This invention relates to a system for automatically controlling the interior temperature of e.g. a house, especially during summertime, to an optimum level.
Air-conditioners and ceiling fans are used to keep the interior temperature during summertime to a comfortable level. These devices were heretofore controlled by manually operating switches attached to these devices to a temperature and a rotational speed which the operator feels are most suitable. But it is difficult to operate these devices taking into consideration the interaction between these devices. It is also extremely troublesome to finely adjust these devices according to temperatures inside and outside the room that change with time. Electric energy is also wasted.
An object of the invention is to provide a control system which can automatically control air-conditioners and other devices according to the temperatures inside and outside the room, thereby keeping the interior temperature to a comfortable level.
In order to achieve the object, the present invention provides an interior temperature control system comprising at least a top light, a ceiling fan and an air-conditioner that are all installed in or on a house, upper and lower temperature detecting means for detecting the temperatures of upper and lower portions of a room respectively, an outside air temperature detecting means, and a controller for selectively opening and closing the top light, selectively rotating the ceiling fan in one or the opposite direction, and selectively activating and deactivating the air-conditioner, according to signals from the detecting means.
The controller may include means for comparing the temperatures of upper and lower portions of the room based on signals from the upper and lower temperature detecting means, means for comparing an interior temperature which is one or the average of the temperatures of the upper and lower portions of the room with the outside air temperature detected by the outside air temperature detecting means, means for comparing the interior temperature with a predetermined temperature, and means for selectively opening and closing the top light, selectively rotating the ceiling fan in one and an opposite direction, and selectively activating and deactivating the air-conditioner, based on the results of comparison.
Using the simple means of merely detecting the temperatures at the upper and lower portions of the room and the temperatures inside and outside the room, it is possible to keep the interior temperature to an optimum level by automatically controlling air-conditioning devices. This gives comfort to people inside the room and it is possible to save energy too.
Now the embodiment of this invention is described with reference to the attached drawings.
A ceiling fan T2 is fixed to the interior surface of the ceiling 2 near the top light T1. The ceiling fan can be rotated at a suitable speed in either direction in response to a signal applied to a control unit C2 to produce an upward or downward air current in the room 3. At a suitable location in the room 3, an air-conditioner T3 is installed, which is activated for cooling and deactivated by a control unit C3.
At a suitable upper portion of the room 3, a temperature sensor D1 is provided. At a suitable lower portion of the room 3, another temperature sensor D2 is provided. Still another temperature sensor D3 is provided at a suitable location outside the room 3, such as under the floor. These temperature sensors D1, D2 and D3 may produce signals indicating the detected temperatures, or produce ON (or OFF) signals when the temperature exceeds or falls below a predetermined value.
As shown in
As shown in
Specific means for controlling the room temperature is described with reference to
Then in step S13, determination is made on whether the temperature difference X between the upper and lower portions of the room is equal to or higher than K1 (constant value). If e.g. K1=3° C., and if the temperature difference X is less than 3° C., in step S14, determination is made on whether the difference Y between the temperatures inside and outside the room is higher or lower than K2 (constant value). If K2=0, determination is made merely on whether the internal temperature is higher or lower than the outside air temperature. If the internal temperature is higher than the outside air temperature, it is determined whether the internal temperature is higher or lower than the predetermine temperature in step S15 (K3=0). The predetermined temperature is the threshold temperature below which the internal environment is felt cool.
If the internal environment is determined to be cool, the programs proceeds to steps S16, S17 and S18 to stop the ceiling fan T2, open the top light T1 to introduce outer air into the room, and keep the air-conditioner T3 deactivated. These operations are carried out based on command signals applied from the controller C to the respective control units C2, C1 and C3. If the internal environment is hot, in step S19, the ceiling fan T2 is turned to generate an upward air current, and the top light T1 is opened to replace inside air with outer air, with the air-conditioner T3 deactivated.
If it is determined in step S14 that the internal temperature is not higher than the outside air temperature, it is determined in step S20 whether the internal environment is cool. If the internal environment is cool, the ceiling fan T2 is deactivated in step S21, and the top light T1 is closed in step S22. If the internal environment is not cool, the program proceeds to steps S23, S24 and S25 to turn the ceiling fan T2, thereby generating an upward air current, open the top light T1 for ventilation with the ceiling fan T2, and activate the air-conditioner T3 for cooling.
If it is determined in step S13 that the temperature difference between the upper and lower portions of the room is e.g. not more than 3° C., the program proceeds to step S30 in
If it is determined in step S30 that the internal temperature is higher than the outside air temperature, it is determined in step S37 whether the internal temperature is equal to or lower than the predetermined temperature. If it is, the program proceeds to steps S38, S39 and then S34 to deactivate the ceiling fan T2, close the top light T1 and deactivate the air-conditioner T3. Therefore, the interior of the room is kept in the unchanged state.
If it is determined in step S37 that the internal temperature is higher than the predetermined temperature, the program proceeds to steps S40, S41 and then S42 to turn the ceiling fan T2, thereby generating a downward air current, close the top light T1, and activate the air-conditioner T3 for cooling. By performing these operations, cool air produced by air-conditioning is circulated throughout the room by the downward air current with the room interior shut out from the outer air. Thus, it is possible to keep the room temperature uniform.
In steps S10-S42, the values of K1, K2 and K3 are not limited. According to their values, the degree of opening of the top light T1 and the rotational speed of the ceiling fan T2 may be changed stepwise, or the operational intensity of the air-conditioner may be changed over among “high”, “medium” and “low”. If the top light T1 has a blind, the blind may be selectively closed and opened according to the amount of incoming sunlight as detected by an optical sensor.
Number | Date | Country | Kind |
---|---|---|---|
2005-065713 | Mar 2005 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2006/304450 | 3/8/2006 | WO | 00 | 9/19/2007 |