The present invention relates generally to a wheelchair lift outer roll stop and, in particular, to an interlock for a wheelchair lift outer roll stop.
Access systems and wheelchair lift arrangements are provided to permit access, entry, exit, ingress, egress, and the like, from a variety of structures and environments. For example, many vehicles are fitted or configured to interact with a wheelchair lift arrangement to allow a wheelchair (or other limited mobility) user to enter and exit the vehicle.
Many wheelchair lift arrangements include a roll stop on the outer end, i.e., an outer roll stop, to prevent a wheeled mobility assistance device from rolling off of the lift during use. The outer roll stop typically includes a safety interlock to prevent the lift from lifting over a small specified height when a standard test wheelchair has at least one wheel on the outer roll stop. A conventional roll stop interlock functions by remaining in a deployed or lowered position during operation of the lift until a predetermined height of the lift is reached and then the roll stop will rotate upward to the stop or raised position. When the lift begins motion, if the roll stop either does not stow, or if the roll stop is moved opposite the direction of stowing, such action indicates a load on the roll stop and the interlock is triggered to prevent further motion of the lift.
In one aspect, an outer roll stop for a wheelchair lift includes a base having a leading end, a trailing end, a top surface, and a bottom surface positioned opposite from the top surface, a top plate secured to the base, with the top plate moveable relative to the base, and an interlock assembly including a sensor positioned between the top plate and the base. The sensor has a first state and a second state, with the sensor transitioning from the first state to the second state when an object is positioned on the top plate. The sensor is configured to detect when an object is positioned on the top plate prior to motion of the outer roll stop.
The sensor may be a sensitized strip having first and second conductive elements, with the first and second conductive elements configured to engage each other when the sensitized strip is compressed. The sensor may be a plurality of sensitized strips arranged parallel to each other, with each of the plurality of sensitized strips including a lead connected to an adjacent lead of an adjacent sensitized strip. A control circuit may be configured to monitor the sensor and prevent movement of a wheelchair lift when the sensor is in the second state, with the control circuit connected to an end lead of one of the sensitized strips. The sensor may be in the first state when the top plate is in a first position, and the second may be in the second state when the top plate is in a second position spaced from the first position of the top plate. The top plate may be biased to the first position by a biasing arrangement. The biasing arrangement may include one or more compression springs. The biasing arrangement may be a linear spring positioned parallel to the sensitized strip. The linear spring may be a linear wave spring or an elastomer strip.
The top plate may include at least one spacer received by an opening defined by the base, with the at least one spacer moving within the opening of the base when the top plate moves between the first and second positions, and where the spacer includes an abutment that engages the base when the top plate is in the first position. The abutment may be a fastener secured to the spacer, with a head of the fastener engaging the base when the top plate is in the first position.
The top plate may be metal. The outer roll stop may further include a flange positioned at the trailing end of the base, with the flange defining a gap between the base and the flange and the gap configured to allow egress of water and debris during movement of the roll stop. The flange comprising an extension portion that engages the base when the top plate is in the first position.
The sensor may further include a resistor, with the control circuit configured to detect possible disconnection or damage to the plurality of sensitized strips based on a predetermined resistance value threshold.
In a further aspect, a wheelchair lift includes a lifting platform, a lift mechanism secured to the lifting platform, an inner roll stop secured to the lifting platform, and an outer roll stop secured to the lifting platform, with the lift mechanism configured to move each of the lifting platform, the inner roll stop, and the outer roll stop between a raised position and a lowered position. The outer roll stop includes a base having a leading end, a trailing end, a top surface, and a bottom surface positioned opposite from the top surface, a top plate secured to the base, with the top plate moveable relative to the base, and an interlock assembly having a sensor positioned between the top plate and the base. The sensor having a first state and a second state. The sensor transitioning from the first state to the second state when an object is positioned on the top plate. The sensor is configured to detect when an object is positioned on the top plate prior to motion of the outer roll stop.
The outer roll stop may be in the lowered position when the lifting platform is in the lowered position, and the outer roll stop may be in the raised position when the lifting platform is in the raised position. The inner roll stop may be in the raised position when the lifting platform is in the lowered position, and the inner roll stop may be in the lowered position when the lifting platform is in the raised position. The sensor comprises a sensitized strip having first and second conductive elements. The first and second conductive elements are configured to engage each other when the sensitized strip is compressed. The sensor may be in the first state when the top plate is in a first position, and the second may be in the second state when the top plate is in a second position spaced from the first position of the top plate.
These and other features and characteristics of the present invention, as well as the methods of operation and functions of the related elements of structures, and the combination of parts and economies of manufacture will become more apparent upon consideration of the following description and with reference to the accompanying drawings, all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various figures. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only, and are not intended as a definition of the limits of the invention. As used in the specification and the claims, the singular form of “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.
For purposes of the description hereinafter, the terms “end”, “upper”, “lower”, “right”, “left”, “vertical”, “horizontal”, “top”, “bottom”, “lateral”, “longitudinal”, and derivatives thereof shall relate to the invention as it is oriented in the drawing figures. However, it is to be understood that the invention may assume various alternative variations and step sequences, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification, are simply exemplary embodiments of the invention. Hence, specific dimensions and other physical characteristics related to the embodiments disclosed herein are not to be considered as limiting.
With reference to
Referring to
Referring to
In one aspect, the sensor 26 is a sensitized strip having first and second conductive elements 28, 30 enclosed in a compressible body 32, with the first and second conductive elements 28, 30 configured to engage each other when the body 32 of the sensitized strip is compressed. The compressible body 32 may be formed from an elastomeric material, although other suitable materials may be utilized. In particular, the sensor 26 may include a plurality of sensitized strips arranged parallel to each other, with each of the plurality of sensitized strips having a lead 34 connected to an adjacent lead 34 of an adjacent sensitized strip. A control circuit 36 is connected to the sensor 26 and is configured to monitor the sensor 26 and prevent movement of the wheelchair lift 1 when the sensor 26 is in the second state. The control circuit 36 may be connected to an end lead 38 of one of the sensitized strips. In a further aspect, a resistor of a known value may be provided at the end of a final link. Using this resistor, the control circuit 36 can monitor the sensitized strips and, if the resistance increases above a predetermined threshold, detect possible disconnection or damage to the sensitized strips and prevent movement of the wheelchair lift 1 except with a manual override. The sensor 26 is in the first state when the top plate 22 is in a first position and is in the second state when the top plate 22 is in a second position spaced from the first position of the top plate 22.
Referring to
Referring to
In one aspect, the top plate 22 is formed from metal, such as stainless steel, although other suitable materials may be utilized. Providing the top plate 22 from metal advantageously forces the entire top plate 22 to move when a load is placed on the top plate 22 and ensure the top plate 22 is sensitive across the whole roll stop surface. Conventional membrane sensors often have a “dead zone” at the perimeter. The use of a metal top plate 22 also protects the sensitized strips from damage and creates a more robust and damage resistant design. An anti-slip coating or surface 45 may be applied to the top surface of the top plate 22 to improve traction for occupants. In a further aspect, the top plate 22 may be manufactured from a metal extrusion or molded plastic with a snap-in feature to secure the top plate 22 to the base 12.
In one aspect, the base 12 of the outer roll stop 10 is manufactured from an aluminum extrusion, although other suitable materials and manufacturing arrangements may be utilized. The base 12 includes a plurality of protrusions 46 on the top surface 18 of the base 12, which prevent an object bearing on the top plate 22 from over-compressing the sensor 26 or compressible body 32.
Referring to
Referring to
Referring to
In certain aspects, a compliant strip (not shown) is placed around the perimeter of the gap 50 between top plate 22 and the base 12. The compliant strip may act as a complete or partial seal to block foreign matter from entering the gap 50. The compliant strip or the linear springs, discussed above, may include adhesive on top and bottom surfaces that is used to secure the top plate 22 to the base 12 instead of the spacers 42 and abutments 44. The compliant strip allows the top plate 22 to move and compress the sensor 26 while preventing the plate 22 from moving away from the strip or in a lateral direction.
It is to be understood that the invention may assume various alternative variations and step sequences, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the specification, are simply exemplary embodiments of the invention. Although the invention has been described in detail for the purpose of illustration based on what is currently considered to be the most practical and preferred embodiments, it is to be understood that such detail is solely for that purpose and that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover modifications and equivalent arrangements that are within the spirit and scope thereof. For example, it is to be understood that the present invention contemplates that, to the extent possible, one or more features of any embodiment can be combined with one or more features of any other embodiment.
This application claims priority to U.S. Provisional Application Ser. No. 62/733,865, filed Sep. 20, 2018, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3893697 | Blitz | Jul 1975 | A |
4176999 | Thorley | Dec 1979 | A |
4251179 | Thorley | Feb 1981 | A |
4977981 | Paquin | Dec 1990 | A |
5636399 | Tremblay | Jun 1997 | A |
7500818 | Johnson | Mar 2009 | B1 |
7798761 | Goodrich | Sep 2010 | B2 |
9456940 | DeLeo | Oct 2016 | B2 |
20060051191 | Dupuy | Mar 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20200093661 A1 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
62733865 | Sep 2018 | US |