compass sensor output (such as the output signal that corresponds to when the emitter is pulsed) to discern or distinguish the pulsed magnetic field or signature magnetic field as emitted by the fixed magnetic field emitter to determine the orientation of the mirror head and compass sensor relative to the fixed magnetic field emitter, and thus to determine the degree of adjustment of the mirror head or reflective element relative to the mounting base or known initial orientation or the like. The control may then adjust or alter the directional heading signal and/or the display output in response to the detection of a change in orientation or position of the mirror head relative to the fixed reference point.


Optionally, an algorithmic technique may be implemented whereby, when an abrupt change in detected heading is detected that is characteristic of an adjustment of the mirror housing by the driver of the vehicle, the automatic compass circuitry changes its calibration status from its ongoing state (that compensates for such heading changes over a prolonged period, and one that typically may span an ignition cycle of the vehicle or several vehicle ignition cycles) to a more aggressive, faster calibration stage (such as a Cal-1 or Cal-2 calibration mode as described in U.S. Pat. No. 6,513,252 and U.S. patent application Ser. No. 10/352,691, filed Jan. 28, 2003 by Schierbeek et al. for VEHICLE COMPASS COMPENSATION, now U.S. Pat. No. 6,922,902, which are hereby incorporated herein by reference) that more rapidly, and preferably within that same ignition cycle, recalibrates the compass system and so compensates for the driver's adjustment of the mirror housing/casing and for the concomitant movement of the compass sensor housed therein.


Thus, for example, when a change in compass heading is detected that is indicative of and characteristic of an adjustment of the mirror housing by the driver, such as to adjust the mirror to provide a desired rearward field of view (such adjustment causes an abnormal change of the compass output that is different, such as by magnitude and/or rate of change, than what would occur during normal driving), then the calibration changes to a faster or rapid or more aggressive compensation/calibration algorithm/method. Such mirror adjustments are typically within the range of plus or minus about 2 to 4 degrees upward or downward from the nominal downward angle (of about 9 degrees downward) of the mirror head/reflective element, and plus or minus about 3 to 5 degrees to either side from the nominal sideward angle (of about 20 degrees toward the driver side) of the mirror head/reflective element. Such mirror adjustments, which typically occur rapidly, such as within less than about one to two seconds or thereabouts, create their own known and predictable signature or pattern and thus may be detected and discerned by the compass system. Thus, and referring to U.S. Pat. No. 6,513,252 and U.S. patent application Ser. No. 10/352,691, filed Jan. 28, 2003 by Schierbeek et al. for VEHICLE COMPASS COMPENSATION, now U.S. Pat. No. 6,922,902, and/or Ser. No. 10/456,599, filed Jun. 6, 2003 by Weller et al. for INTERIOR REARVIEW MIRROR SYSTEM WITH COMPASS, now U.S. Pat. No. 7,004,593, which are hereby incorporated herein by reference, upon detection of a change in compass heading that is indicative of and characteristic of an adjustment of the mirror housing by the driver, the calibration of the compass system would reinitiate back from Cal-3 (or Cal-2) to the beginning of Cal-1. Note that a mechanical element such as a mechanical movement detector can be used to detect adjustment by the driver of the mirror housing, and the recalibration can be initiated in response to a signal output of such a mechanical element.


Desirably, if a mirror adjustment is detected that is beyond the normal range or zone of adjustment of the mirror (such as may occur if the passenger angles the mirror toward the passenger side to borrow the mirror or the mirror is otherwise rotated away from the driver, or such as may occur if the mirror is inadvertently hit or moved to a severely adjusted condition such that no reasonable driver would reasonably view rearwardly through the rear window with the mirror so adjusted), the compass system may detect and discern such egregious or non-normal movement/adjustment and may suspend the calibration activities because such movement/adjustment is an abnormal and typically temporary condition. The compass system may return to its normal and/or calibration mode of operation when the mirror head/reflective element is returned to within the normal range of angular adjustment/position/orientation, such as within a predetermined degree upward/downward and sideward of the nominal position/orientation.


For example, the compass compensation or calibration process may provide for initialization of a rapid or aggressive calibration stage in response to movement of the mirror housing by the driver grasping and moving the mirror head/reflective element to adjust to his or her preferred field of view rearward through the rear window of the vehicle. The compass circuitry may be operable to detect and discern or distinguish a change in the sensed heading which is characteristic of an adjustment of the mirror housing by a driver of the vehicle. The compass circuitry then may respond by reinitializing the compass calibration to the rapid or aggressive calibration stage or mode. The compass circuitry then may compensate for the movement of the compass sensor caused by the adjustment of the mirror housing via a microprocessor-based algorithm/software. After completion of the rapid calibration stage, such as after the compass sensor is re-calibrated or after a predetermined amount of time following the onset of the rapid or aggressive calibration stage, the compass circuitry may return to its normal operation.


Optionally, the compass circuitry/software can set or return to the beginning of the aggressive calibration stage (such as to the beginning of Cal-1 as described above) each time the mirror compass circuitry is initially powered, such as by a fresh ignition cycle of the vehicle. Thus, for example, should a driver or occupant of the vehicle adjust the interior rearview mirror orientation during the immediately previous ignition cycle, and thus potentially disturb the established proper compass calibration, then an aggressive and rapid recalibration may automatically occur at the start of the following or next ignition cycle (and thus any potential calibration misalignment may only be temporarily experienced by the driver). Optionally, such an aggressive recalibration may occur in response to actuation of a key fob or remote keyless entry device or remote starter device or the like.


Optionally, the degree of aggression of the rapid calibration stage may be effected by the time elapsed between the ignition activation (or actuation of the key fob or remote keyless entry device or the like) and the perceived or detected adjustment of the mirror. For example, if the circuitry detects an abrupt adjustment of the sensor orientation within a threshold time after the ignition is activated, then the control may determine that the change in orientation is due to a mirror adjustment (such as may occur when the driver first enters the vehicle and before or soon after shifting into drive or reverse) and thus may enter the rapid and aggressive calibration mode. Optionally, the microprocessor or control may include a first start protocol that causes the compass system to enter the aggressive calibration mode in response to the first ever startup of the vehicle ignition, such as typically occurs at the vehicle assembly plant.


Optionally, the compass system may acquire directional heading data at the activation of the ignition (or activation of a key fob or the like) and, if an adjustment of the mirror head is detected soon after such activation, the compass system may acquire heading data with the sensors at the new orientation. Because the initial heading data sampled after the ignition cycle may be correct data or may be indicative of the vehicle heading, the compass system may compensate or adjust the new data to account for the change in orientation of the compass sensor from the initial and adjusted position. The compass system thus may algorithmically adjust the compass heading or sensor processing to account for the perceived movement or adjustment of the mirror head without entering the aggressive calibration mode.


Optionally, the degree of aggression or entry into the rapid aggressive calibration mode may be affected by the speed of the vehicle when the change in orientation of the compass sensors is detected. For example, if an abrupt change in the orientation of the sensors is detected when the vehicle is stopped or moving at or below a threshold speed (such as at or below about 10 mph or thereabouts), the control may determine that the abrupt change may be due to an adjustment of the mirror head or reflective element, and thus may enter the rapid and aggressive calibration mode. Alternately, if the vehicle speed is detected (such as via a wheel speed sensor or the like) to be above a threshold speed (such as at or above about 60 mph or thereabouts), any change in the sensed direction may be determined to be a change in vehicle direction, since it is not likely that a driver would typically adjust the mirror position while driving at highway speeds.


Thus, when a mirror adjustment is detected that is within the expected range and/or time so as to be indicative of an adjustment of the mirror head/reflective element by the driver of the vehicle to adjust his or her field of view rearward through the rear window of the vehicle, the compass system of the present invention may enter the aggressive calibration mode and begin looking for cardinal directional headings (such as North, South, East or West), such as three or more of the cardinal directional points. The compass system may distinguish between deviations or signatures or patterns that are indicative of anomalies and signatures or patterns that are indicative of normal mirror adjustments by the driver and may enter the calibration mode when a mirror adjustment is detected.


The compass system may remain in the aggressive calibration mode for an aggressive calibration period. The aggressive calibration period may continue until, for example, the three cardinal points or more or less are detected so that the compass system is again considered recalibrated. Optionally, and desirably, the aggressive calibration period may terminate even if the compass system has not yet sensed three or more cardinal points, such as after a predetermined or threshold period of time has elapsed since detection of the adjustment, or after the ignition cycle is terminated or the ignition is turned off, and before detection of the third cardinal point, so that the compass system does not remain in the aggressive calibration mode for an excessive period of time. Because it is possible that the compass system may pick up an anomaly during the aggressive calibration mode (such as, for example, if the compass system detects the true North and West cardinal points, but detects an anomaly and erroneously considers the anomaly to be the East cardinal point), and thus may use the false signal and result in a premature exit of the calibration mode and an erroneous directional heading indication, it is desirable that the compass system return to the aggressive calibration mode at the onset of each ignition cycle, and/or the next ignition cycle following the detection of the mirror adjustment and aggressive calibration mode. Desirably, the compass system may initiate the aggressive calibration mode at the onset of each ignition cycle, and the compass system may remain in the aggressive calibration mode until three cardinal points (or more or less as desired) are detected or for a predetermined period of time following the ignition activation or when the ignition cycle is terminated.


Optionally, if an abrupt change upward or downward (or pivoting about a generally horizontal axis) is detected, the control circuitry may determine that such an adjustment is indicative of toggling or flipping the mirror reflective element between the daytime and nighttime orientations, and may account for the 4½ degree (or thereabouts, depending on the particular mirror application) change or adjustment via software compensation. Preferably, in such an embodiment, the nominal condition or orientation of the compass sensor is met when the mirror reflective element is at the daytime position or orientation. The determination of the downward or upward movement of the mirror assembly may be made irrespective of the vehicle speed, since such an adjustment (the flipping or toggling of the reflective element between the daytime and nighttime positions) may often occur while the driver is driving the vehicle at higher speeds.


The compass display 22 may provide a display region at the reflective element 16 which includes ports or portions, which may comprise icons, characters or letters or the like representative of only the cardinal directional points, such as, for example, the characters N, S, E, W, formed or etched in the reflective film coating of the reflective element (and forming a transparent window therein), such as via techniques such as disclosed in commonly assigned U.S. Pat. No. 4,882,565, issued to Gallmeyer on Nov. 21, 1989, and such as described in Ser. No. 10/456,599, filed Jun. 6, 2003 by Weller et al. for INTERIOR REARVIEW MIRROR SYSTEM WITH COMPASS, now U.S. Pat. No. 7,004,593. Optionally, however, reflective element may comprise a transflective or display on demand (DOD) reflective element, and the compass display may be a display on demand (DOD) type of display, such as disclosed in commonly assigned U.S. Pat. Nos. 6,690,268; 5,668,663 and 5,724,187, and U.S. patent application Ser. No. 10/054,633, filed Jan. 22, 2002 by Lynam et al. for VEHICULAR LIGHTING SYSTEM, now U.S. Pat. No. 7,195,381, the entire disclosures of which are hereby incorporated by reference herein, without affecting the scope of the present invention.


The display may include a plurality of illumination sources, such as light emitting diodes and such as blue light emitting diodes, such as an OSRAM LBT673-M2N2-35 light emitting diode or the like, which are operable to illuminate one or more ports or regions or appropriate characters or letters (or through the transflective DOD reflective element) to indicate the direction in which the vehicle is driving, such as described in Ser. No. 10/456,599, filed Jun. 6, 2003 by Weller et al. for INTERIOR REARVIEW MIRROR SYSTEM WITH COMPASS, now U.S. Pat. No. 7,004,593. The display ports or characters of the display may include only the four cardinal directional points (such as, for example, the characters N, S, E, W) formed or etched in the reflective film coating of the reflective element (and forming a transparent window therein), or may include eight directional points, such as the four cardinal directional points and the four intercardinal points (such as, for example, the characters N, NE, E, SE, S, SW, W, NW), without affecting the scope of the present invention.


The reflective element 16 may also include a port or aperture or hole in the center area or region of the display area (or, as discussed above, may comprise a transflective or DOD reflective element) to accommodate a photo detector or sensor (not shown), such as a photo transistor, a photo resistor, a photo diode or the like, which may be operable to sense the ambient light levels surrounding the mirror assembly or the light from headlights of vehicles rearward of the subject vehicle. The photosensor may be positioned or mounted on the printed circuit board and may be positioned, aligned and directed to receive illumination through the aperture or hole in the reflective element coating at the display region or elsewhere on the reflective element or the casing (such as through an opening formed in a wall of the casing immediately adjacent to the location of the photosensor). The photosensor may detect the ambient light levels generally surrounding the mirror assembly to provide for dimming of the output of the display in darkened lighting conditions, such as at nighttime conditions, in order to reduce the intensity of the display to reduce glare and distraction and annoyance to the driver of the vehicle. Optionally, such dimming of the display may be performed in response to an instrument panel dimming system of the vehicle, without affecting the scope of the present invention.


Optionally, the magnetoresponsive compass sensor or circuitry responsive to the Earth's magnetic field may be operable in conjunction with the global positioning system of the vehicle to provide directional heading data to the global positioning system, such as disclosed in U.S. patent application Ser. No. 10/422,378, filed Apr. 24, 2003 by Schofield for IMAGING SYSTEM FOR VEHICLE, now U.S. Pat. No. 6,946,978, and/or Ser. No. 10/456,599, filed Jun. 6, 2003 by Weller et al. for INTERIOR REARVIEW MIRROR SYSTEM WITH COMPASS, now U.S. Pat. No. 7,004,593, which are hereby incorporated herein by reference. The compass sensor circuitry may provide such directional heading data to assist the global positioning system in maintaining tracking of the location of the vehicle, such as between waypoints or the like, when the satellite signal to the global positioning system is interrupted, such as may occur in cities between tall buildings (often referred to as “urban canyons”) or the like. Other vehicle movement data may also be provided, such as vehicle speed data or vehicle odometer data or the like, to further assist in determining and tracking the location of the vehicle in situations where the satellite communication to the global positioning system of the vehicle may be temporarily interrupted or compromised. Optionally, an imaging system (such as described in U.S. patent application Ser. No. 10/422,378, filed Apr. 24, 2003 by Schofield for IMAGING SYSTEM FOR VEHICLE, now U.S. Pat. No. 6,946,978, which is hereby incorporated herein by reference) may be used to further assist in determining and tracking the location of the vehicle in situations where the satellite communication to the global positioning system may be temporarily interrupted or compromised.


Optionally, the printed circuit board of the compass or mirror system (such as a printed circuit board of a compass module or pod or a printed circuit board of the mirror assembly) of the present invention may include another display element along or partially along an edge of the board and may include one or more user-actuatable controls or buttons near or adjacent to the display element. The display element may be any type of display, such as a vacuum fluorescent (VF) display, a light emitting diode (LED) display, an electroluminescent (EL) display, a liquid crystal display (LCD), a video screen display or the like, and may be operable to display various information (as discrete characters, icons or the like, or in a multi-pixel manner) to the driver of the vehicle, such as passenger side inflatable restraint (PSIR) information, tire pressure status, and/or the like. The buttons may be for actuating or controlling various accessories or controls or components associated with the vehicle, such as for a compass calibration setting or zone setting, a telematics actuation, a garage door opener, an electronic toll control (such as disclosed in U.S. Pat. No. 6,690,268, which is hereby incorporated herein by reference), and/or other accessories or systems or functions or the like, or may be for switching the display between various functions or modes, without affecting the scope of the present invention. The mirror casing may include appropriate openings, such that the display element is visible through one opening, while the buttons or controls may partially protrude through other corresponding openings when an appropriate circuit board is installed within the mirror casing.


Optionally, the mirror assembly and/or a mounting base of the mirror mounting assembly may include or incorporate an electrical accessory or element or circuitry that may be electrically connected to a corresponding electrical accessory or element or circuitry within the mirror casing. For example, and with reference to FIG. 7, a mirror assembly 110 may include an essentially all-polymeric or plastic mounting assembly 112 having a mounting base 124 that houses or contains an electrical element or circuitry or sensor 132, such as a compass sensor, such as a magneto-responsive sensor, such as a magneto-resistive sensor, a magneto-capacitive sensor, a magneto-inductive sensor, a flux-gate sensor or a Hall-effect sensor or the like. The sensor 132 may be positioned at and within the molded base portion 126a so that the sensor is substantially fixedly positioned within the vehicle when the mounting base is attached to the mounting button or structure of the vehicle, such as described in U.S. patent application Ser. No. 11/226,628, filed Sep. 14, 2005, which is hereby incorporated herein by reference. The sensor 132 may include a lead or wire or wires 134 with a connector 134a, such as a multi-pin plug or socket or the like, at an end thereof for connecting to a corresponding connector or plug or socket 130b of electrical conductors 130 of support arm 122. The support arm 122 and electrical conductors 128, connectors 130a, 130b, mirror housing or casing 118 and socket 120 of mirror assembly 110 may utilize aspects of the mirror assemblies described in U.S. patent application Ser. No. 11/226,628, filed Sep. 14, 2005, which are hereby incorporated herein by reference.


Mounting base 124 may be molded or formed to define the base portion 126a and a socket portion 124a for receiving ball member 122b of support arm 122. The base portion 126a may be molded over and at least partially around a metallic insert 126b. Base portion 126a may be molded or formed with a cavity 126c and/or passageway for receiving the sensor or wire, or may be overmolded over and at least partially around the sensor and/or wire. The wire 134 comprises a flying lead or flexible lead that extends from the base portion 126a to the connector or terminals at the support arm 122, and includes sufficient slack or flexibility to accommodate pivotal movement or articulation of the support arm relative to the socket 124a of mounting base 124. The other connector 130a (at ball member 122a received in socket 120 (which may be formed at the casing or at a toggle member or attachment or back plate of the mirror)) may connect to a corresponding connector at a circuit board or electrical element or the like at the mirror casing, such as to circuitry on a circuit board at the reflective element or the like. The electrical element at or in the mirror casing may include controls or display circuitry and elements that are associated with or incorporated in a compass system and/or display system of the mirror assembly.


The accessory or sensor (or other electrical component or circuitry) thus may be positioned or located at or within the plastic molded mounting base of the mirror assembly. The accessory thus is positioned generally along the longitudinal axis of the mounting arm, and generally between the ball member 122b and the mounting base/mounting button at the windshield when the mirror assembly is installed in a vehicle, and not substantially above or below the mounting base (such as in a pod or gondola or module located above or below the mirror assembly) such as is typically done in known mirror assemblies. By positioning the accessory generally along the longitudinal axis of the support arm or generally along the z-axis (the axis along the vehicle and normal to the cross car or x-axis and the vertical or y-axis), the accessory is located generally between the windshield and the mirror casing and reflective element when the mirror assembly is installed in the vehicle, and does not extend substantially above or below or to either side of the mirror when the mirror assembly is installed in the vehicle. The mounting base thus may house or contain the accessory in a location that does not interfere with the forward field of view of the driver of the Vehicle. The mirror assembly of the present invention thus may provide a fixed sensor with double ball movement or articulation, and with reduced interference with the forward field of view by the driver of the vehicle.


Optionally, the electrical accessory or circuitry housed or contained within the mounting base may comprise a compass sensor that is part of a compass system and/or display of the mirror assembly and/or vehicle. Note that the magneto-responsive sensor used with the mirror assembly may comprise a magneto-responsive sensor, such as a magneto-resistive sensor such as the types disclosed in U.S. Pat. Nos. 5,255,442; 5,632,092; 5,802,727; 6,173,501; 6,427,349; and 6,513,252 (which are hereby incorporated herein by reference), or a magneto-inductive sensor, such as described in U.S. Pat. No. 5,878,370 (which is hereby incorporated herein by reference), or a magneto-impedance sensor, such as the types described in PCT Publication No. WO 2004/076971 A2, published Sep. 10, 2004 (which is hereby incorporated herein by reference), or a Hall-effect sensor, such as the types described in U.S. Pat. Nos. 6,278,271; 5,942,895 and 6,184,679 (which are hereby incorporated herein by reference). The sensor circuitry and/or the circuitry in the mirror housing and associated with the sensor may include processing circuitry. For example, a printed circuit board may include processing circuitry which may include compensation methods such as those described in U.S. Pat. Nos. 4,546,551; 5,699,044; 4,953,305; 5,576,687; 5,632,092; 5,677,851; 5,708,410; 5,737,226; 5,802,727; 5,878,370; 6,087,953; 6,173,508; 6,222,460; and 6,642,851, which are all hereby incorporated herein by reference. The compass sensor may be incorporated in or associated with a compass system and/or display system for displaying a directional heading of the vehicle to the driver, such as a compass system of the types described in U.S. Pat. Nos. 5,924,212; 4,862,594; 4,937,945; 5,131,154; 5,255,442; and/or 5,632,092, and/or U.S. patent application Ser. No. 10/456,599, filed Jun. 6, 2003 by Weller et al. for INTERIOR REARVIEW MIRROR SYSTEM WITH COMPASS, now U.S. Pat. No. 7,004,593; and/or Ser. No. 11/029,695, filed Jan. 5, 2005 by Lindahl et al. for MIRROR ASSEMBLY, now U.S. Pat. No. 7,253,723, and/or PCT Application No. PCT/US2004/015424, filed May 18, 2004 by Donnelly Corp. et al. for MIRROR ASSEMBLY FOR VEHICLE, and published on Dec. 2, 2004, as International Publication No. WO 2004/103772, and/or U.S. provisional application Ser. No. 60/636,931, filed Dec. 17, 2004, which are all hereby incorporated herein by reference.


Optionally, the sensor may comprise a two-axis sensor (comprising two magneto-responsive sensor elements disposed at a fixed angle relative to each other, such as, preferably, orthogonally to each other, and disposed in the cavity 126c generally parallel to the floor plane of the vehicle so as to be sensitive to the horizontal component of the Earth's magnetic field), or the sensor may comprise a three-axis sensor (comprising two magneto-responsive sensor elements disposed orthogonally to each other and disposed in the cavity, and a third magneto-responsive sensor element at a right angle (approximately ninety degrees) to the two sensor elements and disposed in the cavity, so that the three-axis sensor is sensitive to the horizontal component and to the vertical component of the Earth's magnetic field), without affecting the scope of the present invention. The sensor may be arranged at a desired angle to provide enhanced sensing in the horizontal directions when the mirror assembly is installed in the vehicle. For example, aspects of constructions such as are disclosed in U.S. Pat. Nos. 6,140,933 and 6,928,366, which are hereby incorporated herein by reference, may be utilized.


Optionally, an integrated automotive “compass-on-a-chip” may be disposed in the cavity of the mounting base and may comprise at least two magneto-responsive sensor elements (preferably Hall effect sensors established on the semiconductor substrate, preferably a silicon substrate, in the same VLSI chip/circuitry manufacturing process, using chip manufacturing processing means as known in the ASIC art), associated A/D and D/A converters, associated microprocessor(s) and memory, associated signal processing and filtering, associated display driver and associated LIN/CAN BUS interface and the like, all (or a sub-set thereof) created or disposed onto a semiconductor substrate, such as a silicon substrate (such as using CMOS technology), and constituting an ASIC chip, which is small (preferably less than approximately a two square centimeter area, more preferably less than approximately a 1.5 square centimeter area, and most preferably less than approximately a one square centimeter area or thereabouts) and readily packagable into the cavity. Thus, power (such as 12 volts or thereabouts, such as from the vehicle power source or the like) may be supplied to the ASIC chip and the ASIC chip may include all or substantially all of the circuitry for operation when the power source is connected to the ASIC chip.


Optionally, and preferably, such a compass-on-a-chip ASIC may also include the hardware and software required to receive an output from a temperature sensor (such as a thermocouple or thermostat that is located external the vehicle cabin in order to sense and monitor the temperature external to the vehicle) and to convert this signal to a reading in degrees Fahrenheit or Celsius, and to provide this reading via an on-chip temperature display driver and/or via a BUS protocol or via an on-chip wireless transmitter or the like to a digital or other type of temperature display so that the driver and/or occupants of the vehicle can view the temperature being measured (such as the temperature external the vehicle and/or the temperature within the vehicle cabin). Thus, for example, a monolithic compass/temp-on-a-chip ASIC may be disposed in the likes of a minor mount or within the mirror head/housing of an interior rearview mirror assembly, and it may provide both the external temperature readout and a compass direction heading readout to an information display at the mirror head/housing (or elsewhere in the vehicle, such as the instrument panel/cluster or at an overhead console or accessory module or the like). Optionally, such a chip or circuit board or circuitry may also or otherwise comprise EC driver circuitry for controlling/driving an electro-optic or electrochromic reflective element or cell, such as by utilizing aspects of the EC driver-on-a-chip such as described in U.S. patent application Ser. No. 11/201,661, filed Aug. 11, 2005 by DeWard et al. for ACCESSORY MODULE FOR VEHICLE, now U.S. Pat. No. 7,480,149, which is hereby incorporated herein by reference.


Optionally, the compass ASIC chip and/or compass sensor may be disposed at or in an exterior rearview mirror assembly of the vehicle (which typically utilizes a plastic housing). Such a location may locate the compass chip and compass sensor outside of the magnetic anomalies of the vehicle and at a location where the compass sensor may be less susceptible to or less effected by the windshield wipers of the vehicle or other accessories or metal of the vehicle. Optionally, and regardless of whether the compass chip is located behind the mirror reflector element or at the mirror mount or at an exterior mirror assembly of the vehicle or elsewhere in the vehicle, the display associated with the compass chip may be located at the reflector element or elsewhere in the vehicle, such as at the mirror mount or at an accessory module or windshield electronics module or console or the like of the vehicle.


Optionally, the printed circuit board, or the mirror assembly (or the compass module or an accessory module associated with the minor assembly), may include other accessories, such as an image sensor (such as a video camera, such as a CMOS imaging array sensor, a CCD sensor or the like, such as the types of imaging sensors or cameras disclosed in commonly assigned, U.S. Pat. Nos. 5,550,677; 6,097,023 and 5,796,094, and/or PCT Application No. PCT/US2003/036177, filed Nov. 14, 2003 by Donnelly Corp. for IMAGING SYSTEM FOR VEHICLE, which are hereby incorporated herein by reference), a temperature sensor (such as a contact temperature sensor for measuring the temperature at or of the windshield), an antenna, or any other sensor or device. For example, the mirror assembly may include a forward facing video image sensor or system, which may include or may be associated with an intelligent rain sensor (such as the types disclosed in commonly assigned U.S. Pat. Nos. 6,320,176; 6,353,392 and 6,313,454, which are hereby incorporated herein by reference), an image or vision system (including an imaging sensor, such as a video camera, such as a CMOS imaging array sensor, a CCD sensor or the like, such as the types disclosed in commonly assigned, U.S. Pat. Nos. 5,550,677; 6,097,023 and 5,796,094, and U.S. patent application Ser. No. 10/422,378, filed Apr. 24, 2003 by Schofield for IMAGING SYSTEM FOR VEHICLE, now U.S. Pat. No. 6,946,978, which are hereby incorporated herein by reference), such as an imaging or object detection system or back up aid of the types described in U.S. Pat. Nos. 6,757,109; 6,717,610; 6,590,719; 6,201,642; 5,929,786; and/or 5,786,772, and/or U.S. patent application Ser. No. 10/427,051, filed Apr. 30, 2003 by Pawlicki et al. for OBJECT DETECTION SYSTEM FOR VEHICLE, now U.S. Pat. No. 7,038,577; and/or Ser. No. 11/239,980, filed Sep. 30, 2005 by Camilleri et al. for VISION SYSTEM FOR VEHICLE, and/or U.S. provisional applications Ser. No. 60/628,709, filed Nov. 17, 2004 by Camilleri et al. for IMAGING AND DISPLAY SYSTEM FOR VEHICLE; Ser. No. 60/614,644, filed Sep. 30, 2004; and/or Ser. No. 60/618,686, filed Oct. 14, 2004 by Laubinger for VEHICLE IMAGING SYSTEM, which are hereby incorporated herein by reference, or an intelligent headlamp controller (such as the types described in U.S. Pat. Nos. 5,796,094; 5,715,093; and/or 6,824,281, and/or in U.S. patent application Ser. No. 10/958,087, filed Oct. 4, 2004 by Schofield et al. for VEHICLE ACCESSORY MODULE, now U.S. Pat. No. 7,188,963, and/or U.S. patent application Ser. No. 11/105,757, filed Apr. 14, 2005, now U.S. Pat. No. 7,526,103; and U.S. provisional applications Ser. No. 60/607,963, filed Sep. 8, 2004 by Schofield for IMAGING SYSTEM FOR VEHICLE; and Ser. No. 60/562,480, filed Apr. 15, 2004 by Schofield for IMAGING SYSTEM FOR VEHICLE, which are hereby incorporated herein by reference), or an intelligent lane departure warning system (such as the types described in U.S. patent application Ser. No. 10/209,173, filed Jul. 31, 2001 by Schofield for AUTOMOTIVE LANE CHANGE AID, now U.S. Pat. No. 6,882,287; and/or Ser. No. 10/427,051, filed Apr. 30, 2003 by Pawlicki et al. for OBJECT DETECTION SYSTEM FOR VEHICLE, now U.S. Pat. No. 7,038,577, which are hereby incorporated herein by reference), or indicator/display for a blind spot indicator or object detection system, such as the types described in U.S. provisional application Ser. No. 60/696,953, filed. Jul. 6, 2005; and U.S. patent application Ser. No. 11/226,628, filed Sep. 14, 2005, which are hereby incorporated herein by reference, and/or the like. In applications where the mirror assembly includes or is associated with an automatic headlamp control system, it is envisioned that the display of the mirror system may include or provide a high beam/low beam indicator (such as an icon or indicia indicative of the high beams being activated, such as a blue headlamp indicia or the like) to indicate the status of the high beams of the vehicle to the driver or occupant of the vehicle.


Optionally, the mirror assembly or compass or accessory or electronic module of the present invention may include one or more displays, such as a text display, an icon display, a display on demand (DOD) type display (such as may be implemented with a transflective reflective element, such as described in U.S. Pat. Nos. 5,668,663; 5,724,187; and 6,690,268, the entire disclosures of which are hereby incorporated by reference herein), such as a video or touch screen interface display, or a video display screen, such as the types described in PCT Application No. PCT/US03/40611, filed Dec. 19, 2003 by Donnelly Corp. et al. for ACCESSORY SYSTEM FOR VEHICLE, and/or U.S. patent application Ser. No. 11/284,543, filed Nov. 22, 2005, now U.S. Pat. No. 7,370,983, and/or U.S. provisional applications Ser. No. 60/630,061, filed Nov. 22, 2004 by Lynam et al. for MIRROR ASSEMBLY WITH VIDEO DISPLAY; and Ser. No. 60/667,048, filed Mar. 31, 2005, which are hereby incorporated herein by reference, or the like, and/or one or more sensors or other accessories, such as a biometric imager, such as for fingerprint authentication or the like, an infrared sensor, such as a zonal temperature sensor, such as suitable for an auto climate control, a forward facing image sensor, such as described above, a rearward facing image sensor (such as for biometric imaging (such as for face recognition, iris recognition or the like), seat height or position detection, drowsiness detection, safety/restraints object detection and position, emergency response image capture system, intrusion detection or the like), an electromagnetic field sensor (such as the type disclosed in commonly assigned U.S. Pat. No. 6,768,420, which is hereby incorporated herein by reference).


Optionally, and for a mirror assembly having a slideout or extendable/retractable display, such as a video slideout display or the like (such as the types described in PCT Application No. PCT/US03/40611, filed Dec. 19, 2003 by Donnelly Corp. et al. for ACCESSORY SYSTEM FOR VEHICLE, and/or U.S. patent application Ser. No. 11/284,543, filed Nov., 22, 2005, now U.S. Pat. No. 7,370,983, and/or U.S. provisional applications Ser. No. 60/630,061, filed Nov. 22, 2004 by Lynam et al. for MIRROR ASSEMBLY WITH VIDEO DISPLAY; and Ser. No. 60/667,048, filed Mar. 31, 2005, which are hereby incorporated herein by reference), the display may be operable or activatable when in its retracted or partially retracted position so as to provide display information, such as directional heading information or temperature information or other vehicle information or the like, that is viewable through the reflective element when the display is at least partially retracted. As described in the above referenced applications, such a slideout display is extended to display information to the driver of the vehicle and may be retracted when such information is not being displayed. When retracted, the display typically is deactivated and located behind the mirror reflector. In such a retracted or partially retracted position, the display element or screen is positioned at least partially at the rear of the mirror reflector element with the display element or screen facing the rear surface of the mirror reflector element.


It is thus envisioned that the display element (such as a video display element or LCD element or the like) may be activated when it is retracted or at least partially retracted, so that the display information or illumination emitted by the display element may be projected through the transflective mirror reflector element for viewing at the mirror reflector element. For example, and for mirror assemblies having a transflective mirror reflector element, the opaque backing of the reflector element may have a window or aperture or display area formed therethrough so that at least a portion of the display element, when activated in its retracted or partially retracted position, is viewable through the transflective mirror reflector at the display area.


In such an embodiment, it is desirable that there be a close or substantial optical coupling between the front surface of the display element or screen (the surface facing generally toward the driver of the vehicle when the mirror assembly is mounted in the vehicle) and the rear surface of the mirror reflector element (the surface facing generally away from the driver of the vehicle when the mirror assembly is mounted in the vehicle). Preferably, the mirror assembly may include an opaquifying or shading cover or baffle element that covers the display area when the slideout display is extended or at least partially extended and not activated to provide display information at the display area. For example, an opaque shading element may move over the window area at the rear of the mirror reflector element to cover/shade/opaquify the window/display area so that the internal components of the mirror assembly are not viewable through the window/display area when the display element is moved at least partially toward its extended position.


Thus, for example, a video slideout interior rearview mirror assembly can be provided that, when the driver selects reverse gear, a back lit TFT LCD screen may extend at the passenger side to display an image of a scene occurring immediately to the rear of the vehicle (such as captured by a rear mounted camera) so that the driver may view the image during a reversing maneuver to assist in reversing the vehicle. Preferably, such a display may include a graphic overlay or other indicia or the like, such as described in U.S. patent application Ser. No. 11/284,543, filed Nov. 22, 2005, now U.S. Pat. No. 7,370,983, to assist the driver in making the reversing maneuver. Upon the disengagement of the reverse gear by the driver, the display slides in or retracts to its stowed position. When the driver is driving the vehicle forward along a road, a compass display is viewable to the driver when he or she looks at the mirror. The compass display may be derived from a compass-on-a-chip sensor that is preferably mounted within a mirror mount or alternatively within the mirror casing or elsewhere in the vehicle. The compass display at the mirror reflector or reflective element (such as a transflective electrochromic reflective element or a transflective prismatic reflective element or the like) is provided by the same TFT LCD display screen or display element that is now stowed behind the reflective element and is seen through the transflective reflective element. Thus, the utility and user appreciation of the slideout display is enhanced because, when the vehicle is reversing, the display can slideout or extend to show the reversing scene and, when the display is stowed, such as during normal driving conditions, the same display element is used to provide an information display at the mirror reflector.


The display and/or accessories may be associated with a communication system, a speaker, a telematics module (which may include a GPS module, a wireless communication module, an human/machine interface (HMI), a display, such as an LED display, a dot matrix display, an alpha numeric display, a video display or the like, and/or a microphone, which may be operable for speech or voice recognition, noise reduction or noise cancellation), a humidity sensor, a remote keyless entry sensor, a tire pressure monitoring system (TPMS), an electronic toll collection sensor, an intelligent headlamp control, user interface controls (such as buttons, switches or the like for controlling various accessories of the vehicle, such as a sunroof, a communication system, lamps, security systems, displays or the like) or any other accessories, sensors, lights, indicators, displays or the like which may be suitable for mounting or positioning at or within the interior rearview mirror assembly or accessory module. The interior rearview mirror assembly and/or compass or accessory module may also provide for glare reduction characteristics of the reflective element of the rearview mirror assembly.


Optionally, the mirror assembly of the present invention may include one or more other accessories at or within the mirror casing, such as one or more electrical or electronic devices or accessories, such as antennas, including global positioning system (GPS) or cellular phone antennas, such as disclosed in U.S. Pat. No. 5,971,552, a communication module, such as disclosed in U.S. Pat. No. 5,798,688, transmitters and/or receivers, such as a garage door opener or the like, a digital network, such as described in U.S. Pat. No. 5,798,575, a memory mirror system, such as disclosed in U.S. Pat. No. 5,796,176, a hands-free phone attachment, a video device for internal cabin surveillance and/or video telephone function, such as disclosed in U.S. Pat. Nos. 5,760,962 and/or 5,877,897; and/or PCT Application No. PCT/US03/40611, filed Dec. 19, 2003 by Donnelly Corp. et al. for ACCESSORY SYSTEM FOR VEHICLE, and/or U.S. patent application Ser. No. 11/284,543, filed Nov. 22, 2005, now U.S. Pat. No. 7,370,983, and/or U.S. provisional applications Ser. No. 60/630,061, filed Nov. 22, 2004 by Lynam et al. for MIRROR ASSEMBLY WITH VIDEO DISPLAY; and Ser. No. 60/667,048, filed Mar. 31, 2005, a remote keyless entry receiver or system or circuitry and/or a universal garage door opening system or circuitry (such as the types disclosed in U.S. Pat. Nos. 6,396,408; 6,362,771; 5,798,688 and 5,479,155, and/or U.S. patent application Ser. No. 10/770,736, filed Feb. 3, 2004 by Baumgardner et al. for GARAGE DOOR OPENING SYSTEM FOR VEHICLE, now U.S. Pat. No. 7,023,322), a remote keyless entry receiver, lights, such as map reading lights or one or more other lights or illumination sources, such as disclosed in U.S. Pat. Nos. 6,690,268; 5,938,321; 5,813,745; 5,820,245; 5,673,994; 5,649,756; 5,178,448; 5,671,996; 4,646,210; 4,733,336; 4,807,096; 6,042,253; and/or 5,669,698, and/or U.S. patent application Ser. No. 10/054,633, filed Jan. 22, 2002 by Lynam et al. for VEHICULAR LIGHTING SYSTEM, now U.S. Pat. No. 7,195,381, microphones, such as disclosed in U.S. Pat. Nos. 6,243,003; 6,278,377; and/or 6,420,975; and/or PCT Application No. PCT/US03/30877, filed Oct. 1, 2003, speakers, a tire pressure monitoring system, such as the types disclosed in U.S. Pat. Nos. 6,294,989; 6,445,287; and/or 6,472,979, and/or U.S. patent application Ser. No. 11/232,324, filed Sep. 21, 2005, now U.S. Pat. No. 7,423,522, and U.S. provisional application Ser. No. 60/611,796, filed Sep. 21, 2004 by O'Brien for TIRE PRESSURE ALERT SYSTEM, a navigation system, such as described in U.S. Pat. No. 6,477,464, and U.S. patent application Ser. No. 10/456,599, filed Jun. 6, 2003 by Weller et al. for INTERIOR REARVIEW MIRROR SYSTEM WITH COMPASS, now U.S. Pat. No. 7,004,593; Ser. No. 10/287,178, filed Nov. 4, 2002 by McCarthy et al. for NAVIGATION SYSTEM FOR A VEHICLE, now U.S. Pat. No. 6,678,614; Ser. No. 10/645,762, filed Aug. 20, 2003 by Taylor et al. for VEHICLE NAVIGATION SYSTEM FOR USE WITH A TELEMATICS SYSTEM, now U.S. Pat. No. 7,167,796; and Ser. No. 10/422,378, filed Apr. 24, 2003, now U.S. Pat. No. 6,946,978; and/or PCT Application No. PCT/US03/40611, filed Dec. 19, 2003 by Donnelly Corp. et al. for ACCESSORY SYSTEM FOR VEHICLE, a seat occupancy detector, a vehicle occupancy detector, such as the types described in U.S. Pat. No. 6,768,420 and/or PCT Application No. PCT/US05/42504, filed Nov. 22, 2005 by Donnelly Corp. et al. for OCCUPANT DETECTION SYSTEM FOR VEHICLE; and/or U.S. provisional application Ser. No. 60/630,364, filed Nov. 22, 2004 by W{dot over (a)}llström for OCCUPANT DETECTION SYSTEM FOR VEHICLE, a trip computer, an ONSTAR® system and/or the like (with all of the above-referenced patents and patent applications and PCT applications and provisional applications being commonly assigned to Donnelly Corp., and with the disclosures of the referenced patents and patent applications and PCT applications and provisional applications being hereby incorporated herein by reference in their entireties). The accessory or accessories may be positioned at or within the mirror casing and may be included on or integrated in a printed circuit board positioned within the mirror casing, such as along a rear surface of the reflective element or elsewhere within a cavity defined by the casing, without affecting the scope of the present invention.


The interior rearview mirror assembly and/or an associated accessory module may also include user interface controls, such as buttons, switches or the like, displays, indicators, microphones, speakers or the like. Some of these may be provided at or along a display or interface area at or above the mirror. Optionally, the mirror assembly may include a user actuatable input or inputs to activate or deactivate or adjust one or more accessories of the mirror assembly or accessory module or console or of the vehicle. The inputs may be positioned at the mirror casing or bezel portion of the mirror assembly where they may be readily accessible by the driver or occupant of the vehicle. The inputs may comprise push buttons or the like or touch sensitive elements or sensors or proximity sensors or the like that may be selectively touched or depressed or approached to activate/deactivate/adjust the accessory or accessories, as discussed below. The inputs may utilize aspects such as those described in PCT Application No. PCT/US2003/036177, filed Nov. 14, 2003 by Donnelly Corp. for IMAGING SYSTEM FOR VEHICLE and/or PCT Application No. PCT/US04/015424, filed May 18, 2004 by Donnelly Corp. et al. for MIRROR ASSEMBLY FOR VEHICLE, published Dec. 2, 2004 as PCT Publication No. WO 2004/103772 A2, which are hereby incorporated herein by reference, or may utilize aspects of touch sensitive elements of the types described in U.S. Pat. Nos. 5,594,222; 6,001,486; 6,310,611; 6,320,282; and 6,627,918, and U.S. patent application Ser. No, 09/817,874, filed Mar. 26, 2001 by Quist et al. for INTERACTIVE AUTOMOTIVE REARVISION SYSTEM, now U.S. Pat. No. 7,224,324, which are hereby incorporated herein by reference, or may comprise proximity sensors of the types described in U.S. Pat. Publication No. 2002/0044065, published Apr. 18, 2002 by Quist et al. for INTERACTIVE AUTOMOTIVE REARVISION SYSTEM, now U.S. Pat. No. 7,224,324; and/or U.S. patent application Ser. No. 11/284,543, filed Nov. 22, 2005, now U.S. Pat. No. 7,370,983; Ser. No. 10/933,842, filed Sep. 3, 2004, now U.S. Pat. No. 7,249,860; and/or Ser. No. 10/956,749, filed Oct. 1, 2004, now U.S. Pat. No. 7,446,924; and/or PCT Application No. PCT/US03/40611, filed Dec. 19, 2003 by Donnelly Corp. et al. for ACCESSORY SYSTEM FOR VEHICLE, and/or U.S. provisional applications Ser. No. 60/630,061, filed Nov. 22, 2004 by Lynam et al. for MIRROR ASSEMBLY WITH VIDEO DISPLAY; and Ser. No. 60/667,048, filed Mar. 31, 2005, which are hereby incorporated herein by reference, or may comprise inputs molded within the bezel of the mirror assembly, such as described in U.S. patent application Ser. No. 11/029,695, filed Jan. 5, 2005, now U.S. Pat. No. 7,253,723, and U.S. provisional applications Ser. No. 60/535,559, filed Jan. 9, 2004 by Lindahl for MIRROR ASSEMBLY; and Ser. No. 60/553,517, filed Mar. 16, 2004 by Lindahl et al. for MIRROR ASSEMBLY, which are hereby incorporated herein by reference, or may comprise membrane type switches, such as described in U.S. patent application Ser. No. 11/140,396, filed May 27, 2005, now U.S. Pat. No. 7,360,932, and U.S. provisional applications Ser. No. 60/575,904, filed Jun. 1, 2004 by Uken for MIRROR ASSEMBLY FOR VEHICLE; and/or Ser. No. 60/624,320, filed Nov. 2, 2004 by liken for MIRROR ASSEMBLY FOR VEHICLE, which are hereby incorporated herein by reference, or other types of switches or buttons or inputs, such as, for example, inputs of the types described in U.S. provisional applications Ser. No. 60/719,482, filed Sep. 22, 2005; and Ser. No. 60/690,401, filed Jun. 14, 2005, which are hereby incorporated herein by reference, and/or the like, without affecting the scope of the present invention.


The accessory or accessories may be positioned at or within the mirror casing and may be included on or integrated in the printed circuit board positioned within the mirror casing, such as along a rear surface of the reflective element or elsewhere within a cavity defined by the casing, without affecting the scope of the present invention. The user actuatable inputs described above may be actuatable to control and/or adjust the accessories of the mirror assembly/system and/or an overhead console and/or an accessory module/windshield electronics module and/or the vehicle. The connection or link between the controls and the systems or accessories may be provided via vehicle electronic or communication systems and the like, and may be connected via various protocols or nodes, such as Bluetooth™, SCP, UBP, J1850, CAN J2284, Fire Wire 1394, MOST, LIN, FlexRay™, Byte Flight and/or the like, or other vehicle-based or in-vehicle communication links or systems (such as WIFI and/or IRDA) and/or the like, depending on the particular application of the mirror/accessory system and the vehicle. Optionally, the connections or links may be provided via wireless connectivity or links, such as via a wireless communication network or system, such as described in U.S. patent application Ser. No. 10/456,599, filed Jun. 6, 2003 by Weller et al. for INTERIOR REARVIEW MIRROR SYSTEM WITH COMPASS, now U.S. Pat. No. 7,004,593, which is hereby incorporated herein by reference, without affecting the scope of the present invention.


Optionally, the interior rearview mirror assembly or an associated accessory module or windshield electronics module or console may include a network bus, such as a CAN bus or a LIN bus, such as disclosed in U.S. Pat. No. 6,291,905, which is hereby incorporated herein by reference. The network bus may be operable to communicate with other systems of the vehicle, such as with accessories or elements of an accessory module, such as an accessory module of the type disclosed in commonly assigned U.S. Pat. Nos. 6,824,281; 6,243,003; 6,278,377 and 6,420,975; U.S. patent application Ser. No. 10/054,633, filed Jan. 22, 2002 by Lynam et al. for VEHICULAR LIGHTING SYSTEM, now U.S. Pat. No. 7,195,381; U.S. patent application Ser. No. 10/958,087, filed Oct. 4, 2004 by Schofield et al. for VEHICLE ACCESSORY MODULE, now U.S. Pat. No. 7,188,963; and/or International Publication No. WO 01/64481, published Sep. 7, 2001, which are all hereby incorporated herein by reference.


Optionally, the mirror assembly may comprise an electro-optic or electrochromic mirror assembly and may include an electro-optic or electrochromic reflective element. The electrochromic mirror element of the electrochromic mirror assembly may utilize the principles disclosed in commonly assigned U.S. Pat. Nos. 6,690,268; 5,140,455; 5,151,816; 6,178,034; 6,154,306; 6,002,544; 5,567,360; 5,525,264; 5,610,756; 5,406,414; 5,253,109; 5,076,673; 5,073,012; 5,117,346; 5,724,187; 5,668,663; 5,910,854; 5,142,407 and/or 4,712,879, which are hereby incorporated herein by reference, and/or as disclosed in the following publications: N. R. Lynam, “Electrochromic Automotive Day/Night Mirrors”, SAE Technical Paper Series 870636 (1987); N. R. Lynam, “Smart Windows for Automobiles”, SAE Technical Paper Series 900419 (1990); N. R. Lynam and A. Agrawal, “Automotive Applications of Chromogenic Materials”, Large Area Chromogenics: Materials and Devices for Transmittance Control, C. M. Lampert and C. G. Granquist, EDS., Optical Engineering Press, Wash. (1990), which are hereby incorporated by reference herein; and/or as described in U.S. patent application Ser. No. 10/054,633, filed Jan. 22, 2002 by Lynam et al. for VEHICULAR LIGHTING SYSTEM, now U.S. Pat. No. 7,195,381, which are hereby incorporated herein by reference. The mirror assembly may include one or more other displays, such as the types disclosed in U.S. Pat. Nos. 5,530,240 and/or 6,329,925, which are hereby incorporated herein by reference, and/or display-on-demand transflective type displays, such as the types described in U.S. Pat. Nos. 5,668,663; 5,724,187 and/or 6,690,268, and/or in U.S. patent application Ser. No. 10/054,633, filed Jan. 22, 2002 by Lynam et al. for VEHICULAR LIGHTING SYSTEM, now U.S. Pat. No. 7,195,381; Ser. No. 11/021,065, filed Dec. 23, 2004, now U.S. Pat. No. 7,255,451; Ser. No. 11/226,628, filed Sep. 14, 2005; and/or Ser. No. 10/538,724, filed Jun. 13, 2005; Ser. No. 10/528,269, filed Mar. 17, 2005, now U.S. Pat. No. 7,274,501; and/or Ser. No. 10/533,762, filed May 4, 2005, now U.S. Pat. No. 7,184,190, and/or PCT Application No. PCT/US03/29776, filed Sep. 9, 2003 by Donnelly Corp. et al. for MIRROR REFLECTIVE ELEMENT ASSEMBLY, which are all hereby incorporated herein by reference, or ultra small information displays, such as are disclosed in U.S. patent application Ser. No. 10/225,851, filed Aug. 22, 2002 by Burgner for VEHICLE INFORMATION DISPLAY, now U.S. Pat. No. 6,847,487, the entire disclosure of which is hereby incorporated by reference herein. The thicknesses and materials of the coatings on the substrates, such as on the third surface of the reflective element assembly, may be selected to provide a desired color or tint to the mirror reflective element, such as a blue colored reflector, such as is known in the art and such as described in U.S. Pat. Nos. 5,910,854 and 6,420,036, and in U.S. patent application Ser. No. 10/528,269, filed Mar. 17, 2005, now U.S. Pat. No. 7,274,501, and in PCT Application No. PCT/US03/29776, filed Sep. 9, 2003 by Donnelly Corp. et al. for MIRROR REFLECTIVE ELEMENT ASSEMBLY, which are all hereby incorporated herein by reference. The coatings and/or encapsulants and the like may be selected to provide the desired appearance and features for the reflective element assembly, such as utilizing the principles described in U.S. patent application Ser. No. 11/021,065, filed Dec. 23, 2004, now U.S. Pat. No. 7,255,451; and U.S. provisional applications Ser. No. 60/563,342, filed Apr. 19, 2004 by Bareman et al. for METHOD OF MANUFACTURING ELECTRO-OPTIC MIRROR CELL; and/or Ser. No. 60/629,926, filed Nov. 22, 2004 by McCabe et al. for METHOD OF MANUFACTURING ELECTRO-OPTIC MIRROR CELL, which are hereby incorporated herein by reference.


It is further envisioned that the interior rearview mirror assembly may include a transflective one way mirror element, such as disclosed in commonly assigned U.S. patent application Ser. No. 10/054,633, filed Jan. 22, 2002 by Lynam et al. for VEHICULAR LIGHTING SYSTEM, now U.S. Pat. No. 7,195,381, which is hereby incorporated herein by reference. Preferably, the mirror reflective element (behind which a video display screen may be disposed so that the image displayed is visible by viewing through the mirror reflective element) of the interior mirror assembly comprises a transflective mirror reflector such that the mirror reflective element is significantly transmitting to visible light incident from its rear (i.e. the portion furthest from the driver in the vehicle), with at least about 15 percent transmission of light therethrough preferred, at least about 20 percent transmission of light therethrough more preferred and at least about 25 percent transmission of light therethrough most preferred, while simultaneously, the mirror reflective element is substantially reflective to visible light incident from its front (i.e. the position closest to the driver when the interior mirror assembly is mounted in the vehicle), with at least about 60 percent reflectance of light incident thereon preferred, at least about 70 percent reflectance of light incident thereon more preferred and at least about 75 percent reflectance of light incident thereon most preferred. Preferably, a transflective electrochromic reflective mirror element is used (such as is disclosed in U.S. Pat. Nos. 5,668,663; 5,724,187; and 6,690,268, the entire disclosures of which are hereby incorporated by reference herein) that comprises an electrochromic medium sandwiched between two substrates.


Optionally, the mirror assembly and/or prismatic or electrochromic reflective element may include one or more displays, such as for the accessories or circuitry described herein. The displays may be similar to those described above, or may be of types disclosed in U.S. Pat. Nos. 5,530,240 and/or 6,329,925, which are hereby incorporated herein by reference, and/or may be display-on-demand or transflective type displays, such as the types disclosed in U.S. Pat. Nos. 6,690,298; 5,668,663 and/or 5,724,187, and/or in U.S. patent application Ser. No. 10/054,633, filed Jan. 22, 2002, now U.S. Pat. No. 7,195,381; Ser. No. 11/226,628, filed Sep. 14, 2005 by Karner et al.; and/or Ser. No. 10/993,302, filed Nov. 19, 2004, now U.S. Pat. No. 7,338,177; and/or in U.S. provisional applications Ser. No. 60/525,952, filed Nov. 26, 2003 by Lynam for MIRROR REFLECTIVE ELEMENT FOR A VEHICLE; Ser. No. 60/717,093, filed Sep. 14, 2005 by Lynam; and/or Ser. No. 60/732,245, filed Nov. 1, 2005 by Weller for INTERIOR REARVIEW MIRROR ASSEMBLY WITH DISPLAY, and/or in PCT Application No. PCT/US03/29776, filed Sep. 19, 2003 by Donnelly Corp. et al. for MIRROR REFLECTIVE ELEMENT ASSEMBLY, which are all hereby incorporated herein by reference. Optionally, a prismatic reflective element may comprise a display on demand or transflective prismatic element (such as described in PCT Application No. PCT/US03/29776, filed Sep. 19, 2003 by Donnelly Corp. et al. for MIRROR REFLECTIVE ELEMENT ASSEMBLY; and/or U.S. patent application Ser. No. 10/993,302, filed Nov. 19, 2004, now U.S. Pat. No. 7,338,177, which are all hereby incorporated herein by reference) so that the displays are viewable through the reflective element, while the display area still functions to substantially reflect light, in order to provide a generally uniform prismatic reflective element even in the areas that have display elements positioned behind the reflective element.


Optionally, the display and any associated user inputs may be associated with various accessories or systems, such as, for example, a tire pressure monitoring system or a passenger air bag status or a garage door opening system or a telematics system or any other accessory or system of the mirror assembly or of the vehicle or of an accessory module or console of the vehicle, such as an accessory module or console of the types described in U.S. Pat. Nos. 6,690,268; 6,672,744; 6,386,742; and 6,124,886, and/or U.S. patent application Ser. No. 10/739,766, filed Dec. 18, 2003 by DeLine et al. for MODULAR REARVIEW MIRROR ASSEMBLY, now U.S. Pat. No. 6,877,888; and/or Ser. No. 10/355,454, filed Jan. 31, 2003 by Schofield et al. for VEHICLE ACCESSORY MODULE, now U.S. Pat. No. 6,824,281, and/or PCT Application No. PCT/US03/03012, filed Jan. 31, 2003 by Donnelly Corporation for VEHICLE ACCESSORY MODULE, and/or PCT Application No. PCT/US03/40611, filed Dec. 19, 2003 by Donnelly Corporation for ACCESSORY SYSTEM FOR VEHICLE, and/or PCT Application No. PCT/US04/15424, filed May 18, 2004 by Donnelly Corporation et al. for MIRROR ASSEMBLY FOR VEHICLE, and published on Dec. 2, 2004, as International Publication No. WO 2004/103772, which are hereby incorporated herein by reference.


Optionally, the mirror system or interior rearview mirror assembly and/or compass system of the present invention may include electrochromic control circuitry for controlling the reflectivity of an electrochromic mirror. The circuitry may include a rearward viewing glare detector or sensor and a forward viewing and/or downward and/or sideward viewing ambient light detector or sensor, such as described in U.S. Pat. No. 4,793,690, which is hereby incorporated herein by reference, or may include a single sensor, such as described in U.S. Pat. No. 5,193,029, which is hereby incorporated herein by reference. The output of the circuitry may control an outside electrochromic mirror as well as the interior rearview electrochromic mirror. It is further envisioned that the circuitry may control an outside electrochromic mirror, while the interior rearview mirror assembly may be a prismatic mirror, without affecting the scope of the present invention.


The network bus of the interior rearview mirror assembly may then be in communication with the reversing system of the vehicle, such that the interior rearview mirror assembly knows when the vehicle is shifted into reverse. The bus may then be operable to disable the electrochromic dimming of the mirror when the vehicle is in reverse, as is desired and known in the art.


Further, automatic dimming circuitry used in the electrochromic mirror assembly and/or in an accessory module may utilize one or more (typically two) photosensors to detect glaring and/or ambient lighting. Optionally, the mirror assembly (such as for an interior or exterior rearview mirror assembly) may include a photo sensor or light sensor (such as the types described in U.S. Pat. Nos. 6,831,268; 6,742,904; 6,737,629; 4,799,768; and 4,793,690, and U.S. patent application Ser. No. 10/456,599, filed Jun. 6, 2003 by Weller et al. for INTERIOR REARVIEW MIRROR SYSTEM WITH COMPASS, now U.S. Pat. No. 7,004,593, which are hereby incorporated herein by reference) at the rear or fourth surface of the reflective element assembly, such that the photo sensor detects light passing through the reflective element assembly. Examples of such configurations are described in U.S. Pat. Nos. 4,793,690; 5,550,677 and 5,193,029, and U.S. patent application Ser. No. 10/456,599, filed Jun. 6, 2003 by Weller et al. for INTERIOR REARVIEW MIRROR SYSTEM WITH COMPASS, now U.S. Pat. No. 7,004,593, which are all hereby incorporated herein by reference. For example, a silicon photosensor, such as a TSL235R Light-to-Frequency converter (available from Texas Advanced Optoelectronic Solutions Inc. of Plano, Tex.), may be used as such a photosensor. Such light-to-frequency converters comprise the combination of a silicon photodiode and a current-to-frequency converter on a single monolithic CMOS integrated circuit.


Optionally, a silicon based optical sensor may provide a non-linear response for the electro-optic or electrochromic reflective element dimming circuitry. Optionally, an infrared (IR) filtering thin film may be deposited on the sensor (or may be disposed in front of the sensor) to filter or attenuate infrared radiation at the photo sensor. Optionally, the sensor may be mounted at the rear of the reflective element assembly and may be mounted at a black plastic surface mount that has a clear window, such that light leakage from non-intended light sources is reduced and such that the environmental properties of the sensor and mounting package are substantially enhanced.


The interior rearview mirror assembly may include the bezel portion and the casing, such as described above, or the mirror assembly may comprise other types of casings or bezel portions or the like, such as described in U.S. Pat. Nos. 6,439,755; 4,826,289; and 6,501,387; and/or PCT Application No. PCT/US2004/015424, filed May 18, 2004 by Donnelly Corp. et al. for MIRROR ASSEMBLY FOR VEHICLE, and published on Dec. 2, 2004, as International Publication No. WO 2004/103772; and/or U.S. patent application Ser. No. 10/933,842, filed Sep. 3, 2004 by Kulas et al. for INTERIOR REARVIEW MIRROR ASSEMBLY, now U.S. Pat. No. 7,249,860; and/or Ser. No. 10/993,302, filed Nov. 19, 2004 by Lynam for MIRROR REFLECTIVE ELEMENT FOR A VEHICLE, now U.S. Pat. No. 7,338,177, which are all hereby incorporated herein by reference, without affecting the scope of the present invention. For example, the mirror assembly may comprise a flush or frameless or bezelless reflective element, such as the types described in PCT Application No. PCT/US2004/015424, filed May 18, 2004 by Donnelly Corp. et al. for MIRROR ASSEMBLY FOR VEHICLE, and published on Dec. 2, 2004, as International Publication No. WO 2004/103772; PCT Application No. PCT/US03/35381, filed Nov. 5, 2003 by Donnelly Corp. et al. for ELECTRO-OPTIC REFLECTIVE ELEMENT ASSEMBLY; and/or in U.S. patent application Ser. No. 11/140,396, filed May 27, 2005, now U.S. Pat. No. 7,360,932; Ser. No. 11/226,628, filed Sep. 14, 2005; Ser. No. 11/021,065, filed Dec. 23, 2004, now U.S. Pat. No. 7,255,451; Ser. No. 10/528,269, filed Mar. 17, 2005, now U.S. Pat. No. 7,274,501; Ser. No. 10/533,762, filled May 4, 2005, now U.S. Pat. No. 7,184,190; and/or Ser. No. 10/538,724, filed Jun. 13, 2005; and/or in U.S. provisional applications Ser. No. 60/563,342, filed Apr. 19, 2004 by Bareman et al. for METHOD OF MANUFACTURING ELECTRO-OPTIC MIRROR CELL; Ser. No. 60/629,926, filed Nov. 22, 2004 by McCabe et al. for METHOD OF MANUFACTURING ELECTRO-OPTIC MIRROR CELL; Ser. No. 60/624,320, filed Nov. 2, 2004 by Uken for MIRROR ASSEMBLY FOR VEHICLE; Ser. No. 60/681,250, filed May 16, 2005; Ser. No. 60/690,400, filed Jun. 14, 2005; Ser. No. 60/695,149, filed Jun. 29, 2005; and/or Ser. No. 60/730,334, filed Oct. 26, 2005 by Baur for VEHICLE MIRROR ASSEMBLY WITH INDICIA AT REFLECTIVE ELEMENT, which are all hereby incorporated herein by reference.


Therefore, the present invention provides a mirror and compass system that positions the compass sensors within the movable head portion of the mirror assembly in a manner that reduces the effects of mirror adjustment on the sensor performance. The compass system may adjust processing in response to known movements of the mirror head to compensate for such known movements. The compass system of the present invention may distinguish between deviations, signatures or patterns indicative of magnetic anomalies or stray magnetic fields or the like generated external to the vehicle (such as by metal bridges, subway lines, cellular telephone towers, large metal structures and the like), and deviations, signatures or patterns indicative of mirror adjustments by the driver (as the driver may grasp and move the mirror head/reflective element to adjust his or her field of view rearward through the rear window of the vehicle), and may enter the calibration mode when a mirror adjustment is detected and distinguished or recognized. The compass system may enter an aggressive calibration mode to calibrate the sensors when the mirror has been adjusted by a user. The commencement of the aggressive calibration mode may be effected by the type of adjustment, vehicle speed, time elapsed since activation of the vehicle ignition or other activating or triggering event or the like.


Changes and modifications in the specifically described embodiments can be carried out without departing from the principles of the present invention, which is intended to be limited only by the scope of the appended claims as interpreted according to the principles of patent law.

Claims
  • 1. An interior rearview mirror system for a vehicle, said interior rearview mirror system comprising: an interior rearview mirror assembly;a mirror casing and a reflective element, said reflective element comprising a transflective reflective element having a transflective reflector that is partially transmitting of light therethrough and partially reflecting of light incident thereon;wherein said reflective element is at least 15 percent transmissive of visible light incident at a rear of said reflective element;an information display disposed behind said reflective element whereby information displayed by said information display is viewable through said transflective reflector by a driver of a vehicle when said interior rearview mirror assembly is normally mounted in the vehicle and when said information display is displaying information, and wherein said information display is substantially non-viewable through said transflective reflector by the driver of the vehicle when said information display is not displaying information;wherein said reflective element provides a field of view rearward of the vehicle to a driver of the vehicle when said interior rearview mirror assembly is normally mounted in the vehicle, and wherein a mounting structure mounts said mirror casing to an interior portion of the vehicle, and wherein said mirror casing is adjustable relative to the interior portion of the vehicle via at least one pivot element of said mounting structure to adjust the rearward field of view of said reflective element when said interior rearview mirror assembly is normally mounted in the vehicle;wherein said interior rearview mirror assembly comprises a compass sensor having magnetoresponsive sensing elements;wherein said transflective reflective element comprises an electrochromic reflective element having an electrochromic medium sandwiched between two substrates;wherein said interior rearview mirror assembly comprises a control;wherein at least a portion of said control is disposed within said mirror casing and behind said reflective element;wherein another portion of said control is disposed at said mounting structure, and wherein said another portion of said control comprises a forward facing CMOS imaging array with a field of view through the windshield of the vehicle, and wherein said forward facing CMOS imaging array is part of at least one of (a) a headlamp controller of the vehicle, (b) an object detection system of the vehicle, (c) a rain sensor of the vehicle and (d) a lane departure warning system of the vehicle;wherein (i) said control is responsive to a sensing of a magnetic field by said sensing elements and (ii) said control comprises a photosensor;wherein said control determines a directional heading of the vehicle responsive to said sensing by said sensing elements, said control automatically compensating for a deviating magnetic field;wherein said control controls dimming of said electrochromic medium responsive at least in part to detection of light by said photosensor;wherein said information display displays the directional heading of the vehicle;wherein electrical wiring connects to circuitry of at least the portion of said control that is disposed within said mirror casing and wherein said electrical wiring passes through said at least one pivot element of said mounting structure;wherein said control comprises at least one of (i) an A/D converter, (ii) a D/A converter, (iii) memory, (iv) signal processing circuitry, (v) filtering circuitry and (vi) a display driver; andwherein said control comprises a bus interface for a network bus of the vehicle.
  • 2. The interior rearview mirror system of claim 1, wherein said compass sensor comprises a three-axis compass sensor, and wherein said magnetoresponsive sensing elements comprise first, second and third magnetoresponsive sensing elements.
  • 3. The interior rearview mirror system of claim 1, wherein said information display comprises a video display, and wherein said video display is operable to display video images captured by a rearward facing camera of the vehicle, and wherein said video display comprises a backlit thin film transistor liquid crystal display.
  • 4. The interior rearview mirror system of claim 3, wherein said video display is operable to display the directional heading.
  • 5. The interior rearview mirror system of claim 1, wherein said compass sensor is disposed in said mirror casing and behind and supported by said reflective element.
  • 6. The interior rearview mirror system of claim 5, wherein said control is operable to discern between a change in said sensing by said magnetoresponsive sensing elements that is indicative of an adjustment of said mirror casing by the occupant of the vehicle and a change in said sensing by said magnetoresponsive sensing elements that is indicative of a change in vehicle direction, and wherein said control enters a rapid compensating mode when the change in said sensing by said magnetoresponsive sensing elements is indicative of an adjustment of said mirror casing by the occupant of the vehicle, and wherein said control automatically exits said rapid compensating mode after a predetermined period of time has elapsed since determination of the mirror casing adjustment.
  • 7. The interior rearview mirror system of claim 1, wherein said at least one pivot element comprises two pivot elements that are part of a double pivot mounting structure, and wherein said electrical wiring passes through both of said pivot elements of said double pivot mounting structure.
  • 8. The interior rearview mirror system of claim 1, wherein said mounting structure comprises a mount for mounting said mirror assembly to a mirror mounting button attached at an interior surface of the windshield of the vehicle.
  • 9. The interior rearview mirror system of claim 1, wherein at least one of (a) said compass sensor comprises circuitry for operation of said compass sensor when a power source is connected to said compass sensor, and (b) said magnetoresponsive sensing elements and at least a portion of said control are established on a semiconductor substrate having an area of less than two square centimeters.
  • 10. The interior rearview mirror system of claim 1, wherein said compass sensor comprises one of a Hall effect sensor and a magnetoinductive sensor.
  • 11. The interior rearview mirror system of claim 1, wherein said compass sensor is oriented in a manner that reduces the effect of a mirror casing adjustment on the compass sensor output.
  • 12. The interior rearview mirror system of claim 1, wherein said control is responsive to sensings of a magnetic field by said magnetoresponsive sensing elements, and wherein said control determines the directional heading of the vehicle responsive to said sensings by said magnetoresponsive sensing elements, and wherein said control is operable to discern between a change in said sensings by said magnetoresponsive sensing elements that is indicative of a mirror casing adjustment and a change in said sensings by said magnetoresponsive sensing elements that is indicative of a change in vehicle direction.
  • 13. The interior rearview mirror system of claim 12, wherein said control enters a rapid compensating mode when the change in said sensings by said magnetoresponsive sensing elements is indicative of a mirror casing adjustment by the occupant of the vehicle, and wherein said control automatically exits said rapid compensating mode after a predetermined period of time has elapsed since determination of the mirror casing adjustment.
  • 14. The interior rearview mirror system of claim 1, wherein said control is operable to enter an initial rapid compensating mode in response to an ignition cycle of the vehicle to achieve at least an approximate compensation for a deviating magnetic field of the vehicle, and wherein said control automatically exits said rapid compensating mode and enters a less aggressive calibration mode that distinguishes the Earth's magnetic field from magnetic anomalies and non-abrupt changes in the vehicle magnetic signature, and wherein said control automatically exits said rapid compensating mode after a predetermined period of time has elapsed since the ignition cycle.
  • 15. The interior rearview mirror system of claim 1, wherein said control is operable in an automatic compensation mode to achieve at least an approximate compensation for a deviating magnetic field of the vehicle and wherein the automatic compensation does not require the vehicle to turn through a 360 degree circle to compensate for a deviating magnetic field of the vehicle.
  • 16. The interior rearview mirror system of claim 1, wherein said information display comprises at least one of (a) a vacuum fluorescent display, (b) a light emitting diode display, (c) an electroluminescent display, (d) a liquid crystal display, (e) a backlit thin film transistor liquid crystal display and (f) a video screen display.
  • 17. The interior rearview mirror system of claim 1, wherein said control controls an illumination source via pulse width modulation.
  • 18. An interior rearview mirror system for a vehicle, said interior rearview mirror system comprising: an interior rearview mirror assembly;a mirror casing and a reflective element, said reflective element comprising a transflective reflective element having a transflective reflector that is partially transmitting of light therethrough and partially reflecting of light incident thereon;an information display disposed behind said reflective element whereby information displayed by said information display is viewable through said transflective reflector by a driver of a vehicle when said interior rearview mirror assembly is normally mounted in the vehicle and when said information display is displaying information, and wherein said information display is substantially non-viewable through said transflective reflector by the driver of the vehicle when said information display is not displaying information;wherein said information display comprises a video display, and wherein said video display is operable to display video images captured by a rearward facing camera of the vehicle, and wherein said video display comprises a backlit thin film transistor liquid crystal display;wherein said reflective element provides a field of view rearward of the vehicle to a driver of the vehicle when said interior rearview mirror assembly is normally mounted in the vehicle, and wherein a mounting structure mounts said mirror casing to an interior portion of the vehicle, and wherein said mirror casing is adjustable relative to the interior portion of the vehicle via at least one pivot element of said mounting structure to adjust the rearward field of view of said reflective element when said interior rearview mirror assembly is normally mounted in the vehicle;wherein said mounting structure comprises a mount for mounting said mirror assembly to a mirror mounting button attached at an interior surface of the windshield of the vehicle;wherein said interior rearview mirror assembly comprises a compass sensor having magnetoresponsive sensing elements;wherein said transflective reflective element comprises an electrochromic reflective element having an electrochromic medium sandwiched between two substrates;wherein said interior rearview mirror assembly comprises a control;wherein at least a portion of said control is disposed within said mirror casing and behind said reflective element;wherein another portion of said control is disposed at said mounting structure, and wherein said another portion of said control comprises a forward facing CMOS imaging array with a field of view through the windshield of the vehicle, and wherein said forward facing CMOS imaging array is part of at least one of (a) a headlamp controller of the vehicle, (b) an object detection system of the vehicle, (c) a rain sensor of the vehicle and (d) a lane departure warning system of the vehicle;wherein (i) said control is responsive to a sensing of a magnetic field by said sensing elements and (ii) said control comprises a photosensor;wherein said control determines a directional heading of the vehicle responsive to said sensing by said sensing elements;wherein said control controls dimming of said electrochromic medium responsive at least in part to detection of light by said photosensor;wherein said video display is operable to display the directional heading of the vehicle;wherein electrical wiring connects to circuitry of at least the portion of said control that is disposed within said mirror casing and wherein said electrical wiring passes through said at least one pivot element of said mounting structure; andwherein said control comprises at least one of (i) an A/D converter, (ii) a D/A converter, (iii) memory, (iv) signal processing circuitry, (v) filtering circuitry, (vi) a display driver and (vii) a bus interface.
  • 19. The interior rearview mirror system of claim 18, wherein said control comprises a bus interface for a network bus of the vehicle.
  • 20. The interior rearview mirror system of claim 18, wherein said reflective element is at least 15 percent transmissive of visible light incident at a rear of said reflective element, and wherein said control automatically compensates for a deviating magnetic field.
  • 21. The interior rearview mirror system of claim 18, wherein said interior rearview mirror system is in communication with at least one other accessory of the vehicle via a network bus of the vehicle.
  • 22. The interior rearview mirror system of claim 18, wherein said compass sensor is disposed in said mirror casing and behind and supported by said reflective element.
  • 23. The interior rearview mirror system of claim 18, wherein said at least one pivot element comprises two pivot elements that are part of a double pivot mounting structure, and wherein said electrical wiring passes through both of said pivot elements of said double pivot mounting structure.
  • 24. An interior rearview mirror system for a vehicle, said interior rearview mirror system comprising: an interior rearview mirror assembly;a mirror casing and a reflective element, said reflective element comprising a transflective reflective element having a transflective reflector that is partially transmitting of light therethrough and partially reflecting of light incident thereon;an information display disposed behind said reflective element whereby information displayed by said information display is viewable through said transflective reflector by a driver of a vehicle when said interior rearview mirror assembly is normally mounted in the vehicle and when said information display is displaying information, and wherein said information display is substantially non-viewable through said transflective reflector by the driver of the vehicle when said information display is not displaying information;wherein said reflective element provides a field of view rearward of the vehicle to a driver of the vehicle when said interior rearview mirror assembly is normally mounted in the vehicle, and wherein a mounting structure mounts said mirror casing to an interior portion of the vehicle, and wherein said mirror casing is adjustable relative to the interior portion of the vehicle via at least one pivot element of said mounting structure to adjust the rearward field of view of said reflective element when said interior rearview mirror assembly is normally mounted in the vehicle;wherein said interior rearview mirror assembly comprises a compass sensor having magnetoresponsive sensing elements;wherein said transflective reflective element comprises an electrochromic reflective element having an electrochromic medium sandwiched between two substrates;wherein said interior rearview mirror assembly comprises a control;wherein at least a portion of said control is disposed within said mirror casing and behind said reflective element;wherein another portion of said control is disposed at said mounting structure, and wherein said another portion of said control comprises a forward facing CMOS imaging array with a field of view through the windshield of the vehicle, and wherein said forward facing CMOS imaging array is part of at least one of (a) a headlamp controller of the vehicle and an object detection system of the vehicle, and (b) a headlamp controller of the vehicle and a lane departure warning system of the vehicle;wherein (i) said control is responsive to a sensing of a magnetic field by said sensing elements and (ii) said control comprises a photosensor;wherein said control determines a directional heading of the vehicle responsive to said sensing by said sensing elements;wherein said control controls dimming of said electrochromic medium responsive at least in part to detection of light by said photosensor;wherein said information display displays the directional heading of the vehicle;wherein electrical wiring connects to circuitry of at least the portion of said control that is disposed within said mirror casing and wherein said electrical wiring passes through said at least one pivot element of said mounting structure; andwherein said control comprises at least one of (i) an A/D converter, (ii) a D/A converter, (iii) memory, (iv) signal processing circuitry, (v) filtering circuitry and (vi) a display driver.
  • 25. The interior rearview mirror system of claim 24, wherein said compass sensor comprises a three-axis compass sensor, and wherein said magnetoresponsive sensing elements comprise first, second and third magnetoresponsive sensing elements.
  • 26. The interior rearview mirror system of claim 25, wherein said information display comprises a video display, and wherein said video display is operable to display video images captured by a rearward facing camera of the vehicle, and wherein said video display comprises a backlit thin film transistor liquid crystal display, and wherein said reflective element is at least 15 percent transmissive of visible light incident at a rear of said reflective element.
  • 27. The interior rearview mirror system of claim 26, wherein said video display is operable to display the directional heading.
  • 28. The interior rearview mirror system of claim 27, wherein said control comprises a bus interface for a network bus of the vehicle.
  • 29. An interior rearview mirror system for a vehicle, said interior rearview mirror system comprising: an interior rearview mirror assembly;a mirror casing and a reflective element, said reflective element comprising a transflective reflective element having a transflective reflector that is partially transmitting of light therethrough and partially reflecting of light incident thereon;an information display disposed behind said reflective element whereby information displayed by said information display is viewable through said transflective reflector by a driver of a vehicle when said interior rearview mirror assembly is normally mounted in the vehicle and when said information display is displaying information, and wherein said information display is substantially non-viewable through said transflective reflector by the driver of the vehicle when said information display is not displaying information;wherein said reflective element provides a field of view rearward of the vehicle to a driver of the vehicle when said interior rearview mirror assembly is normally mounted in the vehicle, and wherein a mounting structure mounts said mirror casing to an interior portion of the vehicle, and wherein said mirror casing is adjustable relative to the interior portion of the vehicle via at least one pivot element of said mounting structure to adjust the rearward field of view of said reflective element when said interior rearview mirror assembly is normally mounted in the vehicle;wherein said information display comprises a video display, and wherein said video display is operable to display video images captured by a rearward facing camera of the vehicle, and wherein said video display comprises a backlit thin film transistor liquid crystal display;wherein said interior rearview mirror assembly comprises a compass sensor having magnetoresponsive sensing elements, and wherein said compass sensor comprises a three-axis compass sensor, and wherein said magnetoresponsive sensing elements comprise first, second and third magnetoresponsive sensing elements;wherein said transflective reflective element comprises an electrochromic reflective element having an electrochromic medium sandwiched between two substrates;wherein said interior rearview mirror assembly comprises a control;wherein at least a portion of said control is disposed within said mirror casing and behind said reflective element;wherein another portion of said control is disposed at said mounting structure, and wherein said another portion of said control comprises a forward facing CMOS imaging array with a field of view through the windshield of the vehicle, and wherein said forward facing CMOS imaging array is part of a headlamp controller of the vehicle and is part of a lane departure warning system of the vehicle;wherein (i) said control is responsive to a sensing of a magnetic field by said sensing elements and (ii) said control comprises a photosensor;wherein said control determines a directional heading of the vehicle responsive to said sensing by said sensing elements;wherein said control controls dimming of said electrochromic medium responsive at least in part to detection of light by said photosensor;wherein said information display displays the directional heading of the vehicle;wherein electrical wiring connects to circuitry of at least the portion of said control that is disposed within said mirror casing and wherein said electrical wiring passes through said at least one pivot element of said mounting structure;wherein said control comprises at least one of (i) an A/D converter, (ii) a D/A converter, (iii) memory, (iv) signal processing circuitry, (v) filtering circuitry and (vi) a display driver; andwherein said control comprises a bus interface for a network bus of the vehicle.
  • 30. The interior rearview mirror system of claim 29, wherein said video display is operable to display the directional heading.
  • 31. The interior rearview mirror system of claim 30, wherein said reflective element is at least 15 percent transmissive of visible light incident at a rear of said reflective element.
  • 32. The interior rearview mirror system of claim 31, wherein said interior rearview mirror system is in communication with at least one other accessory of the vehicle via said network bus of the vehicle.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S, patent application Ser. No. 12/575,726, filed Oct. 8, 2009, now U.S. Pat. No. 7,726,822, which is a continuation of U.S. patent application Ser. No. 12/370,043, filed Feb. 12, 2009, now U.S. Pat. No. 7,600,878, which is a continuation of U.S. patent application Ser. No. 12/029,073, filed Feb. 11, 2008, now U.S. Pat. No. 7,490,944, which is a continuation of U.S. patent application Ser. No. 11/305,637, filed Dec. 16, 2005, now U.S. Pat. No. 7,329,013, which claims benefit of U.S. provisional application Ser. No. 60/636,931, filed Dec. 17, 2004, and U.S. patent application Ser. No. 11/305,637 is a continuation-in-part of U.S. patent application Ser. No. 10/456,599, filed Jun. 6, 2003 by Weller et al. for INTERIOR REARVIEW MIRROR SYSTEM WITH COMPASS, now U.S. Pat. No. 7,004,593, which claims the benefit of U.S. provisional applications, Ser. No. 60/420,010, filed Oct. 21, 2002; Ser. No. 60/398,240, filed Jul. 24, 2002; and Ser. No. 60/386,373, filed Jun. 6, 2002, which are all hereby incorporated herein by reference in their entireties.

US Referenced Citations (1152)
Number Name Date Kind
2069368 Horinstein Feb 1937 A
2166303 Hodny et al. Jul 1939 A
2414223 DeVirgilis Jan 1947 A
3004473 Arthur et al. Oct 1961 A
3075430 Woodward et al. Jan 1963 A
3141393 Platt Jul 1964 A
3152216 Woodward Oct 1964 A
3185020 Thelen May 1965 A
3280701 Donnelly et al. Oct 1966 A
3432225 Rock Mar 1969 A
3451741 Manos Jun 1969 A
3453038 Kissa et al. Jul 1969 A
3467465 Van Noord Sep 1969 A
3480781 Mandalakas Nov 1969 A
3499112 Heilmeier et al. Mar 1970 A
3499702 Goldmacher et al. Mar 1970 A
3521941 Deb et al. Jul 1970 A
3543018 Barcus et al. Nov 1970 A
3557265 Chisholm et al. Jan 1971 A
3565985 Schrenk et al. Feb 1971 A
3614210 Caplan Oct 1971 A
3628851 Robertson Dec 1971 A
3676668 Collins et al. Jul 1972 A
3689695 Rosenfield et al. Sep 1972 A
3711176 Alfrey, Jr. et al. Jan 1973 A
3748017 Yamamura et al. Jul 1973 A
3781090 Sumita Dec 1973 A
3806229 Schoot et al. Apr 1974 A
3807832 Castellion Apr 1974 A
3807833 Graham et al. Apr 1974 A
3821590 Kosman et al. Jun 1974 A
3860847 Carley Jan 1975 A
3870404 Wilson et al. Mar 1975 A
3876287 Sprokel Apr 1975 A
3932024 Yaguchi et al. Jan 1976 A
3940822 Emerick et al. Mar 1976 A
3956017 Shigemasa May 1976 A
3978190 Kurz, Jr. et al. Aug 1976 A
3985424 Steinacher Oct 1976 A
4006546 Anderson et al. Feb 1977 A
4035681 Savage Jul 1977 A
4040727 Ketchpel Aug 1977 A
4052712 Ohama et al. Oct 1977 A
4075468 Marcus Feb 1978 A
4088400 Assouline et al. May 1978 A
4093364 Miller Jun 1978 A
4109235 Bouthors Aug 1978 A
4139234 Morgan Feb 1979 A
4161653 Bedini et al. Jul 1979 A
4171875 Taylor et al. Oct 1979 A
4174152 Gilia et al. Nov 1979 A
4200361 Malvano et al. Apr 1980 A
4202607 Washizuka et al. May 1980 A
4211955 Ray Jul 1980 A
4214266 Myers Jul 1980 A
4221955 Joslyn Sep 1980 A
4228490 Thillays Oct 1980 A
4247870 Gabel et al. Jan 1981 A
4257703 Goodrich Mar 1981 A
4274078 Isobe et al. Jun 1981 A
4277804 Robison Jul 1981 A
4281899 Oskam Aug 1981 A
4288814 Talley et al. Sep 1981 A
RE30835 Giglia Dec 1981 E
4306768 Egging Dec 1981 A
4310851 Pierrat Jan 1982 A
4331382 Graff May 1982 A
4338000 Kamimori et al. Jul 1982 A
4377613 Gordon Mar 1983 A
4398805 Cole Aug 1983 A
4419386 Gordon Dec 1983 A
4420238 Felix Dec 1983 A
4425717 Marcus Jan 1984 A
4435042 Wood et al. Mar 1984 A
4435048 Kamimori et al. Mar 1984 A
4436371 Wood et al. Mar 1984 A
4438348 Casper et al. Mar 1984 A
4443057 Bauer et al. Apr 1984 A
4446171 Thomas May 1984 A
4465339 Baucke et al. Aug 1984 A
4473695 Wrighton et al. Sep 1984 A
4490227 Bitter Dec 1984 A
4491390 Tong-Shen Jan 1985 A
4499451 Suzuki et al. Feb 1985 A
4524941 Wood et al. Jun 1985 A
4538063 Bulat Aug 1985 A
4546551 Franks Oct 1985 A
4555694 Yanagishima et al. Nov 1985 A
4561625 Weaver Dec 1985 A
4580196 Task Apr 1986 A
4581827 Higashi Apr 1986 A
4588267 Pastore May 1986 A
4603946 Kato et al. Aug 1986 A
4623222 Itoh et al. Nov 1986 A
4626850 Chey Dec 1986 A
4630109 Barton Dec 1986 A
4630904 Pastore Dec 1986 A
4634835 Suzuki Jan 1987 A
4636782 Nakamura et al. Jan 1987 A
4638287 Umebayashi et al. Jan 1987 A
4646210 Skogler et al. Feb 1987 A
4652090 Uchikawa et al. Mar 1987 A
4655549 Suzuki et al. Apr 1987 A
4665311 Cole May 1987 A
4665430 Hiroyasu May 1987 A
4671615 Fukada et al. Jun 1987 A
4671619 Kamimori et al. Jun 1987 A
4692798 Seko et al. Sep 1987 A
4694295 Miller et al. Sep 1987 A
4697883 Suzuki et al. Oct 1987 A
4702566 Tukude et al. Oct 1987 A
4712879 Lynam et al. Dec 1987 A
4713685 Nishimura et al. Dec 1987 A
4721364 Itoh et al. Jan 1988 A
4729076 Masami et al. Mar 1988 A
4731669 Hayashi et al. Mar 1988 A
4733335 Serizawa et al. Mar 1988 A
4733336 Skogler et al. Mar 1988 A
4740838 Mase et al. Apr 1988 A
4761061 Nishiyama et al. Aug 1988 A
4780752 Angerstein et al. Oct 1988 A
4781436 Armbruster Nov 1988 A
4789904 Peterson Dec 1988 A
4793690 Gahan et al. Dec 1988 A
4793695 Wada et al. Dec 1988 A
4794261 Rosen Dec 1988 A
4799768 Gahan Jan 1989 A
4807096 Skogler et al. Feb 1989 A
4825232 Howdle Apr 1989 A
4826289 Vandenbrink et al. May 1989 A
4837551 Iino Jun 1989 A
4845402 Smith Jul 1989 A
4847772 Michalopoulos et al. Jul 1989 A
4855161 Moser et al. Aug 1989 A
4859867 Larson et al. Aug 1989 A
4862594 Schierbeek et al. Sep 1989 A
4871917 O'Farrell et al. Oct 1989 A
4872051 Dye Oct 1989 A
4882565 Gallmeyer Nov 1989 A
4883349 Mittelhäuser Nov 1989 A
4884135 Schiffman Nov 1989 A
4886960 Molyneux et al. Dec 1989 A
4892345 Rachael, III Jan 1990 A
4902108 Byker Feb 1990 A
4910591 Petrossian et al. Mar 1990 A
4916374 Schierbeek et al. Apr 1990 A
4926170 Beggs et al. May 1990 A
4930742 Schofield et al. Jun 1990 A
4935665 Murata Jun 1990 A
4936533 Adams et al. Jun 1990 A
4937796 Tendler Jun 1990 A
4937945 Schofield et al. Jul 1990 A
4943796 Lee Jul 1990 A
4948242 Desmond et al. Aug 1990 A
4953305 Van Lente et al. Sep 1990 A
4956591 Schierbeek et al. Sep 1990 A
4959247 Moser et al. Sep 1990 A
4959865 Stettiner et al. Sep 1990 A
4970653 Kenue Nov 1990 A
4973844 O'Farrell et al. Nov 1990 A
4978196 Suzuki et al. Dec 1990 A
4987357 Masaki Jan 1991 A
4996083 Moser et al. Feb 1991 A
5001558 Burley et al. Mar 1991 A
5005213 Hanson et al. Apr 1991 A
5006971 Jenkins Apr 1991 A
5014167 Roberts May 1991 A
5016996 Ueno May 1991 A
5027200 Petrossian et al. Jun 1991 A
5037182 Groves et al. Aug 1991 A
5038255 Nashihashi et al. Aug 1991 A
5056899 Warszawski Oct 1991 A
5058851 Lawlor et al. Oct 1991 A
5066108 McDonald Nov 1991 A
5066112 Lynam et al. Nov 1991 A
5070323 Iino et al. Dec 1991 A
5073012 Lynam Dec 1991 A
5076673 Lynam et al. Dec 1991 A
5076674 Lynam Dec 1991 A
5096287 Kakinami et al. Mar 1992 A
5100095 Haan et al. Mar 1992 A
5101139 Lechter Mar 1992 A
5105127 Lavaud et al. Apr 1992 A
5115346 Lynam May 1992 A
5117346 Gard May 1992 A
5121200 Choi Jun 1992 A
5122619 Dlubak Jun 1992 A
5124845 Shimojo Jun 1992 A
5128799 Byker Jul 1992 A
5131154 Schierbeek et al. Jul 1992 A
5135298 Feltman Aug 1992 A
5136483 Schöniger et al. Aug 1992 A
5140455 Varaprasad et al. Aug 1992 A
5142407 Varaprasad et al. Aug 1992 A
5150232 Gunkima et al. Sep 1992 A
5151816 Varaprasad et al. Sep 1992 A
5151824 O'Farrell Sep 1992 A
5154617 Suman et al. Oct 1992 A
5160200 Cheselske Nov 1992 A
5160201 Wrobel Nov 1992 A
5168378 Black et al. Dec 1992 A
5173881 Sindle Dec 1992 A
5178448 Adams et al. Jan 1993 A
5179471 Caskey et al. Jan 1993 A
5184956 Langlarais et al. Feb 1993 A
5189537 O'Farrell Feb 1993 A
5193029 Schofield et al. Mar 1993 A
5197562 Kakinama et al. Mar 1993 A
5207492 Roberts May 1993 A
5210967 Brown May 1993 A
5214408 Asayama May 1993 A
5217794 Schrenk Jun 1993 A
5223814 Suman Jun 1993 A
5223844 Mansell et al. Jun 1993 A
5229975 Truesdell et al. Jul 1993 A
5230400 Kakinama et al. Jul 1993 A
5233461 Dornan et al. Aug 1993 A
5235316 Qualizza Aug 1993 A
5239405 Varaprasad et al. Aug 1993 A
5239406 Lynam Aug 1993 A
5243417 Pollard Sep 1993 A
5245422 Borcherts et al. Sep 1993 A
5252354 Cronin et al. Oct 1993 A
5253109 O'Farrell et al. Oct 1993 A
5255442 Schierbeek et al. Oct 1993 A
5260626 Takase et al. Nov 1993 A
5277986 Cronin et al. Jan 1994 A
5280555 Ainsburg Jan 1994 A
5285060 Larson et al. Feb 1994 A
5289321 Secor Feb 1994 A
5296924 de Saint Blancard et al. Mar 1994 A
5303205 Gauthier et al. Apr 1994 A
5304980 Maekawa Apr 1994 A
5305012 Faris Apr 1994 A
5307136 Saneyoshi Apr 1994 A
5313335 Gray et al. May 1994 A
5325096 Pakett Jun 1994 A
5325386 Jewell et al. Jun 1994 A
5327288 Wellington et al. Jul 1994 A
5330149 Haan et al. Jul 1994 A
5331312 Kudoh Jul 1994 A
5331358 Schurle et al. Jul 1994 A
5339075 Abst et al. Aug 1994 A
5339529 Lindberg Aug 1994 A
5341437 Nakayama Aug 1994 A
D351370 Lawlor et al. Oct 1994 S
5355118 Fukuhara Oct 1994 A
5355284 Roberts Oct 1994 A
5361190 Roberts et al. Nov 1994 A
5371659 Pastrick et al. Dec 1994 A
5373482 Gauthier Dec 1994 A
5386285 Asayama Jan 1995 A
5386306 Gunjima et al. Jan 1995 A
5406395 Wilson et al. Apr 1995 A
5406414 O'Farrell et al. Apr 1995 A
5408357 Beukema Apr 1995 A
5410346 Saneyoshi et al. Apr 1995 A
5414461 Kishi et al. May 1995 A
5416313 Larson et al. May 1995 A
5416478 Morinaga May 1995 A
5418610 Fischer May 1995 A
5422756 Weber Jun 1995 A
5424726 Beymer Jun 1995 A
5424865 Lynam Jun 1995 A
5424952 Asayama Jun 1995 A
5430431 Nelson Jul 1995 A
5432496 Lin Jul 1995 A
5439305 Santo Aug 1995 A
5444478 Lelong et al. Aug 1995 A
5446576 Lynam et al. Aug 1995 A
5455716 Suman et al. Oct 1995 A
5461361 Moore Oct 1995 A
5469298 Suman et al. Nov 1995 A
5475366 Van Lente et al. Dec 1995 A
5475494 Nishida et al. Dec 1995 A
5481409 Roberts Jan 1996 A
5483453 Uemura et al. Jan 1996 A
5485161 Vaughn Jan 1996 A
5485378 Franke et al. Jan 1996 A
5487522 Hook Jan 1996 A
5488496 Pine Jan 1996 A
5497305 Pastrick et al. Mar 1996 A
5497306 Pastrick Mar 1996 A
5500760 Varaprasad et al. Mar 1996 A
5510983 Iino Apr 1996 A
5515448 Nishitani May 1996 A
5519621 Wortham May 1996 A
5521744 Mazurek May 1996 A
5521760 De Young et al. May 1996 A
5523811 Wada et al. Jun 1996 A
5525264 Cronin et al. Jun 1996 A
5528474 Roney et al. Jun 1996 A
5529138 Shaw et al. Jun 1996 A
5530240 Larson et al. Jun 1996 A
5530420 Tsuchiya et al. Jun 1996 A
5530421 Marshall et al. Jun 1996 A
5535056 Caskey et al. Jul 1996 A
5535144 Kise Jul 1996 A
5539397 Asanuma et al. Jul 1996 A
5541590 Nishio Jul 1996 A
5550677 Schofield et al. Aug 1996 A
5561333 Darius Oct 1996 A
5566224 ul Azam et al. Oct 1996 A
5567360 Varaprasad et al. Oct 1996 A
5568316 Schrenk et al. Oct 1996 A
5570127 Schmidt Oct 1996 A
5572354 Desmond et al. Nov 1996 A
5574443 Hsieh Nov 1996 A
5576687 Blank et al. Nov 1996 A
5576854 Schmidt et al. Nov 1996 A
5576975 Sasaki et al. Nov 1996 A
5587236 Agrawal et al. Dec 1996 A
5587699 Faloon et al. Dec 1996 A
5594615 Spijkerman et al. Jan 1997 A
5602542 Widmann et al. Feb 1997 A
5602670 Keegan Feb 1997 A
5608550 Epstein et al. Mar 1997 A
5610756 Lynam et al. Mar 1997 A
5611966 Varaprasad et al. Mar 1997 A
5614885 Van Lente et al. Mar 1997 A
5615023 Yang Mar 1997 A
5615857 Hook Apr 1997 A
5617085 Tsutsumi et al. Apr 1997 A
5626800 Williams et al. May 1997 A
5631089 Center, Jr. et al. May 1997 A
5631638 Kaspar et al. May 1997 A
5631639 Hibino et al. May 1997 A
5632092 Blank et al. May 1997 A
5632551 Roney et al. May 1997 A
5634709 Iwama Jun 1997 A
5642238 Sala Jun 1997 A
5644851 Blank et al. Jul 1997 A
5646614 Abersfelder et al. Jul 1997 A
5649756 Adams et al. Jul 1997 A
5649758 Dion Jul 1997 A
5650765 Park Jul 1997 A
5661455 Van Lente et al. Aug 1997 A
5662375 Adams et al. Sep 1997 A
5666157 Aviv Sep 1997 A
5668663 Varaprasad et al. Sep 1997 A
5668675 Fredricks Sep 1997 A
5669698 Veldman et al. Sep 1997 A
5669699 Pastrick et al. Sep 1997 A
5669704 Pastrick Sep 1997 A
5669705 Pastrick et al. Sep 1997 A
5670935 Schofield et al. Sep 1997 A
5671996 Bos et al. Sep 1997 A
5673994 Fant, Jr. et al. Oct 1997 A
5673999 Koenck Oct 1997 A
5680123 Lee Oct 1997 A
5680245 Lynam Oct 1997 A
5680263 Zimmermann et al. Oct 1997 A
5686975 Lipton Nov 1997 A
5689241 Clarke, Sr. et al. Nov 1997 A
5691848 Van Lente et al. Nov 1997 A
5692819 Mitsutake et al. Dec 1997 A
5699044 Van Lente et al. Dec 1997 A
5708410 Blank et al. Jan 1998 A
5708415 Van Lente et al. Jan 1998 A
5708857 Ishibashi Jan 1998 A
5715093 Schierbeek et al. Feb 1998 A
5724187 Varaprasad et al. Mar 1998 A
5724316 Brunts Mar 1998 A
5729194 Spears et al. Mar 1998 A
5737226 Olson et al. Apr 1998 A
5741966 Handfield et al. Apr 1998 A
5745050 Nakagawa Apr 1998 A
5745266 Smith Apr 1998 A
5748287 Takahashi et al. May 1998 A
5751211 Shirai et al. May 1998 A
5751246 Hertel May 1998 A
5751390 Crawford et al. May 1998 A
5751489 Caskey et al. May 1998 A
5754099 Nishimura et al. May 1998 A
5760828 Cortes Jun 1998 A
5760931 Saburi et al. Jun 1998 A
5760962 Schofield et al. Jun 1998 A
5761094 Olson et al. Jun 1998 A
5762823 Hikmet Jun 1998 A
5767793 Agravante et al. Jun 1998 A
5775762 Vitito Jul 1998 A
5786772 Schofield et al. Jul 1998 A
5788357 Muth et al. Aug 1998 A
5790973 Blaker et al. Aug 1998 A
5793308 Rosinski et al. Aug 1998 A
5793420 Schmidt Aug 1998 A
5796094 Schofield et al. Aug 1998 A
5796176 Kramer et al. Aug 1998 A
5798057 Hikmet Aug 1998 A
5798575 O'Farrell et al. Aug 1998 A
5798688 Schofield Aug 1998 A
5802727 Blank et al. Sep 1998 A
5803579 Turnbull et al. Sep 1998 A
5805367 Kanazawa Sep 1998 A
5806879 Hamada et al. Sep 1998 A
5806965 Deese Sep 1998 A
5808197 Dao Sep 1998 A
5808566 Behr et al. Sep 1998 A
5808589 Fergason Sep 1998 A
5808713 Broer et al. Sep 1998 A
5808777 Lynam et al. Sep 1998 A
5808778 Bauer et al. Sep 1998 A
5812321 Schierbeek et al. Sep 1998 A
5813745 Fant, Jr. et al. Sep 1998 A
5818625 Forgette et al. Oct 1998 A
5820097 Spooner Oct 1998 A
5820245 Desmond et al. Oct 1998 A
5822023 Suman et al. Oct 1998 A
5823654 Pastrick et al. Oct 1998 A
5825527 Forgette et al. Oct 1998 A
5837994 Stam et al. Nov 1998 A
5844505 Van Ryzin Dec 1998 A
5848373 DeLorme et al. Dec 1998 A
5850176 Kinoshita et al. Dec 1998 A
5863116 Pastrick et al. Jan 1999 A
5867801 Denny Feb 1999 A
5871275 O'Farrell et al. Feb 1999 A
5877707 Kowalick Mar 1999 A
5877897 Schofield et al. Mar 1999 A
5878353 ul Azam et al. Mar 1999 A
5878370 Olson Mar 1999 A
5879074 Pastrick Mar 1999 A
5883605 Knapp Mar 1999 A
5883739 Ashihara et al. Mar 1999 A
5888431 Tonar et al. Mar 1999 A
5899551 Neijzen et al. May 1999 A
5899956 Chan May 1999 A
5904729 Ruzicka May 1999 A
5910854 Varaprasad et al. Jun 1999 A
5914815 Bos Jun 1999 A
5917664 O'Neill et al. Jun 1999 A
5918180 Dimino Jun 1999 A
5923027 Stam et al. Jul 1999 A
5923457 Byker et al. Jul 1999 A
5924212 Domanski Jul 1999 A
5927792 Welling et al. Jul 1999 A
5928572 Tonar et al. Jul 1999 A
5929786 Schofield et al. Jul 1999 A
5938321 Bos et al. Aug 1999 A
5938721 Dussell et al. Aug 1999 A
5940011 Agravante et al. Aug 1999 A
5940120 Frankhouse et al. Aug 1999 A
5940201 Ash et al. Aug 1999 A
5942895 Popovic et al. Aug 1999 A
5949331 Schofield et al. Sep 1999 A
5956079 Ridgley Sep 1999 A
5956181 Lin Sep 1999 A
5959367 O'Farrell et al. Sep 1999 A
5959555 Furuta Sep 1999 A
5959577 Fan et al. Sep 1999 A
5963247 Banitt Oct 1999 A
5965247 Jonza et al. Oct 1999 A
5971552 O'Farrell et al. Oct 1999 A
5973760 Dehmlow Oct 1999 A
5975715 Bauder Nov 1999 A
5984482 Rumsey et al. Nov 1999 A
5986730 Hansen et al. Nov 1999 A
5990469 Bechtel et al. Nov 1999 A
5990625 Meissner et al. Nov 1999 A
5998617 Srinivasa et al. Dec 1999 A
5998929 Bechtel et al. Dec 1999 A
6000823 Desmond et al. Dec 1999 A
6001486 Varaprasad et al. Dec 1999 A
6002511 Varaprasad et al. Dec 1999 A
6002544 Yatsu Dec 1999 A
6005724 Todd Dec 1999 A
6007222 Thau Dec 1999 A
6008486 Stam et al. Dec 1999 A
6008871 Okumura Dec 1999 A
6009359 El-Hakim et al. Dec 1999 A
6016035 Eberspächer et al. Jan 2000 A
6016215 Byker Jan 2000 A
6019411 Carter et al. Feb 2000 A
6019475 Lynam et al. Feb 2000 A
6021371 Fultz Feb 2000 A
6023229 Bugno et al. Feb 2000 A
6025872 Ozaki et al. Feb 2000 A
6037689 Bingle et al. Mar 2000 A
6042253 Fant, Jr. et al. Mar 2000 A
6045243 Muth et al. Apr 2000 A
6045643 Byker et al. Apr 2000 A
6046766 Sakata Apr 2000 A
6046837 Yamamoto Apr 2000 A
6049171 Stam et al. Apr 2000 A
6060989 Gehlot May 2000 A
6061002 Weber et al. May 2000 A
6064508 Forgette et al. May 2000 A
6065840 Caskey et al. May 2000 A
6067111 Hahn et al. May 2000 A
6067500 Morimoto et al. May 2000 A
6072391 Suzukie et al. Jun 2000 A
6074777 Reimers et al. Jun 2000 A
6078355 Zengel Jun 2000 A
6078865 Koyanagi Jun 2000 A
6082881 Hicks Jul 2000 A
6084700 Knapp et al. Jul 2000 A
6086131 Bingle et al. Jul 2000 A
6086229 Pastrick Jul 2000 A
6087012 Varaprasad et al. Jul 2000 A
6087953 DeLine et al. Jul 2000 A
6094618 Harada Jul 2000 A
6097023 Schofield et al. Aug 2000 A
6097316 Liaw et al. Aug 2000 A
6099131 Fletcher et al. Aug 2000 A
6099155 Pastrick et al. Aug 2000 A
6102559 Nold et al. Aug 2000 A
6104552 Thau et al. Aug 2000 A
6106121 Buckley et al. Aug 2000 A
6111498 Jobes, I et al. Aug 2000 A
6111683 Cammenga et al. Aug 2000 A
6111684 Forgette et al. Aug 2000 A
6111685 Tench et al. Aug 2000 A
6111696 Allen et al. Aug 2000 A
6115086 Rosen Sep 2000 A
6115651 Cruz Sep 2000 A
6116743 Hoek Sep 2000 A
6122597 Saneyoshi et al. Sep 2000 A
6122921 Brezoczky et al. Sep 2000 A
6124647 Marcus et al. Sep 2000 A
6124886 DeLine et al. Sep 2000 A
6127919 Wylin Oct 2000 A
6127945 Mura-Smith Oct 2000 A
6128576 Nishimoto et al. Oct 2000 A
6130421 Bechtel et al. Oct 2000 A
6130448 Bauer et al. Oct 2000 A
6132072 Turnbull et al. Oct 2000 A
6139171 Waldmann Oct 2000 A
6139172 Bos et al. Oct 2000 A
6140933 Bugno et al. Oct 2000 A
6146003 Thau Nov 2000 A
6148261 Obradovich et al. Nov 2000 A
6149287 Pastrick et al. Nov 2000 A
6150014 Chu et al. Nov 2000 A
6151065 Steed et al. Nov 2000 A
6151539 Bergholz et al. Nov 2000 A
6152551 Annas Nov 2000 A
6152590 Fürst et al. Nov 2000 A
6154149 Tyckowski et al. Nov 2000 A
6154306 Varaprasad et al. Nov 2000 A
6157294 Urai et al. Dec 2000 A
6157418 Rosen Dec 2000 A
6158655 DeVries, Jr. et al. Dec 2000 A
6161865 Rose et al. Dec 2000 A
6166625 Teowee et al. Dec 2000 A
6166629 Hamma et al. Dec 2000 A
6166847 Tench et al. Dec 2000 A
6166848 Cammenga et al. Dec 2000 A
6167755 Damson et al. Jan 2001 B1
6169955 Fultz Jan 2001 B1
6170956 Rumsey et al. Jan 2001 B1
6172600 Kakinama et al. Jan 2001 B1
6172601 Wada et al. Jan 2001 B1
6172613 DeLine et al. Jan 2001 B1
6173501 Blank et al. Jan 2001 B1
6173508 Strohmeyer, Jr. Jan 2001 B1
6175164 O'Farrell et al. Jan 2001 B1
6175300 Kendrick Jan 2001 B1
6176602 Pastrick et al. Jan 2001 B1
6178034 Allemand et al. Jan 2001 B1
6178377 Ishihara et al. Jan 2001 B1
6181387 Rosen Jan 2001 B1
6182006 Meek Jan 2001 B1
6183119 Desmond et al. Feb 2001 B1
6184679 Popovic et al. Feb 2001 B1
6184781 Ramakesavan Feb 2001 B1
6185492 Kagawa et al. Feb 2001 B1
6185501 Smith et al. Feb 2001 B1
6188505 Lomprey et al. Feb 2001 B1
6191704 Takenaga et al. Feb 2001 B1
6196688 Caskey et al. Mar 2001 B1
6198409 Schofield et al. Mar 2001 B1
6199014 Walker et al. Mar 2001 B1
6199810 Wu et al. Mar 2001 B1
6200010 Anders Mar 2001 B1
6201642 Bos Mar 2001 B1
6210008 Hoekstra et al. Apr 2001 B1
6210012 Broer Apr 2001 B1
6212470 Seymour et al. Apr 2001 B1
6217181 Lynam et al. Apr 2001 B1
6218934 Regan Apr 2001 B1
6222447 Schofield et al. Apr 2001 B1
6222460 DeLine et al. Apr 2001 B1
6227689 Miller May 2001 B1
6232937 Jacobsen et al. May 2001 B1
6239851 Hatazawa et al. May 2001 B1
6239898 Byker et al. May 2001 B1
6243003 DeLine et al. Jun 2001 B1
6245262 Varaprasad et al. Jun 2001 B1
6247820 Van Order Jun 2001 B1
6249214 Kashiwazaki Jun 2001 B1
6250148 Lynam Jun 2001 B1
6250766 Strumolo et al. Jun 2001 B1
6250783 Stidham et al. Jun 2001 B1
6255639 Stam et al. Jul 2001 B1
6257746 Todd et al. Jul 2001 B1
6259412 Duroux Jul 2001 B1
6259475 Ramachandran et al. Jul 2001 B1
6265968 Betzitza et al. Jul 2001 B1
6268803 Gunderson et al. Jul 2001 B1
6269308 Kodaka et al. Jul 2001 B1
6274221 Smith et al. Aug 2001 B2
6276821 Pastrick et al. Aug 2001 B1
6276822 Bedrosian et al. Aug 2001 B1
6277471 Tang Aug 2001 B1
6278271 Schott Aug 2001 B1
6278377 DeLine et al. Aug 2001 B1
6278941 Yokoyama Aug 2001 B1
6280068 Mertens et al. Aug 2001 B1
6280069 Pastrick et al. Aug 2001 B1
6281804 Haller et al. Aug 2001 B1
6286965 Caskey et al. Sep 2001 B1
6286984 Berg Sep 2001 B1
6289332 Menig et al. Sep 2001 B2
6290378 Buchalla et al. Sep 2001 B1
6291906 Marcus et al. Sep 2001 B1
6294989 Schofield et al. Sep 2001 B1
6296379 Pastrick Oct 2001 B1
6297781 Turnbull et al. Oct 2001 B1
6299333 Pastrick et al. Oct 2001 B1
6300879 Regan et al. Oct 2001 B1
6304173 Pala et al. Oct 2001 B2
6305807 Schierbeek Oct 2001 B1
6310611 Caldwell Oct 2001 B1
6310714 Lomprey et al. Oct 2001 B1
6310738 Chu Oct 2001 B1
6313454 Bos et al. Nov 2001 B1
6314295 Kawamoto Nov 2001 B1
6317057 Lee Nov 2001 B1
6317248 Agrawal et al. Nov 2001 B1
6318870 Spooner et al. Nov 2001 B1
6320176 Schofield et al. Nov 2001 B1
6320282 Caldwell Nov 2001 B1
6320612 Young Nov 2001 B1
6324295 Valery et al. Nov 2001 B1
6326613 Heslin et al. Dec 2001 B1
6326900 DeLine et al. Dec 2001 B2
6329925 Skiver et al. Dec 2001 B1
6330511 Ogura et al. Dec 2001 B2
6331066 Desmond et al. Dec 2001 B1
6333759 Mazzilli Dec 2001 B1
6335680 Matsuoka Jan 2002 B1
6336737 Thau Jan 2002 B1
6341523 Lynam Jan 2002 B2
6344805 Yasui et al. Feb 2002 B1
6346698 Turnbull Feb 2002 B1
6347880 Fürst et al. Feb 2002 B1
6348858 Weis et al. Feb 2002 B2
6351708 Takagi et al. Feb 2002 B1
6353392 Schofield et al. Mar 2002 B1
6356206 Takenaga et al. Mar 2002 B1
6356376 Tonar et al. Mar 2002 B1
6356389 Nilsen et al. Mar 2002 B1
6357883 Strumolo et al. Mar 2002 B1
6362548 Bingle et al. Mar 2002 B1
6363326 Scully Mar 2002 B1
6366213 DeLine et al. Apr 2002 B2
6370329 Teuchert Apr 2002 B1
6371636 Wesson Apr 2002 B1
6386742 DeLine et al. May 2002 B1
6390529 Bingle et al. May 2002 B1
6390635 Whitehead et al. May 2002 B2
6396397 Bos et al. May 2002 B1
6396637 Roest et al. May 2002 B2
6407847 Poll et al. Jun 2002 B1
6408247 Ichikawa et al. Jun 2002 B1
6411204 Bloomfield et al. Jun 2002 B1
6412959 Tseng Jul 2002 B1
6412973 Bos et al. Jul 2002 B1
6415230 Maruko et al. Jul 2002 B1
6416208 Pastrick et al. Jul 2002 B2
6417786 Learman et al. Jul 2002 B2
6418376 Olson Jul 2002 B1
6419300 Pavao et al. Jul 2002 B1
6420036 Varaprasad et al. Jul 2002 B1
6420975 DeLine et al. Jul 2002 B1
6421081 Markus Jul 2002 B1
6424272 Gutta et al. Jul 2002 B1
6424273 Gutta et al. Jul 2002 B1
6424892 Matsuoka Jul 2002 B1
6426492 Bos et al. Jul 2002 B1
6427349 Blank et al. Aug 2002 B1
6428172 Hutzel et al. Aug 2002 B1
6433676 DeLine et al. Aug 2002 B2
6433680 Ho Aug 2002 B1
6433914 Lomprey et al. Aug 2002 B1
6437688 Kobayashi Aug 2002 B1
6438491 Farmer Aug 2002 B1
6439755 Fant, Jr. et al. Aug 2002 B1
6441872 Ho Aug 2002 B1
6445287 Schofield et al. Sep 2002 B1
6447128 Lang et al. Sep 2002 B1
6452533 Yamabuchi et al. Sep 2002 B1
6463369 Sadano et al. Oct 2002 B2
6466701 Ejiri et al. Oct 2002 B1
6472977 Pöchmüller Oct 2002 B1
6473001 Blum Oct 2002 B1
6474853 Pastrick et al. Nov 2002 B2
6476731 Miki et al. Nov 2002 B1
6477460 Kepler Nov 2002 B2
6477464 McCarthy et al. Nov 2002 B2
6483429 Yasui et al. Nov 2002 B1
6483438 DeLine et al. Nov 2002 B2
6487500 Lemelson et al. Nov 2002 B2
6494602 Pastrick et al. Dec 2002 B2
6498620 Schofield et al. Dec 2002 B2
6501387 Skiver et al. Dec 2002 B2
6512624 Tonar et al. Jan 2003 B2
6513252 Schierbeek et al. Feb 2003 B1
6515581 Ho Feb 2003 B1
6515582 Teowee Feb 2003 B1
6515597 Wada et al. Feb 2003 B1
6516664 Lynam Feb 2003 B2
6520667 Mousseau Feb 2003 B1
6522451 Lynam Feb 2003 B1
6522969 Kannonji Feb 2003 B2
6534884 Marcus et al. Mar 2003 B2
6539306 Turnbull Mar 2003 B2
6542085 Yang Apr 2003 B1
6542182 Chautorash Apr 2003 B1
6543163 Ginsberg Apr 2003 B1
6545598 de Villeroche Apr 2003 B1
6549253 Robbie et al. Apr 2003 B1
6549335 Trapani et al. Apr 2003 B1
6550949 Bauer et al. Apr 2003 B1
6553308 Uhlmann et al. Apr 2003 B1
6560027 Meine May 2003 B2
6567708 Bechtel et al. May 2003 B1
6568839 Pastrick et al. May 2003 B1
6572233 Northman et al. Jun 2003 B1
6575643 Takashashi Jun 2003 B2
6580373 Ohashi Jun 2003 B1
6581007 Hasegawa et al. Jun 2003 B2
6583730 Lang et al. Jun 2003 B2
6591192 Okamura et al. Jul 2003 B2
6592230 Dupay Jul 2003 B2
6593565 Heslin et al. Jul 2003 B2
6593984 Arakawa et al. Jul 2003 B2
6594065 Byker et al. Jul 2003 B2
6594067 Poll et al. Jul 2003 B2
6594090 Kruschwitz et al. Jul 2003 B2
6594583 Ogura et al. Jul 2003 B2
6594614 Studt et al. Jul 2003 B2
6597489 Guarr et al. Jul 2003 B1
6611202 Schofield et al. Aug 2003 B2
6611227 Nebiyeloul-Kifle et al. Aug 2003 B1
6611759 Brosche Aug 2003 B2
6614387 Deadman Sep 2003 B1
6616313 Fürst et al. Sep 2003 B2
6616764 Krämer et al. Sep 2003 B2
6618672 Sasaki et al. Sep 2003 B2
6624936 Kotchick et al. Sep 2003 B2
6627918 Getz et al. Sep 2003 B2
6630888 Lang et al. Oct 2003 B2
6636258 Strumolo Oct 2003 B2
6638582 Uchiyama et al. Oct 2003 B1
6642840 Lang et al. Nov 2003 B2
6642851 Deline et al. Nov 2003 B2
6648477 Hutzel et al. Nov 2003 B2
6661830 Reed et al. Dec 2003 B1
6665592 Kodama Dec 2003 B2
6670207 Roberts Dec 2003 B1
6670910 Delcheccolo et al. Dec 2003 B2
6671080 Poll et al. Dec 2003 B2
6672731 Schnell et al. Jan 2004 B2
6672734 Lammers Jan 2004 B2
6672744 DeLine et al. Jan 2004 B2
6672745 Bauer et al. Jan 2004 B1
6674370 Rodewald et al. Jan 2004 B2
6675075 Engelsburg et al. Jan 2004 B1
6678083 Anstee Jan 2004 B1
6678614 McCarthy et al. Jan 2004 B2
6683539 Trajkovic et al. Jan 2004 B2
6683969 Nishigaki et al. Jan 2004 B1
6685348 Pastrick et al. Feb 2004 B2
6690268 Schofield et al. Feb 2004 B2
6690413 Moore Feb 2004 B1
6693517 McCarthy et al. Feb 2004 B2
6693518 Kumata et al. Feb 2004 B2
6693519 Keirstead Feb 2004 B2
6693524 Payne Feb 2004 B1
6700692 Tonar et al. Mar 2004 B2
6709136 Pastrick et al. Mar 2004 B2
6713783 Mase et al. Mar 2004 B1
6717610 Bos et al. Apr 2004 B1
6717712 Lynam et al. Apr 2004 B2
6726337 Whitehead et al. Apr 2004 B2
6727808 Uselmann et al. Apr 2004 B1
6727844 Zimmermann et al. Apr 2004 B1
6731332 Yasui et al. May 2004 B1
6734807 King May 2004 B2
6736526 Matsuba et al. May 2004 B2
6737964 Samman et al. May 2004 B2
6738088 Uskolovsky et al. May 2004 B1
6744353 Sjönell Jun 2004 B2
6748211 Isaac et al. Jun 2004 B1
6756912 Skiver et al. Jun 2004 B2
6757109 Bos Jun 2004 B2
6759113 Tang Jul 2004 B1
6759945 Richard Jul 2004 B2
6760157 Allen et al. Jul 2004 B1
6774356 Heslin et al. Aug 2004 B2
6774810 DeLine et al. Aug 2004 B2
6778904 Iwami et al. Aug 2004 B2
6784129 Seto et al. Aug 2004 B2
6797396 Liu et al. Sep 2004 B1
6800871 Matsuda et al. Oct 2004 B2
6801283 Koyama et al. Oct 2004 B2
6806452 Bos et al. Oct 2004 B2
6810323 Bullock et al. Oct 2004 B1
6824281 Schofield et al. Nov 2004 B2
6832848 Pastrick Dec 2004 B2
6836725 Millington et al. Dec 2004 B2
6842276 Poll et al. Jan 2005 B2
6846098 Bourdelais et al. Jan 2005 B2
6847487 Burgner Jan 2005 B2
6848817 Bos et al. Feb 2005 B2
6853491 Ruhle et al. Feb 2005 B1
6870655 Northman et al. Mar 2005 B1
6870656 Tonar et al. Mar 2005 B2
6871982 Holman et al. Mar 2005 B2
6877888 DeLine et al. Apr 2005 B2
6882287 Schofield Apr 2005 B2
6891563 Schofield et al. May 2005 B2
6902284 Hutzel et al. Jun 2005 B2
6906632 DeLine et al. Jun 2005 B2
6910779 Abel et al. Jun 2005 B2
6912396 Sziraki et al. Jun 2005 B2
6916099 Su et al. Jul 2005 B2
6922902 Schierbeek et al. Aug 2005 B2
6928180 Stam et al. Aug 2005 B2
6928366 Ockerse et al. Aug 2005 B2
6930737 Weindorf et al. Aug 2005 B2
6934067 Ash et al. Aug 2005 B2
6946978 Schofield Sep 2005 B2
6947576 Stam et al. Sep 2005 B2
6947577 Stam et al. Sep 2005 B2
6951410 Parsons Oct 2005 B2
6951681 Hartley et al. Oct 2005 B2
6952312 Weber et al. Oct 2005 B2
6958495 Nishijima et al. Oct 2005 B2
6958683 Mills et al. Oct 2005 B2
6968273 Ockerse et al. Nov 2005 B2
6972888 Poll et al. Dec 2005 B2
6974236 Tenmyo Dec 2005 B2
6975215 Schofield et al. Dec 2005 B2
6977702 Wu Dec 2005 B2
6980092 Turnbull et al. Dec 2005 B2
6985291 Watson et al. Jan 2006 B2
6992718 Takahara Jan 2006 B1
7001058 Inditsky Feb 2006 B2
7004592 Varaprasad et al. Feb 2006 B2
7004593 Weller et al. Feb 2006 B2
7006173 Hiyama et al. Feb 2006 B1
7009751 Tonar et al. Mar 2006 B2
7012543 DeLine et al. Mar 2006 B2
7041965 Heslin et al. May 2006 B2
7042616 Tonar et al. May 2006 B2
7046418 Lin et al. May 2006 B2
7046448 Burgner May 2006 B2
7057681 Hinata et al. Jun 2006 B2
7092052 Okamoto et al. Aug 2006 B2
7106213 White Sep 2006 B2
7108409 DeLine et al. Sep 2006 B2
7121028 Shoen et al. Oct 2006 B2
7125131 Olczak Oct 2006 B2
7130727 Liu et al. Oct 2006 B2
7132064 Li et al. Nov 2006 B2
7136091 Ichikawa et al. Nov 2006 B2
7149613 Stam et al. Dec 2006 B2
7151515 Kim et al. Dec 2006 B2
7151997 Uhlmann et al. Dec 2006 B2
7154657 Poll et al. Dec 2006 B2
7158881 McCarthy et al. Jan 2007 B2
7160017 Lee et al. Jan 2007 B2
7167796 Taylor et al. Jan 2007 B2
7175291 Li Feb 2007 B1
7176790 Yamazaki Feb 2007 B2
7184190 McCabe et al. Feb 2007 B2
7188963 Schofield et al. Mar 2007 B2
7193764 Lin et al. Mar 2007 B2
7195381 Lynam et al. Mar 2007 B2
7199767 Spero Apr 2007 B2
7209277 Tonar et al. Apr 2007 B2
7215473 Fleming May 2007 B2
7233304 Aratani et al. Jun 2007 B1
7241037 Mathieu et al. Jul 2007 B2
7245336 Hiyama et al. Jul 2007 B2
7248305 Ootsuta et al. Jul 2007 B2
7251079 Capaldo et al. Jul 2007 B2
7255451 McCabe et al. Aug 2007 B2
7255465 DeLine et al. Aug 2007 B2
7262406 Heslin et al. Aug 2007 B2
7262916 Kao et al. Aug 2007 B2
7265342 Heslin et al. Sep 2007 B2
7268841 Kasajima et al. Sep 2007 B2
7269327 Tang Sep 2007 B2
7269328 Tang Sep 2007 B2
7274501 McCabe et al. Sep 2007 B2
7286280 Whitehead et al. Oct 2007 B2
7289037 Uken et al. Oct 2007 B2
7290919 Pan et al. Nov 2007 B2
7292208 Park et al. Nov 2007 B1
7308341 Schofield et al. Dec 2007 B2
7310177 McCabe et al. Dec 2007 B2
7311428 DeLine et al. Dec 2007 B2
7323819 Hong et al. Jan 2008 B2
7324261 Tonar et al. Jan 2008 B2
7328103 McCarthy et al. Feb 2008 B2
7329013 Blank et al. Feb 2008 B2
7329850 Drummond et al. Feb 2008 B2
7338177 Lynam Mar 2008 B2
7344284 Lynam et al. Mar 2008 B2
7362505 Hikmet et al. Apr 2008 B2
7349143 Tonar et al. May 2008 B2
7370983 DeWind et al. May 2008 B2
7372611 Tonar et al. May 2008 B2
7375895 Brynielsson May 2008 B2
7379224 Tonar et al. May 2008 B2
7379225 Tonar et al. May 2008 B2
7379243 Horsten et al. May 2008 B2
7389171 Rupp Jun 2008 B2
7396147 Munro Jul 2008 B2
7411732 Kao et al. Aug 2008 B2
7412328 Uhlmann et al. Aug 2008 B2
7417781 Tonar et al. Aug 2008 B2
7420159 Heslin et al. Sep 2008 B2
7446462 Lim et al. Nov 2008 B2
7446650 Schofield et al. Nov 2008 B2
7448776 Tang Nov 2008 B2
7452090 Weller et al. Nov 2008 B2
7453057 Drummond et al. Nov 2008 B2
7455412 Rottcher Nov 2008 B2
7467883 DeLine et al. Dec 2008 B2
7468651 DeLine et al. Dec 2008 B2
7471438 McCabe et al. Dec 2008 B2
7477439 Tonar at al. Jan 2009 B2
7480149 DeWard et al. Jan 2009 B2
7488080 Skiver et al. Feb 2009 B2
7490007 Taylor et al. Feb 2009 B2
7490943 Kikuchi et al. Feb 2009 B2
7490944 Blank et al. Feb 2009 B2
7494231 Varaprasad et al. Feb 2009 B2
7496439 McCormick Feb 2009 B2
7502156 Tonar et al. Mar 2009 B2
7505188 Niiyama et al. Mar 2009 B2
7511607 Hubbard et al. Mar 2009 B2
7511872 Tonar et al. Mar 2009 B2
7525715 McCabe et al. Apr 2009 B2
7526103 Schofield et al. Apr 2009 B2
7538316 Heslin et al. May 2009 B2
7540620 Weller et al. Jun 2009 B2
7543947 Varaprasad et al. Jun 2009 B2
7547467 Olson et al. Jun 2009 B2
7551354 Horsten et al. Jun 2009 B2
7571042 Taylor et al. Aug 2009 B2
7572490 Park et al. Aug 2009 B2
7579939 Schofield et al. Aug 2009 B2
7579940 Schofield et al. Aug 2009 B2
7580795 McCarthy et al. Aug 2009 B2
7581867 Lee et al. Sep 2009 B2
7583184 Schofield et al. Sep 2009 B2
7586566 Nelson et al. Sep 2009 B2
7586666 McCabe et al. Sep 2009 B2
7589893 Rottcher Sep 2009 B2
7600878 Blank et al. Oct 2009 B2
7619508 Lynam et al. Nov 2009 B2
7623202 Araki et al. Nov 2009 B2
7626749 Baur et al. Dec 2009 B2
7633567 Yamada et al. Dec 2009 B2
7636195 Nieuwkerk et al. Dec 2009 B2
7636930 Chang Dec 2009 B2
7643927 Hils Jan 2010 B2
7651228 Skiver et al. Jan 2010 B2
7658521 DeLine et al. Feb 2010 B2
7667579 DeLine et al. Feb 2010 B2
7670016 Weller et al. Mar 2010 B2
7695174 Takayanagi et al. Apr 2010 B2
7711479 Taylor et al. May 2010 B2
7726822 Blank et al. Jun 2010 B2
7728276 Drummond et al. Jun 2010 B2
20010019356 Takeda et al. Sep 2001 A1
20010022616 Rademacher et al. Sep 2001 A1
20010026215 Nakaho et al. Oct 2001 A1
20010026316 Senatore Oct 2001 A1
20010030857 Futhey et al. Oct 2001 A1
20010045981 Gloger et al. Nov 2001 A1
20010055165 McCarthy et al. Dec 2001 A1
20020003571 Schofield et al. Jan 2002 A1
20020044065 Quist et al. Apr 2002 A1
20020049535 Rigo et al. Apr 2002 A1
20020070872 Deline et al. Jun 2002 A1
20020072026 Lynam et al. Jun 2002 A1
20020085155 Arikawa Jul 2002 A1
20020093826 Bos et al. Jul 2002 A1
20020113203 Heslin et al. Aug 2002 A1
20020126497 Pastrick Sep 2002 A1
20020154007 Yang Oct 2002 A1
20020159270 Lynam et al. Oct 2002 A1
20020172053 Pastrick et al. Nov 2002 A1
20020191409 DeLine et al. Dec 2002 A1
20020196639 Weidel Dec 2002 A1
20030002165 Mathias et al. Jan 2003 A1
20030002179 Roberts et al. Jan 2003 A1
20030007261 Hutzel et al. Jan 2003 A1
20030016125 Lang et al. Jan 2003 A1
20030016287 Nakayama et al. Jan 2003 A1
20030016542 Pastrick et al. Jan 2003 A1
20030020603 DeLine et al. Jan 2003 A1
20030025596 Lang et al. Feb 2003 A1
20030025597 Schofield Feb 2003 A1
20030030546 Tseng Feb 2003 A1
20030030551 Ho Feb 2003 A1
20030030724 Okamoto Feb 2003 A1
20030035050 Mizusawa et al. Feb 2003 A1
20030043269 Park Mar 2003 A1
20030048639 Boyd et al. Mar 2003 A1
20030052969 Satoh et al. Mar 2003 A1
20030058338 Kawauchi et al. Mar 2003 A1
20030067383 Yang Apr 2003 A1
20030069690 Correia et al. Apr 2003 A1
20030076415 Strumolo Apr 2003 A1
20030080877 Takagi et al. May 2003 A1
20030085806 Samman et al. May 2003 A1
20030088361 Sekiguchi May 2003 A1
20030090568 Pico May 2003 A1
20030090569 Poechmueller May 2003 A1
20030090570 Takagi et al. May 2003 A1
20030095331 Bengoechea et al. May 2003 A1
20030098908 Misaiji et al. May 2003 A1
20030103141 Bechtel et al. Jun 2003 A1
20030103142 Hitomi et al. Jun 2003 A1
20030117522 Okada Jun 2003 A1
20030122929 Minuado et al. Jul 2003 A1
20030122930 Schofield et al. Jul 2003 A1
20030133014 Mendoza Jul 2003 A1
20030137586 Lewellen Jul 2003 A1
20030141965 Gunderson et al. Jul 2003 A1
20030146831 Berberich et al. Aug 2003 A1
20030147244 Tenmyo Aug 2003 A1
20030169158 Paul, Jr. Sep 2003 A1
20030169522 Schofield et al. Sep 2003 A1
20030179293 Oizumi Sep 2003 A1
20030189754 Sugino et al. Oct 2003 A1
20030202096 Kim Oct 2003 A1
20030210369 Wu Nov 2003 A1
20030214576 Koga Nov 2003 A1
20030214584 Ross, Jr. Nov 2003 A1
20030214733 Fujikawa et al. Nov 2003 A1
20030222793 Tanaka et al. Dec 2003 A1
20030222983 Nobori et al. Dec 2003 A1
20030227546 Hilborn et al. Dec 2003 A1
20040004541 Hong Jan 2004 A1
20040027695 Lin Feb 2004 A1
20040032321 McMahon et al. Feb 2004 A1
20040032675 Weller et al. Feb 2004 A1
20040036768 Green Feb 2004 A1
20040046870 Leigh Travis Mar 2004 A1
20040051634 Schofield et al. Mar 2004 A1
20040056955 Berberich et al. Mar 2004 A1
20040057131 Hutzel et al. Mar 2004 A1
20040064241 Sekiguchi Apr 2004 A1
20040066285 Sekiguchi Apr 2004 A1
20040075603 Kodama Apr 2004 A1
20040077359 Bernas et al. Apr 2004 A1
20040080404 White Apr 2004 A1
20040080431 White Apr 2004 A1
20040085196 Miller et al. May 2004 A1
20040085499 Baek May 2004 A1
20040090314 Iwamoto May 2004 A1
20040090317 Rothkop May 2004 A1
20040096082 Nakai et al. May 2004 A1
20040098196 Sekiguchi May 2004 A1
20040105614 Kobayashi et al. Jun 2004 A1
20040107030 Nishira et al. Jun 2004 A1
20040107617 Shoen et al. Jun 2004 A1
20040109060 Ishii Jun 2004 A1
20040114039 Ishikura Jun 2004 A1
20040128065 Taylor et al. Jul 2004 A1
20040145457 Schofield et al. Jul 2004 A1
20040170008 Tenmyo Sep 2004 A1
20040202001 Roberts et al. Oct 2004 A1
20040243303 Padmanabhan Dec 2004 A1
20040251804 McCullough et al. Dec 2004 A1
20050024591 Lian et al. Feb 2005 A1
20050024729 Ockerse et al. Feb 2005 A1
20050078347 Lin et al. Apr 2005 A1
20050078389 Kulas et al. Apr 2005 A1
20050079326 Varaprasad et al. Apr 2005 A1
20050083577 Varaprasad et al. Apr 2005 A1
20050099559 Lee et al. May 2005 A1
20050111070 Lin et al. May 2005 A1
20050140855 Utsumi et al. Jun 2005 A1
20050168995 Kittlemann et al. Aug 2005 A1
20050169003 Lindahl et al. Aug 2005 A1
20050172504 Ohm et al. Aug 2005 A1
20050185278 Horsten et al. Aug 2005 A1
20050187675 Schofield et al. Aug 2005 A1
20050237440 Sugimura et al. Oct 2005 A1
20050270766 Kung et al. Dec 2005 A1
20050270798 Lee et al. Dec 2005 A1
20060007550 Tonar et al. Jan 2006 A1
20060028730 Varaprasad et al. Feb 2006 A1
20060038668 DeWard et al. Feb 2006 A1
20060050018 Hutzel et al. Mar 2006 A1
20060061008 Karner et al. Mar 2006 A1
20060139953 Chou et al. Jun 2006 A1
20060164230 DeWind et al. Jul 2006 A1
20060164725 Horsten et al. Jul 2006 A1
20060202111 Heslin et al. Sep 2006 A1
20060255960 Uken et al. Nov 2006 A1
20060274218 Xue Dec 2006 A1
20070041096 Nieuwkerk et al. Feb 2007 A1
20070058257 Lynam Mar 2007 A1
20070080585 Lyu Apr 2007 A1
20070118287 Taylor et al. May 2007 A1
20070120043 Heslin et al. May 2007 A1
20070132567 Schofield et al. Jun 2007 A1
20070162229 McCarthy et al. Jul 2007 A1
20070171037 Schofield et al. Jul 2007 A1
20070183066 Varaprasad et al. Aug 2007 A1
20070184284 Varaprasad et al. Aug 2007 A1
20080002106 Van De Witte et al. Jan 2008 A1
20080013153 McCabe et al. Jan 2008 A1
20080068520 Minikey, Jr. et al. Mar 2008 A1
20080094684 Varaprasad et al. Apr 2008 A1
20080094685 Varaprasad et al. Apr 2008 A1
20080180529 Taylor et al. Jul 2008 A1
20080180781 Varaprasad et al. Jul 2008 A1
20080183355 Taylor et al. Jul 2008 A1
20080201075 Taylor et al. Aug 2008 A1
20080212189 Baur et al. Sep 2008 A1
20080212215 Schofield et al. Sep 2008 A1
20080225538 Lynam et al. Sep 2008 A1
20080266389 DeWind et al. Oct 2008 A1
20080291522 Varaprasad et al. Nov 2008 A1
20080308219 Lynam Dec 2008 A1
20090015736 Weller et al. Jan 2009 A1
20090033837 Molsen et al. Feb 2009 A1
20090040465 Conner et al. Feb 2009 A1
20090040588 Tonar et al. Feb 2009 A1
20090040778 Takayanagi et al. Feb 2009 A1
20090052003 Schofield et al. Feb 2009 A1
20090080055 Baur et al. Mar 2009 A1
20090141331 Skiver et al. Jun 2009 A1
20090174776 Taylor et al. Jul 2009 A1
20090201137 Weller et al. Aug 2009 A1
20090219394 Heslin et al. Sep 2009 A1
20090231741 Weller et al. Sep 2009 A1
20090243824 Hook et al. Oct 2009 A1
20090262422 Cross et al. Oct 2009 A1
20100085645 Skiver et al. Apr 2010 A1
20100091509 DeLine et al. Apr 2010 A1
Foreign Referenced Citations (139)
Number Date Country
A-4031795 Feb 1995 AU
941408 Apr 1956 DE
944531 Jul 1956 DE
7323996 Nov 1973 DE
2631713 Feb 1977 DE
3248511 Jul 1984 DE
3301945 Jul 1984 DE
3614882 Nov 1987 DE
9306989.8 Jul 1993 DE
4329983 Aug 1995 DE
4415885 Nov 1995 DE
4444443 Jun 1996 DE
9321263 Jan 1997 DE
29703084 Jun 1997 DE
29805142 May 1998 DE
19755008 Jul 1999 DE
29902344 Jul 1999 DE
0165817 Dec 1985 EP
0202460 Nov 1986 EP
0254435 Jan 1988 EP
0299509 Jan 1989 EP
0450553 Oct 1991 EP
0513476 Nov 1992 EP
0605045 Jul 1994 EP
0615882 Sep 1994 EP
0667254 Aug 1995 EP
0729864 Dec 1995 EP
0728618 Aug 1996 EP
0769419 Apr 1997 EP
0788947 Aug 1997 EP
0830267 Mar 1998 EP
937601 Aug 1999 EP
1097848 May 2001 EP
1152285 Nov 2001 EP
1376207 Jan 2004 EP
0899157 Oct 2004 EP
2008869 Dec 2008 EP
1021987 Feb 1953 FR
1461419 Dec 1966 FR
2585991 Feb 1987 FR
2672857 Aug 1992 FR
2673499 Sep 1992 FR
2759045 Aug 1998 FR
810010 Mar 1959 GB
934037 Aug 1963 GB
1008411 Oct 1965 GB
1136134 Dec 1968 GB
1553376 Sep 1979 GB
1566451 Apr 1980 GB
2137573 Oct 1984 GB
2192370 Jan 1988 GB
2 210 836 Jun 1989 GB
2222991 Mar 1990 GB
2255539 Nov 1992 GB
2292857 Mar 1996 GB
2297632 Aug 1996 GB
2351055 Dec 2000 GB
970014 Jul 1998 IE
50000638 Jan 1975 JP
55039843 Mar 1980 JP
5730639 Feb 1982 JP
57208530 Dec 1982 JP
5830729 Feb 1983 JP
58110334 Jun 1983 JP
58180347 Oct 1983 JP
58209635 Dec 1983 JP
59114139 Jul 1984 JP
60212730 Oct 1985 JP
60261275 Dec 1985 JP
61260217 Nov 1986 JP
6243543 Feb 1987 JP
62122487 Jun 1987 JP
63106730 May 1988 JP
63106731 May 1988 JP
64-14700 Jan 1989 JP
01123587 May 1989 JP
2122844 Oct 1990 JP
3061192 Mar 1991 JP
03243914 Oct 1991 JP
4-114587 Apr 1992 JP
40245886 Sep 1992 JP
5-213113 Aug 1993 JP
6080953 Mar 1994 JP
6107035 Apr 1994 JP
6227318 Aug 1994 JP
7277072 Oct 1995 JP
0577657 Jul 1997 JP
11078693 Mar 1999 JP
2000159014 Jun 2000 JP
2000255321 Sep 2000 JP
2002352611 Dec 2002 JP
2003267129 Sep 2003 JP
2004037944 Feb 2004 JP
2005148119 Jun 2005 JP
2005316509 Nov 2005 JP
2005327600 Nov 2005 JP
WO 8202448 Jul 1982 WO
WO 9412368 Jun 1994 WO
WO 9419212 Sep 1994 WO
WO 9427262 Nov 1994 WO
WO 9603475 Feb 1996 WO
WO 9621581 Jul 1996 WO
WO 9734186 Sep 1997 WO
WO 9748134 Dec 1997 WO
WO 9814974 Apr 1998 WO
WO 9830415 Jul 1998 WO
WO 9838547 Sep 1998 WO
WO 9842796 Oct 1998 WO
WO 9844384 Oct 1998 WO
WO 9844385 Oct 1998 WO
WO 9844386 Oct 1998 WO
WO 9914088 Mar 1999 WO
WO 9914943 Mar 1999 WO
WO 9923828 May 1999 WO
WO 9945081 Sep 1999 WO
WO 0011723 Mar 2000 WO
WO 0015462 Mar 2000 WO
WO 0017009 Mar 2000 WO
WO 0017702 Mar 2000 WO
WO 0018612 Apr 2000 WO
WO 0022471 Apr 2000 WO
WO 0023826 Apr 2000 WO
WO 0033134 Jun 2000 WO
WO 0049680 Aug 2000 WO
WO 0055685 Sep 2000 WO
WO 0052661 Sep 2000 WO
WO 0066679 Nov 2000 WO
WO 0164462 Sep 2001 WO
WO 0164481 Sep 2001 WO
WO 02062623 Aug 2002 WO
WO 03065084 Aug 2003 WO
WO 03079318 Sep 2003 WO
WO 2004058540 Jul 2004 WO
WO 2005024500 Mar 2005 WO
WO 2005045481 May 2005 WO
WO 2005050267 Jun 2005 WO
WO 2005071646 Aug 2005 WO
WO 2005082015 Sep 2005 WO
WO 2007103573 Sep 2007 WO
Related Publications (1)
Number Date Country
20100202075 A1 Aug 2010 US
Provisional Applications (4)
Number Date Country
60636931 Dec 2004 US
60420010 Oct 2002 US
60398240 Jul 2002 US
60386373 Jun 2002 US
Continuations (4)
Number Date Country
Parent 12575726 Oct 2009 US
Child 12766160 US
Parent 12370043 Feb 2009 US
Child 12575726 US
Parent 12029073 Feb 2008 US
Child 12370043 US
Parent 11305637 Dec 2005 US
Child 12029073 US
Continuation in Parts (1)
Number Date Country
Parent 10456599 Jun 2003 US
Child 11305637 US