The present disclosure relates to a new architecture and method of fabricating highly efficient and hysteresis-free perovskite-based photovoltaic devices.
This section provides background information related to the present disclosure which is not necessarily prior art.
Hybrid organic-inorganic halide perovskite materials have emerged as a highly promising candidate for low-cost solar photovoltaic (PV) applications. Due to their narrow and tunable band-gap, high absorbance, low exciton binding energy, and high carrier mobility, overall power conversion efficiency has been improved from a modest 3.8% in liquid-electrolyte configuration to over 20% in an all solid-state architecture. However, there are still several challenges to be addressed before such solid state architecture can displace other PV technologies available in the market. One of the most challenging challenges is to understand and suppress the hysteresis phenomenon in current-voltage (I-V) characteristics, which make it difficult to accurately evaluate a device's performance and track power points.
Often, device performance of these perovskites have been shown to be dependent on scan rate, scan direction, light soaking and external bias conditions. These effects have been explained by a combination of factors including: charge accumulation, which is caused by trap states, ion migration, or unbalanced electron and hole extraction or collection at the interfaces and the potential for ferroelectric transitions. To solve this problem, different approaches have been investigated. The most effective methods for solving the problem are aimed at either improving the charge transport or decreasing and passivating crystal defects in the perovskite layer. Crystal defects such as self-interstitial atom and vacancies have been considered as one of the main reasons leading to trap states and providing ion migration pathways that provide unreliable I-V and further induce instability. One of the most probable defects in such hybrid perovskite films are iodide vacancies which have the lowest formation energy and relatively lower migration energy. As both methylammonium iodide and methylammonium chloride sublime at relatively low temperature, the amount of halide vacancies left behind in the perovskite film likely cannot be neglected. Therefore, a key strategy for suppressing hysteresis is needed to improve the crystallinity and decrease the halide vacancy defects of perovskite films.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
The current technology provides a photovoltaic device. The photovoltaic device includes a substrate having a first surface and a second opposing surface, a first electrode disposed directly on at least one of the first surface or the second surface of the substrate, a layer having a perovskite material, a layer having a metal salt, and a second electrode, wherein the layer having a metal salt and the layer having a perovskite material are located between the first electrode and the second electrode. In various aspects, the photovoltaic device also includes a carrier transport layer, wherein the carrier transport layer is disposed directly on the layer having a perovskite material. The carrier transport layer includes either at least one electron transport layer or at least one hole transport layer. When the carrier transport layer is an electron transport layer, the second electrode is a cathode and the electron transport layer is disposed on the cathode, such that the electron transport layer is located between the layer having a perovskite material and the cathode. In some embodiments, the device further includes a carrier transport layer disposed directly on the layer having a metal salt, such that the layer having a metal salt is located between the layer having a perovskite material and the carrier transport layer.
The current technology also provides a method for fabricating a doped photovoltaic device. The method includes sequentially disposing the following layers onto a substrate: a layer having a first electrode, a layer having at least one metal salt, a layer having a perovskite material, and a layer having a second electrode. The layer having a perovskite material is disposed directly on the layer having at least one metal salt, such that the layer having at least one metal salt is partially or completely diffused into the layer having a perovskite material.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific compositions, components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, elements, compositions, steps, integers, operations, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. Although the open-ended term “comprising,” is to be understood as a non-restrictive term used to describe and claim various embodiments set forth herein, in certain aspects, the term may alternatively be understood to instead be a more limiting and restrictive term, such as “consisting of” or “consisting essentially of.” Thus, for any given embodiment reciting compositions, materials, components, elements, features, integers, operations, and/or process steps, the present disclosure also specifically includes embodiments consisting of, or consisting essentially of, such recited compositions, materials, components, elements, features, integers, operations, and/or process steps. In the case of “consisting of,” the alternative embodiment excludes any additional compositions, materials, components, elements, features, integers, operations, and/or process steps, while in the case of “consisting essentially of,” any additional compositions, materials, components, elements, features, integers, operations, and/or process steps that materially affect the basic and novel characteristics are excluded from such an embodiment, but any compositions, materials, components, elements, features, integers, operations, and/or process steps that do not materially affect the basic and novel characteristics can be included in the embodiment.
Any method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed, unless otherwise indicated.
When a component, element, or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other component, element, or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Spatially or temporally relative terms, such as “before,” “after,” “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially or temporally relative terms may be intended to encompass different orientations of the device or system in use or operation in addition to the orientation depicted in the figures.
Throughout this disclosure, the numerical values represent approximate measures or limits to ranges to encompass minor deviations from the given values and embodiments having about the value mentioned as well as those having exactly the value mentioned. All numerical values of parameters (e.g., of quantities or conditions) in this specification, including the appended claims, are to be understood as being modified in all instances by the term “about” whether or not “about” actually appears before the numerical value. “About” indicates that the stated numerical value allows some slight imprecision (with some approach to exactness in the value; approximately or reasonably close to the value; nearly). If the imprecision provided by “about” is not otherwise understood in the art with this ordinary meaning, then “about” as used herein indicates at least variations that may arise from ordinary methods of measuring and using such parameters.
In addition, disclosure of ranges includes disclosure of all values and further divided ranges within the entire range, including endpoints and sub-ranges given for the ranges. As referred to herein, ranges are, unless specified otherwise, inclusive of endpoints and include disclosure of all distinct values and further divided ranges within the entire range. Thus, for example, a range of “from A to B” or “from about A to about B” is inclusive of A and of B.
Example embodiments will now be described more fully with reference to the accompanying drawings.
The current technology provides methods for doping and fabricating hysteresis-free perovskite-based photovoltaic devices by using metal salts as interface layer additives. Such metal salt layers introduced at perovskite interfaces can provide excessive halide ions to fill vacancies formed inside the perovskite during deposition and annealing process, to improve device stability, lifetime, and efficiency. The method generates photovoltaic devices with a power conversion efficiency (PCE) ranging from about 10% to about 15%, such as, for example, a PCE of about 12.6%, and a hysteresis of equal to or less than about 10%, equal to or less than about 5%, or equal to or less than about 3%, such as, for example, a hysteresis of about 3%, 2%, 1% or less. These PCE and hysteresis values are greatly improved, up to about 90%, relative to conventional devices without the metal salt layer. Without being bound by theory, through depth resolved mass spectrometry and optical modeling, this enhancement is attributed to the reduction of iodide vacancies. These methods provide an alternative and facile route to high performance and hysteresis-free perovskite solar cells. Devices made by these methods are also provided by the current technology.
With reference to
The substrate 12 can be composed of any material known in the art. As non-limiting examples, the substrate 12 can be composed of glass, low iron glass, plastic, poly(methyl methacrylate) (PMMA), poly-(ethyl methacrylate) (PEMA), (poly)-butyl methacrylate-co-methyl methacrylate (PBMMA), polyethylene terephthalate (PET), polyimides, such as Kapton® polyimide films (DuPont, Wilmington, Del.), amorphous silicon, crystalline silicon, stainless steel, metals, metal foils, and gallium arsenide. As discussed further below, one of the first electrode 18 or the second electrode 56 is a cathode and the other of the first electrode 18 or the second electrode 56 is an anode. The first electrode and the second electrode are composed of a material individually selected from the group consisting of a thin film of indium tin oxide (ITO), aluminum doped zinc oxide (AZO), indium zinc oxide, zinc oxide, and gallium zinc oxide (GZO), metal or ultra-thin metals, such as Al, Au, Ag, Mo, Cu, or Ni, graphene, graphene oxide, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), metal nanowires, such as Al, Au, or Ag nanowires, and combinations thereof. The first and second electrodes 18, 56 individually have a thickness of from about 5 nm to about 200 nm, or from about 50 nm to about 150 nm, or from about 75 nm to about 125 nm.
In various embodiments, the layer comprising a metal salt 30 is composed of at least one metal halide salt, at least one alkali metal halide salt, at least one alkaline earth metal halide salt, at least one transition metal halide salt, at least one sulfide salt, or a combination thereof. Metal halide salts are selected from the group consisting of PbX2, SnX2, GeX2, AlX3, BX3, GaX3, BiX3, InX3, SiX4, TiX4, SbX5, and combinations thereof, where X is a halide or a combination of halides, wherein halides are F−, Cl−, Br, or I−. Alkali metal halide salts have the MX, where M is Li, Na, K, Rb, or Cs and X is a halide or a combination of halides. Exemplary metal halide salts include NaI and NaBr. Alkaline earth metal halide salts have the formula M′X2, where M′ is Be, Mg, Ca, or Sr an X is a halide. Transition metal halide salts have the formula MXn, where M is Mn, Fe, Co, Ni, Cr, V, or Cu; n is 1, 2, 3, 4, or 5; and X is a halide. Exemplary transition metal halide salts include MnF3, MnF4, MnCl2, MnCl3, MnBr2, Mnl2, FeF2, FeF3, FeCl3, FeCl2, FeBr2, FeBr3, Felt, Fel3, CoF2, CoF3, CoF4, CoCl2, CoCl3, CoBr2, CoI2, NiF2, NiCl2, NiI2, CrF2, CrF3, CrF4, CrF5, CrF6, CrCl2, CrCl3, CrCl4, CrBr2, CrBr3, CrBr4, CrI2, CrI3, CrI4, VF2, VF3, VF4, VF5, VCl2, VCl3, VCl4, VBr2, VBr3, VBr4, VI2, VI3, VI4, CuF, CuF2, CuCl, CuCl2, CuBr2, CuI, and combinations thereof. Sulfide salts have the formula M2S, M′S, M″2S3, or M*S2, where M is Li, Na, K, Rb, or Cs; M′ is Be, Mg, Ca, Sr, or Pb; M″ is Bi, Al, Ga, In, or Sb; M* is Si, Ge, Sn, or Pb; and S is S, Se, or Te. Accordingly, the metal salt can include any combination of the metal salts described herein.
A perovskite is a material that has the same type of crystal structure as calcium titanium oxide (CaTiO3; i.e., naturally occurring perovskite). The crystal structure is known as the “perovskite structure” or XIIA2+VIB4+X2−3 with oxygen in the face centers. The general formula for a perovskite compound si ABX3, where A and B are cations of different sizes (the A cation is typically larger than the B cation) and X is an anion that bonds to both A and B. The ideal cubic-symmetry structure has the B cation in 6-fold coordination, surrounded by an octahedron of anions, and the A cation in 12-fold cuboctahedral coordination. In various embodiments, the layer comprising a perovskite material 36 includes at least one perovskite, hybrid halide perovskite, oxide perovskite, layered halide perovskite, or at least one inorganic halide perovskite. Hybrid halide perovskites have the formula ABX3, where A is methylammonium (MA), formamidinium (FA), ethanediammonium (EA) or iso-propylammonium; B is Pb, Sn, Ge, Cu, Sr, Ti, Mn, or Zn; and X is a halide. Inorganic halide perovskites have the formula MBX3, where M is Li, Na, K, Rb, or Cs; B is Pb, Sn, Ge, Cu, Sr, Ti, Mn, or Zn; and X is a halide. Accordingly, the perovskite material can include any combination of the perovskite materials described herein. The layer comprising a perovskite material 36 has a thickness of from about 20 nm to about 2000 nm, from about 50 nm to about 1000 nm, from about 100 nm to about 800 nm, from about 200 nm to about 600 nm, or from about 300 nm to about 400 nm.
The layer comprising a perovskite material 36 is disposed directly on the layer comprising a metal salt 30. With reference to
In some embodiments, the device 10 includes an optional second layer of a metal salt 42. The optional second layer of a metal salt 42 includes any metal salt or combination of metal salts described herein. The optional second layer of metal salt 42 includes a first surface 44 and a second surface 48. When present, the first surface 46 of the second layer of a metal salt 42 is disposed directly on the second surface 40 of the layer comprising a perovskite material 36. Although the second layer comprising a metal salt 42 initially has a thickness of from about 0.1 nm to about 100 nm, upon annealing the second layer comprising the metal salt 42 at least partially diffuses in the layer comprising a perovskite material 36. Therefore, in some embodiments, the second layer comprising a metal salt 42 is either partially or completely diffused into the layer comprising a perovskite material 36.
The device 10 further comprises a first carrier transport layer 24 having a first surface 26 and an opposing second surface 28 and a second carrier transport layer 50 having a first surface 52 and an opposing second surface 54. The first carrier transport layer 24 is disposed between the layer comprising a metal salt 30 and the first electrode 18, such that the first surface 26 of the first carrier transport layer 24 is directly disposed on the second surface 22 of the first electrode and the second surface 28 of the first carrier transport layer is directly disposed on the first surface 32 of the layer comprising a metal salt 30. The second carrier transport layer 50 is disposed between the layer comprising a perovskite material 36 and the second electrode 56. For example, first surface 52 of the second carrier transport layer 50 may be directly disposed on the second surface 40 of the layer comprising a perovskite material 36 or the first surface 52 of the second carrier transport layer 50 may be directly disposed on the second surface 48 of the optional second layer comprising a metal salt 42, when present. The second surface 54 of the second carrier transport layer 50 is directly disposed on the first surface 58 of the second electrode 56.
The first carrier transport layer 24 is either a hole transport layer or an electron transport layer and the second carrier transport layer 50 is the other of a hole transport layer or an electron transport layer. Therefore, the first carrier transport layer 24 and the second carrier transport layer 50 do not include the same materials or sublayers. Accordingly, when one of the first carrier transport layer 24 or the second carrier transport layer 50 is a hole transport layer, the other of the first carrier transport layer 24 or the second carrier transport layer 50 is an electron transport layer.
The electron transport layer can be composed of a single electron transport layer or a plurality of electron transport layers. Therefore, the electron transport layer includes at least one electron transport layer comprising an electron transport material. Non-limiting examples of electron transport materials include [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), Al-doped ZnO (AZO), TiO2, bathocuproine (BCP), and combinations thereof. Accordingly, the at least one electron transport layer may be selected from the group consisting of a layer of PCBM, a layer of AZO, a layer of TiO2, a layer of BCP, and combinations thereof. Each layer comprising the electron transport layer may have a thickness of from about 1 nm to about 500 nm.
The hole transport layer can be composed of a single hole transport layer or a plurality of hole transport layers. Therefore, the hole transport layer includes at least one hole transport layer comprising a hole transport material. Non-limiting examples of hole transport materials include poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), poly(3-hexylthiophene-2,5-diyl) (P3HT), N,N′-Bis(naphthalen-1-yl)-N,N′-bis(phenyl)-2,2′-dimethylbenzidine (NPD), N,N′-Bis(3-methylphenyl)-N,N′-bis(phenyl)-benzidine (TPD), 2,2′,7,7′-Tetrakis(N,N-diphenylamino)-2,7-diamino-9,9-spirobifluorene (spiro-TAD), Poly[N,N′-bis(4-butylphenyl)-N,N′-bis(phenyl)-benzidine] (poly-TPD), and combinations thereof. Accordingly, the at least one hole transport layer may be selected from the group consisting of a layer of PEDOT:PSS, a layer of P3HT, a layer of NPD, a layer of TPD, a layer of sprio-TAD, a layer of poly-TPD, and combinations thereof. Each layer comprising the hole transport layer may have a thickness of from about 10 nm to about 500 nm, 15 nm to about 250 nm, or from about 20 nm to about 100 nm.
When the first carrier transport layer 24 is an electron transport layer and the second carrier transport layer 50 is a hole transport layer, such that the electron transport layer is located between the first electrode 18 and the layer comprising a metal salt 30 and the hole transport layer is located between the second electrode 56 and the layer comprising a perovskite material 36, the first electrode 18 is a cathode and the second electrode 56 is an anode. When the first carrier transport layer 24 is a hole transport layer and the second carrier transport layer 50 is an electron transport layer, such that the hole transport layer is located between the first electrode 18 and the layer comprising a metal salt 30 and the electron transport layer is located between the second electrode 56 and the layer comprising a perovskite material 36, the first electrode 18 is a anode and the second electrode 56 is an cathode. In other words, the electrode 18,56 that is located adjacent to the electron transport layer is the cathode and the electrode 18, 56 that is adjacent to the hole transport layer is the anode.
As described above, the devices according to the current technology, which have a perovskite layer doped with a metal salt, demonstrate PCE and hysteresis values that are superior to devices, including other perovskite photovoltaic devices, that do not include a metal salt that is diffused into a perovskite layer.
The current technology also provides method of fabricating a doped photovoltaic device. The method comprises sequentially disposing the following layers onto a substrate: a layer comprising a first electrode, a layer comprising at least one metal salt; a layer comprising a perovskite material; and a layer comprising a second electrode. The layer comprising a perovskite material is disposed directly on the layer comprising at least one metal salt, such that the layer comprising at least one metal salt is partially or completely diffused into the layer comprising a perovskite material. The method optionally includes disposing a second layer comprising a metal salt on the layer comprising a perovskite material. In various embodiments, the method also includes disposing a first carrier transport layer onto the layer comprising a first electrode, such that the first carrier transport layer is located between the layer comprising a first electrode and the layer comprising a perovskite material. Also, the method can include disposing a second carrier transport layer onto either the optional second layer comprising a metal salt, when present, or the layer comprising a perovskite material, such that the second carrier transport layer is located between the layer comprising the perovskite material and the second electrode.
The disposing of the various layers can be performed by any means known in the art. Non-limiting examples of means for disposing the various layers include spin coating, dip coating, doctor blading, chemical vapor deposition (CVD), drop casting, spray coating, plasma-sputtering, vacuum depositing, and combinations thereof. Moreover, the layer comprising a perovskite material may be deposited additive-free in a one-step synthesis or additive-free in a two or more step synthesis. In a one-step synthesis, all perovskite reactants (e.g., PbI2 and MAl) are deposited from one solution. A two or more-step synthesis involves the deposition of one of the reactants followed by reaction with a second reactant, either as a second deposited layer or as a gas phase diffusion process, for example.
As described above in regard to the devices, the carrier transport layers, which are either a hole transport layer or electron transport layer, may include a single layer or a plurality of layers. The layer or layers are deposited individually and sequentially.
When all the layers have been deposited, the method comprises annealing the device at a temperature of from about 75° C. to about 150° C., such as a temperature of about 90° C., from about 2 minutes to about 60 minutes or longer. In some embodiments, annealing is conducted for about 10 minutes. During the annealing, the layer comprising a metal salt and the optional second layer comprising a metal salt, when present, diffuse into the layer comprising a perovskite material. The layer comprising a metal salt and the optional second layer comprising a metal salt, when present, may partially or completely diffuse into the layer comprising a perovskite material. Therefore, the layer or layers comprising a metal salt may not be visible in the completed device with or without the aid of microscopy. This approach leads to controllable and multi-interface doping profiles.
Embodiments of the present technology are further illustrated through the following non-limiting examples.
A PV device including an alkali metal salt interlayer additive below a perovskite film to provide excess halide ions that can fill vacancies generated during perovskite growth and annealing is provided. The addition of an alkali metal salt layer is shown to suppress hysteresis and reliably improve performance. This method also provides a general strategy for interface doping and passivation in halide perovskite devices.
Materials and Synthesis
CH3NH3Cl (methyl ammonium chloride; MACl) was synthesized by mixing CH3NH2 (40 wt %, in deionized H2O, Sigma) and HCl (36 wt %, in H2O, Sigma) in a molar ratio of 1.2:1 to form a mixture. The mixture was stirred at 0° C. for 2 hrs. Then, the water was removed via rotary evaporation to yield a product, which was washed with diethyl ester until white powder was obtained. The white powder was dried in a vacuum oven at 60° C. overnight and then kept in a glove box for further use. CH3NH3I (methanaminium iodide; MAl) (Lumtec), Bathocuproine (BCP, Lumtec), Poly (3,4-ethylenedioxythiophene) Polystyrene sulfonate (PEDOT:PSS, Clevios PVP Al 4083, Heraeus Precious Metals), [6,6]-phenyl-C61-butyric acid methyl ester (PCBM, American Dye Source), and Al-doped ZnO (AZO) nanodispersion (Nanograde) were used as received. All the halide salts (NaCl, NaBr, NaI and Csl) were purchased from Sigma-Aldrich and used as received.
Device Fabrication
PEDOT:PSS was spin-coated onto solvent-cleaned pre-patterned ITO substrates (Xin Yan Technology) at 6000 rpm for 30 seconds and then annealed at 140° C. for 20 mins. Subsequently, alkali metal salts (NaI, NaCl, NaBr, Csl) were spin-coated onto PEDOT:PSS films at 6000 rpm for 10 seconds and annealed at 120° C. for 10 mins. CH3NH3PbI3-xCl precursor solutions were prepared by mixing PbI2, MAl and MACl at a ratio of 1:1:1.5 in N,N-Dimethylformamide (DMF). The precursor solution was spin-coated onto PEDOT:PSS at 6000 rpm for 5 seconds in a nitrogen glove box to generate perovskite films. The perovskite films were annealed at 90° C. for 2 hrs unless noted otherwise. PCBM layers were coated onto the perovskite films with a solution of 20 mg/mL in chlorobenzene at 1000 rpm for 30 seconds and then annealed at 90° C. for 10 mins. A conductive AZO layer then was coated at 6000 rpm for 15 seconds using AZO nanodispersion and then annealed at 90° C. for 10 mins. Both BCP and silver electrodes were vacuum deposited at base pressures of 3×10−6 torr and a top electrode was patterned via shadowmask.
Measurement and Characterization
Current density (J) was measured as a function of voltage (V) under dark conditions and AM1.5G solar simulation (xenon arc lamp) in air, where the intensity was measured using a NREL-calibrated Si reference cell with KG5 filter. External quantum efficiency (EQE) measurements were calibrated using a Newport calibrated Si detector.
Thin film crystallinity was characterized by using a Bruker D2 Phaser XRD instrument with a Ni filter in the Bragg-Brentano configuration. SEM was carried out via a Carl Zeiss Auriga Dual Column FIB SEM at 20 kV accelerating voltage.
Transfer Matrix Optical Modeling
Optical constants of perovskite layers used in optical modeling were determined with variable angle ellipsometry (see
where c is the speed of light, ε0 is the permittivity of free space, nj is the index of refraction in layer j, αj is the absorption coefficient in layer j.
Grain Size Estimation
The grain size is estimated based on the Scherrer equation, D=Kλ/β cost θ, where D is the volume average grain size in the normal direction, λ is the x-ray wavelength, β is peak breadth at full-width-half-maximum (FWHM) after subtracting the instrumental peak breadth, θ is the Bragg diffraction angle, and K is a dimensionless shape factor that is set to 1 by the definition of the peak breath below. Considering the Gaussian shape of the diffraction peaks, the peak breadth is then β2=π/(4 ln(2))·(ΓMeas2−ΓIns2), where ΓMeas is the FWHM for the measured sample and Fins is the instrumental FWHM.
Results and Discussion
A perovskite device schematic and SEM image of a fabricated device are shown in
The current density-voltage (J-V) characteristics of champion devices with, and without NaI, under forward and reverse scans are shown in
To understand the mechanism by which NaI improves the device performance, TOF-SIMS depth profile was performed to determine the element distribution, where both negative and positive ions were determined. Table 2 shows selected ion profiles through the device stack. Comparing
To systematically study the effect of NaI, the concentration of NaI, perovskite precursor solution, and the type of alkali metal salts were tuned.
To further understand the mechanism involved in the EQE improvement, an optical transfer matrix model was employed to study the change of position-dependent light absorption and excited state generation.
For comparison to neat layer NaI deposition, devices with the direct co-deposition of NaI with perovskite from precursor solutions (see
To further confirm the reduction of iodide vacancies by the introduction of the NaI interlayer, XRD patterns were collected during applied bias to investigate the crystal structure change of samples prepared with, or without, NaI as shown in
Previous research has demonstrated that iodide migration via vacancies leads to hysteresis. Furthermore, such ion migration may also result in trap states which can trap charge carriers and cause charge accumulation. Therefore, during J-V data collection, either ion accumulation caused by iodide migration or charge carrier trapped at these trap states can be driven by the eternal bias. Such ion migration or carrier trapping/detrapping results in an internal electric field change and further affect the charge carrier collection at the interface, which can affect the J-V characteristic parameters including Voc, Jsc and FF.
A range of metal halide salts including NaCl, NaBr and Csl, as shown in
A new method to suppress the hysteresis in the J-V characteristics of lead-halide perovskite devices was developed. In this method, alkali metal salts were introduced as interlayers that distribute during perovskite formation. By decreasing the halide ion vacancies, the hysteresis caused by charge accumulation at the interface of perovskite and transporting layer has been significantly suppressed. Utilizing this approach with NaI device performance was shown to be improved by filling iodide vacancies with PCEs of up to 12.6% with little hysteresis. Furthermore, such method also provides a general route of doping process for perovskite-based device, in which the dopants can be separated from precursor solution. By decoupling the dopant from the perovskite solution, these were shown to be viable dopants for enhancing performance. This approach provides new pathways for the doping of a wide range of perovskites.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
This application claims the benefit of U.S. Provisional Application No. 62/334,563, file on May 11, 2016. The entire disclosure of the above application is incorporated herein by reference.
This invention was made with government support under DE-SC0010472 awarded by the U.S. Department of Energy. The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
62334563 | May 2016 | US |