1.Field of the Invention
This invention relates to electrical cable connectors. More particularly, the invention relates to an internal spring contact for a solid outer conductor coaxial cable connector.
2.Description of Related Art
Coaxial cable connectors are used, for example, in communication systems requiring a high level of precision and reliability.
To create a secure mechanical and optimized electrical interconnection between the cable and the connector, it is desirable to have generally uniform, circumferential contact between a leading edge of the coaxial cable outer conductor and the connector body. A flared end of the outer conductor may be clamped against an annular wedge surface of the connector body, via a coupling nut. Representative of this technology is commonly owned U.S. Pat. No. 5,795,188 issued Aug. 18, 1998 to Harwath.
Machine threaded coupling surfaces between the metal body and the metal coupling nut of U.S. Pat. No. 5,795,188 and similarly configured prior coaxial connectors significantly increase manufacturing costs and installation time requirements. Another drawback is the requirement for connector disassembly, sliding the back body over the cable end and then performing a precision cable end flaring operation, which retains the cable within the connector body during threading. Further, care must be taken at the final threading procedure and/or additional connector element(s) added to avoid damaging the flared end portion of the outer conductor as it is clamped between the body and the coupling nut to form a secure electrical connection between the outer conductor and the coaxial cable.
Alternative coaxial connector solutions, utilizing gripping/and or support elements about which the connector body is then radially crimped and/or axially compressed to secure an electromechanical interconnection between the outer conductor of the coaxial cable and the connector, are also known in the art. Crimped and/or compressed connections may be subject to varying quality depending upon the specific force level applied by the installer in each instance. Support surfaces added to prevent collapse of the outer conductor inserted within the inner diameter of the outer conductor, common in connectors for non-solid outer conductor coaxial cables, introduce an electrical performance degrading impedance discontinuity into the signal path. Further, crimping and/or compression becomes impractical with larger diameter coaxial cables, as the increased diameter, sidewall thickness and/or required travel of the corresponding connector/back body(s) increases the required force(s) beyond the levels deliverable by conventional crimp/compression hand tools.
Competition in the coaxial cable connector market has focused attention on improving electrical performance and minimization of overall costs, including materials costs, training requirements for installation personnel, reduction of dedicated installation tooling and the total number of required installation steps and/or operations.
Therefore, it is an object of the invention to provide a coaxial connector solution that overcomes deficiencies in the prior art.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, where like reference numbers in the drawing figures refer to the same feature or element and may not be described in detail for every drawing figure in which they appear and, together with a general description of the invention given above, and the detailed description of the embodiments given below, serve to explain the principles of the invention.
The inventor analyzed available solid outer conductor coaxial connectors and recognized the drawbacks of threaded inter-body connection(s), manual flaring installation procedures and crimp/compression coaxial connector designs. Insertion coupling coaxial connectors, for example as disclosed in the inventor's commonly owned U.S. Utility patent application Ser. No. 12/264,932, titled “Insertion Coupling Coaxial Connector”, filed Nov. 5, 2008, currently pending and hereby incorporated by reference in its entirety, introduces several significant improvements to the coaxial connector arts, eliminating the need for manual flaring of the outer conductor and/or high torque threading of the coupling nut into the connector body during outer conductor end clamping connector to cable end interconnection. Similarly, several improvements to the insertion coupling coaxial connector are disclosed in the inventors commonly owned U.S. Utility patent application Ser. No. 12/611,095, titled “Insertion Coupling Coaxial Connector”, filed Nov. 2, 2009, currently pending, hereby incorporated by reference in its entirety.
The inventor's electrical performance analysis of the prior insertion coupling coaxial connectors has recognized that, in view of allowances made for diameter changes of outer conductor contacting elements of an insertion coupling connector during interconnection, an entirely circumferential connection may not be present around the outer conductor. Thereby, a significant level of RF leakage may occur through gap(s) in the spring contact and/or grip ring applied to the coaxial cable outer conductor outer diameter, the RF leakage eventually radiating out of a gap between the clamp ring and the outer conductor of the coaxial cable. RF leakage becomes especially significant as the operating frequency of signals transmitted along the coaxial cable increases towards higher microwave frequencies, which with shorter and shorter wavelengths are able to pass/leak through smaller and smaller gaps of the coaxial connector interconnection with the outer conductor of the coaxial cable.
As shown in a first exemplary embodiment in
The connector interface 23 may be any desired standard or proprietary interface.
One skilled in the art will appreciate that the cable end 15 and the connector end 25 are descriptors used herein to clarify longitudinal locations and contacting interrelationships between the various elements of the coaxial connector 1. In addition to the identified positions in relation to adjacent elements along the coaxial connector longitudinal axis, each individual element has a cable end side and a connector end side, i.e. the sides of the respective element that are facing the respective cable end 15 and the connector end 25 of the coaxial connector 1.
The grip ring 19 may be retained within the connector body bore 5, for example seated within a grip ring groove 27. For ease of grip ring 19 installation (and further elements, if present, described herein below) installation and/or enhanced grip ring to outer conductor gripping characteristics, the grip ring groove 27 may be formed wherein the cable end grip ring groove sidewall and/or bottom are surfaces of a clamp nut 31 coupled to the connector body 3, for example as shown in
The clamp ring 31, if present, may be coupled to the connector body 3 by a retaining feature 29, such as an interlock between one or more annular snap groove(s) 33 in the outer diameter of the clamp ring and corresponding snap barb(s) 35 provided on an inner diameter of the connector body bore 5, as best shown for example in
Clamp ring threads 37 between the connector body bore 5 and an outer diameter of the clamp ring 31 may also be provided as an alternative to the retaining feature 29. To enable the coaxial connector 1 to be supplied as a ready-for-installation assembly, the clamp ring threads 37 may be combined with the snap groove 33 and snap barb 35 interconnection to provide an assembly that may be supplied with the clamp ring 31 already attached to the connector body 3, preventing disassembly and/or loss of the internal elements, as shown for example in
In an alternative embodiment demonstrated in
The spring contact 21 may be any conductive structure with a spring characteristic, such as a helical coil spring. Referring again to
Alternatively, the spring contact 21 may be a stamped metal spring ring with a plurality of spring fingers 22, for example as shown in
As best shown in
The extension of the spring finger(s) 22 towards the connector end 15 may be applied as a first portion 60 angled radially inward which transitions to a second portion 61 angled radially outward. The second portion 61 may be dimensioned with respect to the ring to bias against the sidewall of the connector body bore 5, upon insertion of the outer conductor 11 through the spring contact 21.
A protrusion 64 may be located projecting outward from an outer diameter of the ring, operative as an anti-rotation element. A plurality of protrusion(s) 64 may be applied, for example, each positioned proximate a circumferential position of a spring finger 22.
The inventors have discovered that, although a ferrous metal may be applied for materials cost purposes, application of a non-ferrous and thus non-magnetic metal, such as phosphor bronze, as the spring contact 21 metal material may significantly improve static passive intermodulation (PIM) characteristics of the resulting coaxial connector 1. The phosphor bronze may be plated, for example with tin, to minimize corrosion.
To reduce RF leakage through the gap(s) 52, past the spring contact 21 and eventually out the cable end 15 of the coaxial connector 1, the spring contact 21 may be provided as a first ring 54 and a second ring 56 nested together, cable end 15 of the first ring 54 to connector end 25 of the second ring 56, such that the spring finger(s) 22 of each of the first and second rings 54, 56 align contiguously to interleave with one another to form a generally cylindrical surface, as best shown in
The first ring 54 and the second ring 56 may be identical dimensionally, resulting in a slight offset of the spring finger 22 extension equal to a width of the first ring 54 when the first ring 54 and the second ring 56 are nested together, as shown for example in
As best shown in
As best viewed in
The contact between the outer diameter of the grip ring 19 and the wedge surface 39 may be along a corner of the grip ring 19 that may be rounded to promote smooth travel therealong or alternatively the grip ring 19 may be formed with an extended contact area between the grip ring 19 and the wedge surface 39 by angling the outer diameter profile of the grip ring 19 to be parallel to the taper of the wedge surface 39.
The grip ring 19 may be formed as a c-shaped ring, for example as shown in FIGS. 13 and 15-17, with a solid cross-section.
The grip surface 17 of the grip ring 19 has a directional bias, engaging and gripping the outer diameter surface of the outer conductor 11 when in tension toward the cable end 15 while allowing the outer conductor 11 to slide past the grip surface 17 when moved towards the connector end 25. The grip surface 17 may be formed as a plurality of annular (
The grip ring 19 has a range of longitudinal movement within the grip ring groove 27. As the grip ring 19 moves along the wedge surface 39 toward the connector end 25, for example as the leading edge of the outer conductor 11 is inserted into the connector body bore 5 from the cable end 15 and contacts the angled face(s) 49 of the grip surface 17, the grip ring 19 will either spread to allow the outer conductor to pass through, or will also begin to move longitudinally towards the connector end 25, within the grip ring groove 27. Because of the wedge surface taper, as the grip ring 19 moves towards the connector end 25, the depth of the grip ring groove 27 with respect to the grip ring 19 increases. Thereby, the grip ring 19 may be spread radially outward to enable the passage of the outer conductor 11 through the grip ring 19 and toward the connector end 25. Conversely, once spread, the bias of the grip ring 19 inward towards its relaxed state creates a gripping engagement between the grip surface 17 and the outer diameter surface of the outer conductor 11. If tension is applied between the connector body 3 and the coaxial cable 13 to pull the outer conductor 11 toward the cable end 15, the grip ring 19 is driven against the tapered wedge surface 39, progressively decreasing the depth of the grip ring groove 27, thereby driving the grip ring 19 radially inward and further increasing the gripping engagement as the grip surface 17 is driven into the outer diameter surface of the outer conductor 11. A cable end grip ring groove sidewall may be dimensioned to be at a position where the grip ring diameter relative to the outer conductor diameter is configured for the grip surface 17 to have securely engaged the outer conductor 11 but is short of a grip ring radially inward movement capable of causing the outer conductor 11 to collapse radially inward beyond an acceptable level.
During cable assembly on embodiments with a clamp ring 31 and a retaining feature 29 including the clamp ring threads 37, the limited longitudinal movement obtained by threading the clamp ring 31 into the connector body 3 is operative to drive the wedge surface 39 against the grip ring 19 to move the grip ring 19 radially inward into secure gripping engagement with the outer conductor 11, without requiring the application of tension between the connector body 3 and the coaxial cable 13. Further, in embodiments where the spring contact 21 is also present in the grip ring groove 27, the threading of the clamp ring 31 into the connector body bore 5 may be configured to apply directly, and/or via a spacer 43, if present, pressure on the spring contact 21 whereby the spring contact 21 deforms radially inward toward the outer conductor 11, increasing the contact pressure between the spring contact 21 and the outer conductor 11, thereby improving the electrical coupling therebetween.
One skilled in the art will appreciate the significant manufacturing and installation benefits of the present invention. During manufacturing, a complete coaxial connector 1 assembly ready for installation is prepared with a minimal total number of required elements. If a clamp ring 31 is included in the configuration, the installation of the spring contact 21, spacer 43, grip ring 19 and/or outer conductor seal 45 is simplified by the improved access to the grip ring groove 27, which may then be easily closed by snapping/threading the clamp ring 31 in place after the desired subelements have been seated in the open end(s) of the connector body bore 5 and/or clamp ring 31. To install the coaxial connector 1 upon a coaxial cable 13, the coaxial cable end is stripped back to expose desired lengths of the conductor(s) and the stripped coaxial cable end inserted into the cable end 15 of the connector body bore 5 until bottomed. If present, the clamp ring 31, if including clamp ring threads 37, is then threaded toward the connector body 3 and a test tension between the connector body 3 and the coaxial cable 1 applied to verify secure engagement between the grip ring 19 and the outer conductor 11.
Coaxial connector embodiments with a threaded clamp ring 31 may be uninstalled from the coaxial cable 13 for interconnection inspection and/or reuse by unthreading the clamp ring 31 away from the connector body 3, enabling the grip ring 13 to move outward and away from engagement with the outer conductor 11 as the wedge surface 39 shifts toward the cable end 15 with the clamp ring 31. When the grip ring 13 has disengaged, the coaxial cable 13 may be withdrawn from the connector body bore 5.
The prior manual cable end flaring operations and any required disassembly/reassembly of the various connector elements around the coaxial cable end during installation have been eliminated.
Where in the foregoing description reference has been made to materials, ratios, integers or components having known equivalents then such equivalents are herein incorporated as if individually set forth.
While the present invention has been illustrated by the description of the embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details, representative apparatus, methods, and illustrative examples shown and described. Accordingly, departures may be made from such details without departure from the spirit or scope of applicant's general inventive concept. Further, it is to be appreciated that improvements and/or modifications may be made thereto without departing from the scope or spirit of the present invention as defined by the following claims.
This application is a continuation-in-part of commonly owned U.S. Utility patent application Ser. No. 12/611,095,titled “Insertion Coupling Coaxial Connector”, filed Nov. 2, 2009 by Jeffrey Paynter and Al Cox, currently pending, hereby incorporated by reference in its entirety, which is a continuation-in-part of commonly owned U.S. Utility patent application Ser. No. 12/264,932,titled “Insertion Coupling Coaxial Connector”, filed Nov. 5, 2008 by Jeffrey Paynter and Al Cox, currently pending, hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2423548 | Bels | Jul 1947 | A |
2533343 | Bac | Dec 1950 | A |
3671926 | Nepovim | Jun 1972 | A |
3744011 | Blanchenot | Jul 1973 | A |
3757279 | Winston | Sep 1973 | A |
3761870 | Drezin et al. | Sep 1973 | A |
3855568 | Cochrane | Dec 1974 | A |
4519666 | Williams et al. | May 1985 | A |
4824400 | Spinner | Apr 1989 | A |
4923412 | Morris | May 1990 | A |
5267877 | Scannelli et al. | Dec 1993 | A |
5322454 | Thommen | Jun 1994 | A |
5352134 | Jacobsen et al. | Oct 1994 | A |
5795188 | Harwath | Aug 1998 | A |
5944556 | Wlos et al. | Aug 1999 | A |
5967852 | Follingstad et al. | Oct 1999 | A |
6019636 | Langham | Feb 2000 | A |
6639146 | Chiu | Oct 2003 | B1 |
6808415 | Montena | Oct 2004 | B1 |
6848939 | Stirling | Feb 2005 | B2 |
7011546 | Vaccaro | Mar 2006 | B2 |
7156696 | Montena | Jan 2007 | B1 |
7249969 | Paynter | Jul 2007 | B2 |
7329149 | Montena | Feb 2008 | B2 |
7335059 | Vaccaro | Feb 2008 | B2 |
20050164552 | Wlos et al. | Jul 2005 | A1 |
20090325420 | Paynter | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
0780924 | Jun 1997 | EP |
2007101435 | Sep 2007 | WO |
Entry |
---|
International search report for counterpart application No. PCT/US2009/063315. Issued on Jun. 22, 1010. |
International search report for counterpart application No. PCT/US2009/063320. Issued on Jun. 22, 1010. |
International Search Report, related application PCT/US2010/051799, issued Feb. 21, 2011 by European Patent Office, Netherlands. |
Number | Date | Country | |
---|---|---|---|
20110008998 A1 | Jan 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12611095 | Nov 2009 | US |
Child | 12886941 | US | |
Parent | 12264932 | Nov 2008 | US |
Child | 12611095 | US |