Field
The present disclosure relates to voltage supply systems in radio-frequency (RF) applications.
Description of the Related Art
Many circuits in portable devices such as wireless devices require or utilize DC/DC power conversion to efficiently utilize limited battery supply resources. Often, voltages that exceed a battery voltage are needed or desired, while in other situations, voltages that are significantly less than the battery voltage are utilized.
Traditionally, parallel supply circuitry can be utilized to deliver a plurality of power supply outputs. However, such parallel supply circuits typically result in increased die area, increased input/output (I/O) complexity, and/or increased bill of materials (BOM) cost. Charge pump designs can be utilized to deliver a boost and a buck output voltage. Traditionally, separate circuits are utilized in such designs, with each circuit having its own passive components resulting in duplication of I/O and BOM content.
In accordance with a number of implementations, the present disclosure relates to a charge pump including a boost charge pump circuit and a buck charge pump circuit sharing a common flying capacitance.
In some implementations, the boost pump circuit includes an input node and a boosted-voltage output node. In some implementations, the buck charge pump circuit includes the input node and a divided-voltage output node.
In some implementations, the boosted-voltage includes 2×Vin, and the divided-voltage includes Vin/2, Vin being an input voltage at the input node.
In some implementations, the boost pump circuit further includes a first holding capacitance that couples the boosted-voltage output node to a ground. In some implementations, the buck pump circuit further includes a second holding capacitance that couples the divided-voltage output node to the ground.
In some implementations, the boost pump circuit and the buck pump circuit further include a first switch (S1) and a second switch (S2) arranged in parallel between the input node and respective ends of the flying capacitance, a third switch (S3) between the second end of the flying capacitance and the ground, a fourth switch (S4) between the first end of the flying capacitance and the boosted-voltage output node, a fifth switch (S5) between the first end of the flying capacitance and the divided-voltage output node, and a sixth switch (S6) second end of the flying capacitance and the divided-voltage output node.
In some implementations, the switches S1, S2, S3, S4, S5 and S6 are configured to operate in four phases to yield the 2×Vin output and the Vin/2 output.
In some implementations, the first phase includes closed S1 and S6 and open S2 to S5, the second phase includes closed S3 and S5 and open S1, S2, S4 and S6, the third phase includes closed S1 and S3 and open S2 and S4 to S6, and the fourth phase includes closed S2 and S4 and open S1, S3, S5 and S6.
In some implementations, the first phase includes closed S1 and S6 and open S2 to S5, the second phase includes closed S3 and S5 and open S1, S2, S4 and S6, the third phase includes closed S1 and S6 and open S2 to S5, and the fourth phase includes closed S2 and S4 and open S1, S3, S5 and S6. In some implementations, the third phase includes partial charging of the flying capacitance to improve charge preservation.
In some implementations, the first phase includes closed S1 and S6 and open S2 to S5, the second phase includes closed S3 and S5 and open S1, S2, S4 and S6, the third phase includes closed S1 and S6 and open S2 to S5, and the fourth phase includes closed S3 and S5 and open S1, S2, S4 and S6. In some implementations, the fourth phase includes truncated charging of the flying capacitance to limit ripple effect in hysteretic feedback loop.
In some implementations, the present disclosure relates a voltage supply system that includes a boost converter configured to generate a boosted voltage based on a battery voltage. The voltage supply system also includes a charge pump having a boost charge pump circuit and a buck charge pump circuit sharing a common flying capacitance, the charge pump configured to generate output voltages having magnitudes 2×Vbatt and Vbatt/2.
In some implementations, the boost pump circuit includes an input node and a boosted-voltage output node. In some implementations, the buck charge pump circuit includes the input node and a divided-voltage output node.
In some implementations, the boost pump circuit further includes a first holding capacitance that couples the boosted-voltage output node to a ground. In some implementations, the buck pump circuit further includes a second holding capacitance that couples the divided-voltage output node to the ground.
In some implementations, the boost pump circuit and the buck pump circuit further include a first switch (S1) and a second switch (S2) arranged in parallel between the input node and respective ends of the flying capacitance, a third switch (S3) between the second end of the flying capacitance and the ground, a fourth switch (S4) between the first end of the flying capacitance and the boosted-voltage output node, a fifth switch (S5) between the first end of the flying capacitance and the divided-voltage output node, and a sixth switch (S6) second end of the flying capacitance and the divided-voltage output node.
In some implementations, the switches S1, S2, S3, S4, S5 and S6 are configured to operate in four phases to yield the 2×Vbatt output and the Vbatt/2 output.
In some implementations, the present disclosure relates to a radio-frequency (RF) module that includes a packaging substrate configured to receive a plurality of components. The RF module further includes a power amplification system implemented on the packaging substrate, the power amplification system including a voltage supply system, the voltage supply system including a charge pump having a boost charge pump circuit and a buck charge pump circuit sharing a common flying capacitance, the charge pump configured to generate output voltages having magnitudes 2×Vbatt and Vbatt/2, the quantity Vbatt being a battery voltage.
In some implementations, the boost pump circuit includes an input node and a boosted-voltage output node. In some implementations, the buck charge pump circuit includes the input node and a divided-voltage output node.
In some implementations, the boost pump circuit further includes a first holding capacitance that couples the boosted-voltage output node to a ground. In some implementations, the buck pump circuit further includes a second holding capacitance that couples the divided-voltage output node to the ground.
In some implementations, the boost pump circuit and the buck pump circuit further include a first switch (S1) and a second switch (S2) arranged in parallel between the input node and respective ends of the flying capacitance, a third switch (S3) between the second end of the flying capacitance and the ground, a fourth switch (S4) between the first end of the flying capacitance and the boosted-voltage output node, a fifth switch (S5) between the first end of the flying capacitance and the divided-voltage output node, and a sixth switch (S6) second end of the flying capacitance and the divided-voltage output node.
In some implementations, the switches S1, S2, S3, S4, S5 and S6 are configured to operate in four phases to yield the 2×Vbatt output and the Vbatt/2 output.
According to some teachings, the present disclosure relates to a radio-frequency (RF) device that includes a transceiver generate to a radio-frequency (RF) signal. The RF device includes a front-end module (FEM) in communication with the transceiver, the FEM including a power amplification system configured to amplify the RF signal, the power amplification system including a voltage supply system, the voltage supply system including a charge pump having a boost charge pump circuit and a buck charge pump circuit sharing a common flying capacitance, the charge pump configured to generate output voltages having magnitudes 2×Vbatt and Vbatt/2, the quantity Vbatt being a battery voltage. The RF device further includes an antenna in communication with the FEM, the antenna configured to transmit the amplified RF signal.
In some implementations, the RF device includes a wireless device. In some implementations, the wireless device is a cellular phone.
In some implementations, the boost pump circuit includes an input node and a boosted-voltage output node. In some implementations, the buck charge pump circuit includes the input node and a divided-voltage output node.
In some implementations, the boost pump circuit further includes a first holding capacitance that couples the boosted-voltage output node to a ground. In some implementations, the buck pump circuit further includes a second holding capacitance that couples the divided-voltage output node to the ground.
In some implementations, the boost pump circuit and the buck pump circuit further include a first switch (S1) and a second switch (S2) arranged in parallel between the input node and respective ends of the flying capacitance, a third switch (S3) between the second end of the flying capacitance and the ground, a fourth switch (S4) between the first end of the flying capacitance and the boosted-voltage output node, a fifth switch (S5) between the first end of the flying capacitance and the divided-voltage output node, and a sixth switch (S6) second end of the flying capacitance and the divided-voltage output node.
In some implementations, the switches S1, S2, S3, S4, S5 and S6 are configured to operate in four phases to yield the 2×Vbatt output and the Vbatt/2 output.
For purposes of summarizing the disclosure, certain aspects, advantages and novel features of the inventions have been described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment of the invention. Thus, the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.
So that the present disclosure can be understood in greater detail, a more particular description may be had by reference to the features of various implementations, some of which are illustrated in the appended drawings. The appended drawings, however, merely illustrate the more pertinent features of the present disclosure and are therefore not to be considered limiting, for the description may admit to other effective features.
In accordance with common practice the various features illustrated in the drawings may not be drawn to scale. Accordingly, the dimensions of the various features may be arbitrarily expanded or reduced for clarity. In addition, some of the drawings may not depict all of the components of a given system, method or device. Finally, like reference numerals may be used to denote like features throughout the specification and figures.
The headings provided herein, if any, are for convenience only and do not necessarily affect the scope or meaning of the claimed invention.
In the example of
Referring to
Also referring to
Many circuits in portable devices such as wireless devices require or utilize DC/DC power conversion to efficiently utilize limited battery supply resources. Often, voltages that exceed a battery voltage are needed or desired, while in other situations, voltages that are significantly less than the battery voltage are utilized.
Traditionally, parallel supply circuitry can be utilized to deliver a plurality of power supply outputs. However, such parallel supply circuits typically result in increased die area, increased input/output (I/O) complexity, and/or increased bill of materials (BOM) cost.
Described herein are examples related to a supply system that, among others, includes a combination of a boost charge pump and a buck charge pump, to provide a plurality of outputs (e.g., dual output). In some embodiments, such a combination can be configured to share a substantial portion of a common circuit, thereby reducing, for example, I/O complexity and BOM cost.
In the context of a dual output system, it is noted that dual output voltages such as a boosted output voltage and a buck output voltage, the current loading of the boost is often significantly less than that of the buck. Charge pump designs can be utilized to deliver a boost and a buck output voltage. Traditionally, separate circuits are utilized in such designs, with each circuit having its own passive components resulting in duplication of I/O and BOM content.
In the example of
In the example of
In the example of
In some embodiments, functionalities associated with the foregoing separate circuits can be provided by a single circuit.
Referring to
Still referring to
In some embodiments, the charge pump circuit 100 of
In the first phase (Φ1) example of
In the second phase (Φ2) example of
In the third phase (Φ3) example of
In the fourth phase (Φ4) example of
In the example of
In the example charge pump circuit 100 of
For example, in the separate charge pump doubler and divider circuits of
In the example of
For comparison, and referring to a region indicated as 150 in
In some embodiments, the charge pump circuit 100 of
In the first phase (Φ1) example of
In the second phase (Φ2) example of
In the third phase (Φ3) example of
In the fourth phase (Φ4) example of
In the example of
In some situations, it may be desirable to have the high side rail maintain, for example, a substantially fixed 4.5V output until the input voltage exceeds 4.5V. In some embodiments, use of a hysteretic feedback on the high side rail can control such an output voltage. By way of an example, Phase 4 can be executed if the doubler output rail falls below 4.5V. Due to the light load on the doubler output rail, not all charge from Phase 3 may be needed in Phase 4 to increase the rail above the 4.5V target.
It is noted that executing a complete Phase 4 cycle can introduce significant ripple. Phase 4 can be split such that the high side rail only charges up to the threshold voltage, then reverts back to the Phase 2 configuration to further charge the divide-by-2 low rail.
In some embodiments, the charge pump circuit 100 of
In the example of
In the example of
In some implementations, a device and/or a circuit having one or more features described herein can be included in an RF device such as a wireless device. Such a device and/or a circuit can be implemented directly in the wireless device, in a modular form as described herein, or in some combination thereof. In some embodiments, such a wireless device can include, for example, a cellular phone, a smart-phone, a hand-held wireless device with or without phone functionality, a wireless tablet, etc.
Referring to
The baseband sub-system 408 is shown to be connected to a user interface 402 to facilitate various input and output of voice and/or data provided to and received from the user. The baseband sub-system 408 can also be connected to a memory 404 that is configured to store data and/or instructions to facilitate the operation of the wireless device, and/or to provide storage of information for the user.
In the example wireless device 400, outputs of the PAs 420 are shown to be matched (via respective match circuits 422) and routed to their respective duplexers 424. Such amplified and filtered signals can be routed to an antenna 416 through an antenna switch 414 for transmission. In some embodiments, the duplexers 424 can allow transmit and receive operations to be performed simultaneously using a common antenna (e.g., 416). In
In some embodiments, a voltage supply circuit such as a dual output supply system 100 as described herein can be implemented as a part of the module 300.
A number of other wireless device configurations can utilize one or more features described herein. For example, a wireless device does not need to be a multi-band device. In another example, a wireless device can include additional antennas such as diversity antenna, and additional connectivity features such as Wi-Fi, Bluetooth, and GPS.
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” The word “coupled”, as generally used herein, refers to two or more elements that may be either directly connected, or connected by way of one or more intermediate elements. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above Description using the singular or plural number may also include the plural or singular number respectively. The word “or” in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.
The above detailed description of embodiments of the invention is not intended to be exhaustive or to limit the invention to the precise form disclosed above. While specific embodiments of, and examples for, the invention are described above for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize. For example, while processes or blocks are presented in a given order, alternative embodiments may perform routines having steps, or employ systems having blocks, in a different order, and some processes or blocks may be deleted, moved, added, subdivided, combined, and/or modified. Each of these processes or blocks may be implemented in a variety of different ways. Also, while processes or blocks are at times shown as being performed in series, these processes or blocks may instead be performed in parallel, or may be performed at different times.
The teachings of the invention provided herein can be applied to other systems, not necessarily the system described above. The elements and acts of the various embodiments described above can be combined to provide further embodiments.
While some embodiments of the inventions have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosure. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the disclosure. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the disclosure.
This application claims priority to U.S. Provisional Application No. 62/116,457 filed Feb. 15, 2015, entitled INTERLEAVED DUAL OUTPUT CHARGE PUMP, the disclosure of which is hereby expressly incorporated by reference herein in its entirety. This application is related to U.S. Provisional Application No. 62/116,458 filed Feb. 15, 2015, entitled DEVICES AND METHODS RELATED TO MULTI-MODE POWER MANAGEMENT, the disclosure of which is hereby expressly incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5532916 | Tamagawa | Jul 1996 | A |
6605985 | Pagliato | Aug 2003 | B2 |
6812776 | Henry | Nov 2004 | B2 |
7282985 | Yen | Oct 2007 | B2 |
7430133 | McIntyre | Sep 2008 | B1 |
7602232 | Georgescu | Oct 2009 | B2 |
7851946 | Oyama | Dec 2010 | B2 |
7923865 | Melse | Apr 2011 | B2 |
8159091 | Yeates | Apr 2012 | B2 |
8427851 | Lesso | Apr 2013 | B2 |
8841891 | Williams | Sep 2014 | B2 |
20090326624 | Melse | Dec 2009 | A1 |
20120112724 | Nishida | May 2012 | A1 |
20120326771 | MacFarlane | Dec 2012 | A1 |
20130234785 | Dai | Sep 2013 | A1 |
20150015340 | Liu et al. | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
102484423 | May 2012 | CN |
103999227 | Aug 2014 | CN |
201510633447.7 | Sep 2015 | CN |
102015218359.9 | Sep 2015 | DE |
2015-189626 | Sep 2015 | JP |
10-2015-0136361 | Sep 2015 | KR |
104132270 | Sep 2015 | TW |
2013070971 | May 2013 | WO |
Number | Date | Country | |
---|---|---|---|
20160241142 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
62116457 | Feb 2015 | US |