Various features relate to improvements to interlocking construction blocks.
Generally, conventional concrete pavement blocks are used in building structures such as walls and partitions. Building the structure typically requires reinforcing rods or steel rebar that projects upwardly from the foundation footing or slab on which the structure is being built, cement, tie wires and skilled labor that would laboriously have to prepare the aggregates, grouting, plastering and finishing including preparation and installation of steel bars, horizontal reinforcement, and electrical switches. As all this takes time to complete, the cost of the project also increases.
Consequently, what is needed is an interlocking construction block that minimizes construction labor time, is easy to install for both internal and external walls and pavement and has less material wastage compared to the conventional and time consuming methods and procedures of cast-in-place concrete pouring for ground slab and installation of concrete hollow blocks.
In one aspect, an interconnecting construction block is provided. The block comprises a first sidewall comprising a first lower portion; and a first upper portion integrally connected to the first lower portion. The first upper portion comprises a first plurality of walls; and a first outer side surface integrally connected to the first plurality of walls, the first plurality of walls tapering inwardly from the first lower portion to the first outer side surface; a second sidewall integrally connected to the first sidewall by at least one upper end wall and at least one side end wall, where the at least one upper end wall and the at least one side end wall have a tongue and groove configuration.
The plurality of walls comprise a pair of upper portion sidewalls; and a pair of upper portion end walls integrally connected to the plurality of upper portion sidewalls by upper portion angular walls forming an octagonal configuration. The second sidewall comprises a second lower portion integrally connected to a second upper portion, the second upper portion comprising a second plurality of walls; and a second outer side surface integrally connected to the second plurality of walls, the second plurality of walls tapering inwardly from the second lower portion to the second outer side surface.
In another aspect, the block comprises a pair of reinforcement bars embedded within the first and second sidewalls. The pair of reinforcement bars comprises a first reinforcement bar having a first end and a second end extending from a first corner of the block to a first catty corner; and a second reinforcement bar having a third end and a fourth end extending from a second corner of the block to a second catty corner. At least one of the first, second, third and fourth ends has a generally “Y” configuration having a first Y-end and a second Y-end; wherein the first Y-end extends to a first corner of the first sidewall and the second Y-end extends to a first corner of the second sidewall; and wherein the first and second Y-ends protrude through the first and second sidewalls. The protruding first and second Y-ends may be welded to an adjoining reinforcement bar of another matingly engaged block.
In another aspect, a first threaded member extends from and protruding through a first corner of the first sidewall to a second corner of the first sidewall; a second threaded member extends from and protruding through a second corner of the first sidewall to a second corner of the first sidewall; a third threaded member extends from and protruding through a third corner of the first sidewall to a third corner of the first sidewall; and a fourth threaded member extends from and protruding through a fourth corner of the first sidewall to a fourth corner of the first sidewall; wherein the first reinforcement bar is integrally connected to and extends between the first threaded member and the third threaded member; and wherein the second reinforcement bar is integrally connected to and extends between the second threaded member and the fourth threaded member.
In another aspect, a first corner plate is integrally connected to the first threaded member; and an outer plate is integrally connected to the first corner plate and adjoining corner plates of adjoining matingly engaged blocks. The outer plate is bolted or welded to the first corner plate and adjoining corner plates. In another aspect, a conduit is embedded within the block for protecting and routing electrical wires and cables; and a box is embedded within the block and integrally connected to an end of the conduit, the box for inserting an electrical outlet. In another aspect, an insulating material pre-fabricated within a center portion of the block.
In another aspect, the block further includes a base sidewall section integrally connected to the first and second sidewalls. The base sidewall section comprises a front surface; and a back surface integrally connected to the front surface by a pair of opposing connecting sidewalls and a pair of opposing connecting end walls; and wherein the first and second sidewalls are located equidistant from the pair of opposing connecting end walls and extend perpendicularly from the base sidewall section.
In another aspect, an interconnecting construction block is provided. The block comprises a first sidewall. The first sidewall comprises a first lower portion; and a first upper portion integrally connected to the first lower portion. The first upper portion comprises a first plurality of walls; and a first outer side surface integrally connected to the first plurality of walls, the first plurality of walls tapering inwardly from the first lower portion to the first outer side surface; a second sidewall integrally connected to the first sidewall by at least one upper end wall and at least one side end wall, where the at least one upper end wall and the at least one side end wall have a tongue and groove configuration, the second sidewall comprises a second lower portion; and a second upper portion integrally connected to the second lower portion, the second upper portion comprising: a second plurality of walls; and a second outer side surface integrally connected to the second plurality of walls, the second plurality of walls tapering inwardly from the second lower portion to the second outer side surface.
In another aspect, the plurality of walls comprise a pair of upper portion sidewalls; and a pair of upper portion end walls integrally connected to the plurality of upper portion sidewalls by upper portion angular walls forming an octagonal configuration.
In another aspect, a pair of reinforcement bars is embedded within the first and second sidewalls. The pair of reinforcement bars comprises a first reinforcement bar having a first end and a second end extending from a first corner of the block to a first catty corner; and a second reinforcement bar having a third end and a fourth end extending from a second corner of the block to a second catty corner.
In another aspect, at least one of the first, second, third and fourth ends has a generally “Y” configuration having a first Y-end and a second Y-end; wherein the first Y-end extends to a first corner of the first sidewall and the second Y-end extends to a first corner of the second sidewall.
In another aspect, a first threaded member is integrally connected to and extending upwardly from the first Y-end, the first threaded member protruding through the first sidewall; and a second threaded member integrally connected to and extending upwardly from the second Y-end, the second threaded member protruding through the second sidewall.
In another aspect, a first corner plate integrally connected to the first threaded member; and wherein an outer plate is integrally connected to the first corner plate and adjoining corner plates of adjoining matingly engaged blocks.
The features, nature, and advantages of the present aspects may become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout.
In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the embodiments. However, it will be understood by one of ordinary skill in the art that the embodiments may be practiced without these specific details. For example, well-known operations, structures and techniques may not be shown in detail in order not to obscure the embodiments.
In the following description, certain terminology is used to describe certain features of one or more embodiments. The term “construction block” may refer to any type of masonry block common in the building of structures. The term “structure” may refer to any type of a body or assemblage of bodies formed from construction blocks including, but not limited to, interior walls, exterior walls, fences, foundations, partitions, roofs, ceilings, floors and countertops. The construction blocks may be made from any material known in the art, including but not limited to, brick, stone, marble, granite, travertine, limestone, concrete and glass. The term “grout” or “mortar” may refer to any type of construction material used to seal joints, such as the spaces found between blocks, to embed rebar in masonry walls, and to connect sections of pre-cast concrete.
According to one aspect, interlocking construction blocks are provided. The interlocking construction blocks, as described in detail below, may include factory waterproofing for external walls, a welded interlocking system for block stabilization, self-embedded deformed steel bars for structural reinforcement, ready to paint surface for plain and rough faces, and built-in electrical conduit pipes and utility boxes for electrical outlets and switches. The interlocking construction blocks may be constructed with a variety of selected wall finishes including but not limited to plain cement finished, anay finished and brick finished. The interlocking construction blocks minimize construction time for labor and provide easy installation both for internal and external walls as well as pavement with less material wastage compared to the conventional and time consuming methods and procedures of cast-in-place concrete pouring for ground slab and installation of concrete hollow blocks. Furthermore, the interlocking construction blocks of the present invention may minimize the cost of construction materials, the cost of labor and eliminate the messy process of mixing concrete and chipping of concrete for electrical outlets and switches. As less time, effort and resources will be needed for the construction of structures, buildings and residential houses can become more affordable.
According to one aspect, the interlocking construction blocks may be of varying shape, size and thickness depending on the requirement of design of the tongue and groove for continuous interlocking features. As discussed in detail below, the interlocking construction blocks may be embedded with reinforcement bars. The reinforcement bars may be deformed, round or square bars and may be used as bracings that may be spot welded so each block can have a permanent stabilized interlocking system.
According to one aspect, the interlocking construction blocks may be column and footing connector blocks. The column and footing connector blocks may have extended reinforcement bars that extend out of the block so as to be connected to columns and footers in the construction of a structure. The reinforcement bars may extend out one or more sides of the block. According to one aspect, the interlocking construction blocks may have various combinations of planar and tongue and groove sides to form any type of block needed, such as a corner end block, a corner block connecter, etc. According to one aspect, the interlocking construction blocks may have one or more planar sides while the other sides may be tongue and groove so that the block may be used as an end block.
The interlocking construction blocks (hereinafter referred to as “blocks” or “block”) may be tongue and groove blocks that are attachable together by pressing the tongue of one block into a groove of another block. Multiple blocks may be adapted to be interlocked together forming a structure, such as a wall. (See
According to one aspect, the first and second sidewalls 102 and 112 may be generally square in shape, however, in alternative aspects, the sidewalls may be other shapes such as triangles, rectangle or other polygons.
The first sidewall 102 may comprise a lower portion 108 integrally connected to an upper portion 110. The lower portion 108 may comprise a pair of opposing lower portion sidewalls 108a integrally connected to a pair of opposing lower end walls 108b. The upper portion 110 may comprise a top surface 110a, a pair of opposing upper portion sidewalls 110b and a pair of opposing upper portion end walls 110c integrally connected via upper portion angular walls 110d forming an octagonal configuration. The upper portion sidewalls 110b, upper portion end walls 110c and upper angular walls 110d may have a beveled or tapered surface. The beveling or tapering of the upper portion sidewalls 110b, upper portion end walls 110c and upper portion angular walls 110d provide a space for grout or mortar to be applied between interlocking construction blocks for securing the interlocking construction blocks together as well as providing additional strength to the structure and tightening of the joints of the blocks. Additionally, beveling or tapering the upper portion sidewalls 110b, upper portion end walls 110c and upper portion angular walls 110d may reduce the cracking of joints compared to just a straight edge where there is no space for grout. Having straight edges also makes patching the joints difficult and they are prone to cracks. Although the top surface 110a is shown as planar, this is by way of example only.
The second sidewall 112 may comprise a lower portion 114 integrally connected to an upper portion 116. The lower portion 114 may comprise a pair of opposing lower portion sidewalls 114a integrally connected to a pair of opposing lower end walls 114b. The upper portion 116 may comprise a top surface 116a, a pair of opposing upper portion sidewalls 116b and a pair of opposing upper portion end walls 116c integrally connected via upper portion angular walls 110d forming an octagonal configuration. The upper portion sidewalls 116b, upper portion end walls 116c and upper angular walls 116d may have a beveled or tapered surface which provides a space for grout or mortar to be applied for securing the interconnected blocks together as well as providing additional strength to the structure and tightening of the joints of the blocks. Additionally, beveling or tapering the upper portion sidewalls 116b, upper portion end walls 116c and upper portion angular walls 116d reduce the cracking of joints compared to just a straight edge where there is no space for grout. Having straight edges also makes patching the joints difficult and they are prone to cracks. Although the top surface 116a is shown as planar, this is by way of example only.
By utilizing blocks having an interior portion pre-fabricated with an insulating material, structures, such as walls, can be built and completed faster than typical structures as the insulation is already installed. Conventionally, walls are erected using blocks without an insulating material resulting in the insulating material having to be added after erecting the structure but before plaster/stucco or finishing walls can be added completing the structure. These additional steps add not only time but cost to completing the structure.
According to one example, as shown in
The tongued longitudinal wall 132a of the second block 126 is adapted to interconnect with the grooved longitudinal wall 128b of the first block 124. This process is repeated with additional blocks to form the structure. As described above, grout may be applied to the beveling in the upper portion of the sidewalls for securing the interlocking construction blocks together as well as providing additional strength to the structure and tightening of the joints of the blocks.
The first sidewall 602 may comprise a lower portion 608 integrally connected to an upper portion 610. The lower portion 608 may comprise a pair of opposing lower portion sidewalls 608a integrally connected to a pair of opposing lower end walls 608b. The upper portion 610 may comprise a top surface 610a, a pair of opposing upper portion sidewalls 610b and a pair of opposing upper portion end walls 610c integrally connected via upper portion angular walls 610d forming an octagonal configuration. The upper portion sidewalls 610b, upper portion end walls 610c and upper angular walls 610d may have a beveled or tapered surface. Although the top surface 610a is shown as planar, this is by way of example only.
According to one embodiment, a pair of reinforcement bars 622 may be embedded within the block 600. As shown, each of the reinforcement bars 622 may be arranged diagonally in a “X” pattern extending from one corner to the catty-corner. Each of the reinforcement bars 622 may extend the entire diagonal length or a partial diagonal length. The ends 622a-622d of each of the reinforcement bars 622 may have a generally “Y” configuration. That is, each of the four (4) ends of the reinforcement bars 622 may split off forming a “Y”. A first leg of the “Y” end may extend to a first corner on the first sidewall 602 and a second leg of the “Y” may extend to a first corner on the second sidewall 612, opposite the first corner. The first and second legs of the “Y” end may protrude through corners of the sidewalls 602 and 612 allowing the block 600, via the reinforcement bars 622, to be bolted or welded to corners plates, as discussed below in more detail.
The first sidewall 702 may comprise a lower portion 708 integrally connected to an upper portion 710. The lower portion 708 may comprise a pair of opposing lower portion sidewalls 708a integrally connected to a pair of opposing lower end walls 708b. The upper portion 710 may comprise a top surface 710a, a pair of opposing upper portion sidewalls 710b and a pair of opposing upper portion end walls 710c integrally connected via upper portion angular walls 710d forming an octagonal configuration. The upper portion sidewalls 710b, upper portion end walls 710c and upper angular walls 710d may have a beveled or tapered surface. Although the top surface 710a is shown as planar, this is by way of example only.
According to one embodiment, the block 700 may include a conduit 724 embedded within the block 700. The conduit 724 may be used for protecting and routing electrical wires and cables, for example, and may include a first opening 726a and a second opening 726b for insertion of the wires or cables. The conduit 724 may be made of any material known in the art, including but not limited to, metal, plastic, fiber, or fired clay. The conduit 724 may extend partially or completely through the block 700. Although the conduit 724 is shown extending horizontally through the block 700, this is by way of example only. The conduit 724 may extend vertically, diagonally or any combination thereof. Furthermore, although the conduit 724 is shown as straight, the conduit may also be curved or any combination thereof.
The first sidewall 802 may comprise a lower portion 808 integrally connected to an upper portion 810. The lower portion 808 may comprise a pair of opposing lower portion sidewalls 808a integrally connected to a pair of opposing lower end walls 808b. The upper portion 810 may comprise a top surface 810a, a pair of opposing upper portion sidewalls 810b and a pair of opposing upper portion end walls 810c integrally connected via upper portion angular walls 810d forming an octagonal configuration. The upper portion sidewalls 810b, upper portion end walls 810c and upper angular walls 810d may have a beveled or tapered surface. Although the top surface 810a is shown as planar, this is by way of example only.
According to one embodiment, the block 800 may include a box 824 connected to a conduit 826 embedded within the block 800. The conduit 826 may be used for protecting and routing electrical wires through blocks and may include an opening 828 on one end in which the wires are inserted. The other end of the conduit may be connected to the box 824 which may be used for placing an electrical outlet in a structure. Although a rectangular box 824 is shown, this is by way of example only and other shapes like squares, circles and triangles may be used.
The first sidewall 902 may comprise a lower portion 908 integrally connected to an upper portion 910. The lower portion 908 may comprise a pair of opposing lower portion sidewalls 908a integrally connected to a pair of opposing lower end walls 908b. The upper portion 910 may comprise a top surface 910a, a pair of opposing upper portion sidewalls 910b and a pair of opposing upper portion end walls 910c integrally connected via upper portion angular walls 910d forming an octagonal configuration. The upper portion sidewalls 910b, upper portion end walls 910c and upper angular walls 910d may have a beveled or tapered surface.
According to one aspect, one or more channels 920 may be located within the first sidewall 902. The channels 902 may extend partially or completely through the first sidewall 902 and be adapted to interconnect with the top of a block forming a roof. The second sidewall 912 may be identical to the first sidewall 902 or may include a solid surface without the channels of the first sidewall 902.
The front surface of the base sidewall section 1002 may comprise a lower portion 1012 integrally connected to an upper portion 1014. The lower portion 1012 may comprise a pair of opposing lower portion sidewalls 1012a integrally connected to a pair of opposing lower end walls 1012b. The upper portion 1014 may comprise a top surface 1014a, a pair of opposing upper portion sidewalls 1014b and a pair of opposing upper portion end walls 1014c integrally connected via upper portion angular walls 1014d. The upper portion sidewalls 1014b, upper portion end walls 1014c and upper angular walls 1014d may have a beveled or tapered surface.
Each of the lower end walls 1012b and upper end walls 1014b has a first section and a second section separated by the center section 1004 which may be integrally connected approximately in the middle or center of the base sidewall section 1002, equidistant from the first pair of opposing connecting walls 106a, 106b, and extend perpendicularly outward forming a “T” shape. The center section 1004 may comprise first and second opposing center sidewall portions 1016, 1026 integrally connected together by the base sidewall section 1002 at one end, a connecting end wall 1018 at the other end and a pair of opposing connecting walls 1020a, 1020b. According to one example, the connecting end wall 1018 and the pair of opposing connecting walls 1020a, 1020b may be formed of a flat planar wall, a grooved longitudinal wall or a tongued longitudinal wall. Tongued longitudinal walls are adapted to interconnect with grooved longitudinal walls of identical or substantially similar blocks. Although the tongues and grooves of the walls are shown having convex and concave surfaces, respectively, this is by way of example only and other shapes such as square or rectangular may be used. Additionally, although the tongue and grooves are shown extending the entire length of the wall, this is by way of example only.
The first center sidewall portion 1016 may comprise a lower portion 1022 integrally connected to an upper portion 1024. The lower portion 1022 may comprise a lower portion sidewall 1022a integrally connected to a pair of opposing lower end walls 1022b, the pair of opposing lower end sections 1022b integrally connected to the first section of the lower end walls 1012b of the base sidewall section 1002. The upper portion 1024 may comprise a top surface 1024a, an upper portion sidewall 1024b and a pair of opposing upper portion end walls 1024c integrally connected via upper portion angular walls 1024d and integrally connected to the first section of the upper end walls 1014c of the base sidewall section 1002. The upper portion sidewalls 1024b, upper portion end walls 1024c and upper angular walls 1024d may have a beveled or tapered surface. Although the top surface 1024a is shown as planar, this is by way of example only.
Although not shown in its entirety, the second center sidewall portion 1026 may be a minor image of the first center sidewall portion 1016 and comprise a lower portion 1028 integrally connected to an upper portion 1030. The lower portion 1028 may comprise a lower portion sidewall 1028a integrally connected to a pair of opposing lower end walls 1028b integrally connected to the second section of the lower end walls 1012b of the base sidewall section 1002. The upper portion 1030 may comprise a top surface (not shown), an upper portion sidewall 1030b and a pair of opposing upper portion end walls (not shown) integrally connected via upper portion angular walls 1030d and integrally connected to the second section of the upper portion end walls 1014c. The upper portion sidewalls 1030b, upper portion end walls 1030c and upper angular walls 1030d may have a beveled or tapered surface.
The back surface of the base sidewall section 1002 may have a lower portion and upper portion similar to the sidewalls 102, 112 as described with reference to the interconnecting construction block 100 of
The front surface of the base sidewall section 1102 may comprise a lower portion 1112 integrally connected to an upper portion 1114. The lower portion 1112 may comprise a pair of opposing lower portion sidewalls 1112a integrally connected to a pair of opposing lower end walls 1112b. The upper portion 1114 may comprise a top surface 1114a, a pair of opposing upper portion sidewalls 1114b and a pair of opposing upper portion end walls 1114c integrally connected via upper portion angular walls 1114d. The upper portion sidewalls 1114b, upper portion end walls 1114c and upper angular walls 1114d may have a beveled or tapered surface.
Each of the lower end walls 1112b and upper end walls 1114b has a first section and a second section separated by the center section 1104 which may be integrally connected approximately in the middle or center of the base sidewall section 1102, equidistant from the first pair of opposing connecting walls 1106a, 1106b, and extend perpendicularly outward forming a “T” shape. The center section 1104 may comprise first and second opposing center sidewall portions 1116, 1126 integrally connected together by the base sidewall section 1102 at one end, a connecting end wall 1118 at the other end and a pair of opposing connecting walls 1120a, 1120b. According to one example, the connecting end wall 1118 and the pair of opposing connecting walls 1120a, 1120b (1120b not shown) may be formed of a flat planar wall, a grooved longitudinal wall or a tongued longitudinal wall. Tongued longitudinal walls are adapted to interconnect with grooved longitudinal walls of identical or substantially similar blocks. Although the tongues and grooves of the walls are shown having convex and concave surfaces, respectively, this is by way of example only and other shapes such as square or rectangular may be used. Additionally, although the tongue and grooves are shown extending the entire length of the wall, this is by way of example only.
The first center sidewall portion 1116 may comprise a lower portion 1122 integrally connected to an upper portion 1124. The lower portion 1122 may comprise a lower portion sidewall 1122a integrally connected to a pair of opposing lower end walls 1122b, the pair of opposing lower end sections 1022b integrally connected to the first section of the lower end walls 1112b of the base sidewall section 1102. The upper portion 1124 may comprise a top surface 1124a, an upper portion sidewall 1124b and a pair of opposing upper portion end walls 1124c integrally connected via upper portion angular walls 1124d and integrally connected to the first section of the upper end walls 1114c of the base sidewall section 1102. The upper portion sidewalls 1124b, upper portion end walls 1124c and upper angular walls 1124d may have a beveled or tapered surface.
Although not shown in its entirety, the second center sidewall portion 1126 may be a mirror image of the first center sidewall portion 1116 and comprise a lower portion 1128 integrally connected to an upper portion 1130. The lower portion 1128 may comprise a lower portion sidewall 1128a integrally connected to a pair of opposing lower end walls 1128b integrally connected to the second section of the lower end walls 1112b of the base sidewall section 1102. The upper portion 1130 may comprise a top surface (not shown), an upper portion sidewall 1130b and a pair of opposing upper portion end walls (not shown) integrally connected via upper portion angular walls 1130d and integrally connected to the second section of the upper portion end walls 1114c. The upper portion sidewalls 1130b, upper portion end walls 1130c and upper angular walls 1130d may have a beveled or tapered surface.
According to one embodiment, pairs of reinforcement bars 1140, 1142 and 1144 may be embedded within each section of the base sidewall section 1102 as well as the center section 1104 of the block 1100, respectively. As shown, each of the reinforcement bars 1140, 1142 and 1144 may be arranged diagonally in an “X” pattern extending from one corner to the catty-corner. Each of the reinforcement bars 1140, 1142 and 1144 may extend the entire diagonal length or a partial diagonal length.
In one embodiment, a first end of each reinforcement bar in the pairs of reinforcement bars 1140, 1142 and 1144 may terminate at or near the intersection of the base sidewall section 1102 and the center section 1104 and a second end 1140a, 1140b, 1142a, 1142b, 1144a, 1144b of each reinforcement bar of the pairs of reinforcement bars 1140, 1142 and 1144 may have a generally “Y” configuration. That is, each of the second ends of the reinforcement bars 1140a, 1140b, 1142a, 1142b, 1144a, 1144b of the pairs of reinforcement bars 1140, 1142 and 1144 may split off forming a “Y”.
A first leg of the “Y” end 1140a may extend to a first corner of the front surface of the first section of the base sidewall section 1102 and a second leg of the “Y” end 1140a may extend to a first corner of the back surface of the first section of the base sidewall section 1102. The first and second legs of the “Y” end 1140a may protrude through the first corners of the front and back surfaces of the base sidewall section 1102 allowing the block 1100, via the reinforcement bars 1140, to be bolted or welded to corners plates, as discussed below in more detail.
A first leg of the “Y” end 1140b may extend to a second corner of the front surface of the first section of the base sidewall section 1102 and a second leg of the “Y” end 1140b may extend to a second corner of the back surface of the first section of the base sidewall section 1102. The first and second legs of the “Y” end 1140b may protrude through the second corners of the front and back surfaces of the base sidewall section 1102 allowing the block 1100, via the reinforcement bars 1140, to be bolted or welded to corners plates, as discussed below in more detail.
A first leg of the “Y” end 1142a may extend to a first corner of the front surface of the second section of the base sidewall section 1102 and a second leg of the “Y” end 1142a may extend to a first corner of the back surface of the second section of the base sidewall section 1102. The first and second legs of the “Y” end 1142a may protrude through the second corners of the front and back surfaces of the base sidewall section 1102 allowing the block 1100, via the reinforcement bars 1142, to be bolted or welded to corners plates, as discussed below in more detail.
A first leg of the “Y” end 1142b may extend to a second corner of the front surface of the second section of the base sidewall section 1102 and a second leg of the “Y” end 1142b may extend to a second corner of the back surface of the second section of the base sidewall section 1102. The first and second legs of the “Y” end 1142b may protrude through the second corners of the front and back surfaces of the base sidewall section 1102 allowing the block 1100, via the reinforcement bars 1142, to be bolted or welded to corners plates, as discussed below in more detail.
A first leg of the “Y” end 1144a may extend to a first corner of the first opposing center sidewall portions 1116 of the center section 1104 and a second leg of the “Y” end 1142a may extend through the first corner of the second opposing center sidewall portion 1126 of the center section 1104. The first and second legs of the “Y” end 1144a may protrude through the first corners of the first and second opposing center sidewall portion 1116, 1126 of the base sidewall section 1102 allowing the block 1100, via the reinforcement bars 1142, to be bolted or welded to corners plates, as discussed below in more detail.
A first leg of the “Y” end 1144b may extend to a second corner of the first opposing center sidewall portions 1116 of the center section 1104 and a second leg of the “Y” end 1142b may extend to a second corner of the second opposing center sidewall portion 1126 of the center section 1104. The first and second legs of the “Y” end 1144b may protrude through the second corners of the first and second opposing center sidewall portion 1116, 1126 of the base sidewall section 1102 allowing the block 1100, via the reinforcement bars 1142, to be bolted or welded to corners plates, as discussed below in more detail.
The back surface of the base sidewall section 1102 may have a lower portion and upper portion similar to the sidewalls 102, 112 as described with reference to the interconnecting construction block 100 of
Each sidewall in the pairs of sidewalls 1202a, 1202b; 1204a, 1204b; 1206a, 1206b; 1208a, 1208b has an identical configuration and therefor for the sake of brevity, only one sidewall 1206b of all the sidewalls forming the “X” shaped block 1200 in
The sidewall 1206b may comprise a lower portion 1226 integrally connected to an upper portion 1228. The lower portion 1226 may comprise a lower portion sidewall 1226a integrally connected to a pair of opposing lower portion end walls 1226b. The upper portion 1228 may comprise a planar top surface 1228a, an upper portion sidewall 1228b and a pair of opposing upper portion end walls 1228c integrally connected via upper portion angular walls 1228d. The upper portion sidewalls 1228b, upper portion end walls 1228c and upper angular walls 1228d may have a beveled or tapered surface.
Each sidewall in the pairs of sidewalls 1302a, 1302b; 1304a, 1304b; 1306a, 1306b; 1308a, 1308b has an identical configuration and therefor for the sake of brevity, only one sidewall 1306b of all the sidewalls forming the “X” shaped block 1300 in
The sidewall 1306b may comprise a lower portion 1326 integrally connected to an upper portion 1328. The lower portion 1326 may comprise a lower portion sidewall 1326a integrally connected to a pair of opposing lower portion end walls 1326b. The upper portion 1328 may comprise a planar top surface 1328a, an upper portion sidewall 1328b and a pair of opposing upper portion end walls 1328c integrally connected via upper portion angular walls 1328d. The upper portion sidewalls 1328b, upper portion end walls 1328c and upper angular walls 1328d may have a beveled or tapered surface.
According to one embodiment, a pair of reinforcement bars may be embedded within each block sections 1302-1308 of the block 1300. For the sake of brevity, only one pair of the reinforcement bars will be described in detail. Each of the reinforcement bars 1330 may be arranged diagonally in an “X” pattern extending from one corner to the catty-corner. Each of the reinforcement bars 1330 may extend the entire diagonal length or a partial diagonal length.
In one embodiment, a first end 1330a of each reinforcement bar in the pair of reinforcement bars 1330 may terminate at or near the intersection of the block sections 1302-1308 and a second end 1330b of each reinforcement bar may have a generally “Y” configuration. That is, each of the second ends of the pair of reinforcement bars 1330 may split off forming a “Y”.
A first leg of the “Y” end 1330a may extend to a first corner of sidewall 1302a and a second leg of the “Y” end 1330a may extend to a first corner of sidewall 1302b. The first and second legs of the “Y” end 1330a may protrude through the first corners of sidewalls 1302a, 1302b allowing the block 1300, via the reinforcement bars 1330, to be bolted or welded to corners plates, as discussed below in more detail.
Each sidewall of the pair of sidewalls 1402a, 1402b and 1404a, 1404b has an identical configuration and therefor for the sake of brevity, only one sidewall 1404b of all the sidewalls forming the corner block 1400 in
The sidewall 1404b may comprise a lower portion 1414 integrally connected to an upper portion 1416. The lower portion 1414 may comprise a lower portion sidewall 1414a integrally connected to a pair of opposing lower end walls 1414b. The upper portion 1416 may comprise a top surface 1416a, an upper portion sidewall 1416b and a pair of opposing upper portion end walls 1416c integrally connected via upper portion angular walls 1416d. The upper portion sidewalls 1416b, upper portion end walls 1416c and upper angular walls 1416d may have a beveled or tapered surface.
The first sidewall 1502 may comprise a lower portion 1508 integrally connected to an upper portion 1510. The lower portion 1508 may comprise a pair of opposing lower portion sidewalls 1508a integrally connected to a pair of opposing lower portion end walls 1508b. The upper portion 1510 may comprise a top surface 1510a, a pair of opposing upper portion sidewalls 1510b and a pair of opposing upper portion end walls 1510c integrally connected via upper portion angular walls 1510d forming an octagonal configuration. The upper portion sidewalls 1510b, upper portion end walls 1510c and upper angular walls 1510d may have a beveled or tapered surface.
The second sidewall 1512, only partially shown, has an identical configuration to the first sidewall 1502 and therefor, for the sake of brevity, will not be described herein. Corner plates 1514, 1516 may be secured to the corners of the lower upper portion 1508 of the first sidewall 1502 and the corners of the lower portion 1518 of the second sidewall 1512. Threaded members 1520, such as tubes, may be integrally connected to and extend between corresponding parallel corner plates on opposing sides walls.
In one embodiment, the threaded member 1520 may be placed in the center of each corner brace 1512, 1516 so that threaded members 1520 do not protrude through the connecting walls of the block 1500. Alternatively, the threaded members 1520 may be placed in any location that does not interfere or protrude through the connecting walls. The block 1500 may provide an alternative to welding as an outer plate may be used to secure adjoining blocks together as the outer plate is secured to the corner plates via insertion of screws or bolts into the threaded members 1520. (See
In one embodiment, a pair of reinforcement bars 1522 may be integrally connected to and extend diagonally from a threaded tube 1520 in one corner to a threaded tube located in a catty-corner. The pair of reinforcement bars 1522 may provide added strength to the block 1500.
Upon the interconnection of one or more blocks, an outer plate 1806 having threaded openings 1808 may be placed over adjoining corner plates such that the threaded holes 1804 of the corner plates may be aligned with the threaded holes 1808 of the outer plate 1806. Once the outer plate 1806 is aligned with and placed on the corner plates 1802, securing members 1810, such as screws, may be inserted into the threaded holes 1808 of the outer plate 1806, though the threaded holes 1804 of the corner plates 1802 and screwed into the threaded member securing the interconnecting construction blocks together, as discussed above with reference to
The first sidewall 1902 may comprise a lower portion 1908 integrally connected to an upper portion 1910. The lower portion 1908 may comprise a pair of opposing lower portion sidewalls 1908a integrally connected to a pair of opposing lower end walls 1908b. The upper portion 1910 may comprise a top surface 1910a, a pair of opposing upper portion sidewalls 1910b and a pair of opposing upper portion end walls 1910c integrally connected via upper portion angular walls 1910d forming an octagonal configuration. The upper portion sidewalls 1910b, upper portion end walls 1910c and upper angular walls 1910d may have a beveled or tapered surface.
The second sidewall 1912, only partially shown, has an identical configuration to the first sidewall 1902 and therefor for the sake of brevity will not be described herein. Corner braces or plates 1914, 1916 may be attached to the corners of the lower upper portion 1908 of the first sidewall 1902 and the corners of the lower upper portion 1918 of the second sidewall 1912.
According to one embodiment, a pair of reinforcement bars 1922 may be embedded within the block 1900. As shown, each of the reinforcement bars 1922 may be arranged diagonally in a “X” pattern extending from one corner to the catty-corner. Each of the reinforcement bars 1922 may extend the entire diagonal length or a partial diagonal length. The ends 1924 of each of the reinforcement bars 1922 may have a generally “Y” configuration. That is, each of the four (4) ends of the reinforcement bars 1922 may split off forming a “Y”. A first leg of the “Y” end may extend to a first corner on the first sidewall 1902 and a second leg of the “Y” may extend to a second corner on the second sidewall 1912, opposite the first corner. The first and second legs of the “Y” end may protrude through corners of the sidewalls 1902 and 1912 allowing the block 1900, via the reinforcement bars 1922, to be bolted, screwed or welded to outer plates, as discussed above.
As shown, four (4) interconnecting construction blocks may be assembled together to form the structure 2000. To further secure the interconnecting construction blocks together, corner plates 2002 may be fixedly secured to the corners of the interconnecting construction blocks. Adjacent corner plates 2002 may be welded together fixedly securing the interconnecting construction blocks together. Mortar or grout may subsequently be placed at the intersection of the interconnecting construction blocks as described above.
The front surface of the base member 2102 may be formed from upper sidewalls 2104a-2108a of the block sections 2104-2108. The upper sidewalls 2104a-2108a may have substantially the same configuration as the first sidewall of block 100 in
The front surface of the base member 2202 may be formed from upper sidewalls 2204a, 2206a of the block sections 2204, 2206. The upper sidewalls 2204a-2206a may have substantially the same configuration as the first sidewall of block 100 in
First and second block sections 2304 and 2306 of the base member 2302 may be separated by a first block section 1204 of the “X” shaped block 1200. Second and third block sections 2306 and 2308 of the base member 2302 may be separated by a second block section 1206 of the “X” shaped block 1200. Third and fourth block sections 2308 and 2310 of the base member 2302 may be separated by a third block section 1208 of the “X” shaped block 1200. First and fourth block sections 2304 and 2308 of the base member 2302 may be separated by a second block section 1206 of the “X” shaped block 1200. In one embodiment, each of the block sections 2304-2310 may equal surface areas which may be approximately a quarter of the surface area of the bask surface.
The front surface of the base member 2302 may be formed from upper sidewalls 2304a-2310a of the block sections 2304-2310. The upper sidewalls 2304a-2310a may have substantially the same configuration as the first sidewall of block 100 in
The front surface 2404 of the base section 2402 has an identical configuration to the front surface base sidewall section 1002 of
One or more of the components and functions illustrated in
While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art.
The present Application for Patent claims priority to Provisional Application No. 61/532,546 entitled “Interlocking Construction Blocks” filed Sep. 8, 2011 and is hereby expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
127628 | Merlette | Jun 1872 | A |
468838 | Steiger | Feb 1892 | A |
1306246 | Bried | Jun 1919 | A |
2241169 | Yokes | May 1941 | A |
2374624 | Schwendt | Apr 1945 | A |
2811035 | Zagray | Oct 1957 | A |
4148166 | Toone | Apr 1979 | A |
4152875 | Soland | May 1979 | A |
4433521 | Dietrich | Feb 1984 | A |
4593513 | Stratton | Jun 1986 | A |
4711057 | Lew et al. | Dec 1987 | A |
4891925 | Carlson et al. | Jan 1990 | A |
4993206 | Pardo | Feb 1991 | A |
5051023 | Yoshida et al. | Sep 1991 | A |
5129347 | Hill | Jul 1992 | A |
5224792 | Hagenah | Jul 1993 | A |
D346667 | Blomquist et al. | May 1994 | S |
D352789 | Adam | Nov 1994 | S |
5367846 | vonRoenn, Jr. | Nov 1994 | A |
5377468 | Repasky | Jan 1995 | A |
5490362 | Mercier | Feb 1996 | A |
5588271 | Pitchford | Dec 1996 | A |
5618602 | Nelson | Apr 1997 | A |
5622456 | Risi et al. | Apr 1997 | A |
5904019 | Kooij et al. | May 1999 | A |
5921710 | Scales | Jul 1999 | A |
5987829 | Fisher | Nov 1999 | A |
6138426 | Mork et al. | Oct 2000 | A |
6508042 | Kweon et al. | Jan 2003 | B1 |
6579038 | McAllister et al. | Jun 2003 | B1 |
6606835 | Bilka | Aug 2003 | B1 |
6763644 | Toledo | Jul 2004 | B1 |
6920724 | Hundley | Jul 2005 | B1 |
6939077 | Hart | Sep 2005 | B1 |
6941718 | diGirolamo et al. | Sep 2005 | B1 |
6988341 | Regina | Jan 2006 | B2 |
7108577 | Peters et al. | Sep 2006 | B2 |
7254924 | Regina | Aug 2007 | B2 |
7299596 | Hildreth | Nov 2007 | B2 |
7367167 | Takayanagi | May 2008 | B2 |
7458186 | Carter | Dec 2008 | B2 |
8091303 | Losonczi | Jan 2012 | B2 |
8201370 | Goodwin | Jun 2012 | B1 |
20050257480 | Toledo | Nov 2005 | A1 |
20060123732 | Takayanagi | Jun 2006 | A1 |
20080134605 | Friesen et al. | Jun 2008 | A1 |
20080184649 | Khan | Aug 2008 | A1 |
20080202054 | Abella | Aug 2008 | A1 |
20100223876 | Jones | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
0093417 | Nov 1983 | EP |
Entry |
---|
International Search Report & Written Opinion of PCT Application No. PCT/US11/60247, mailed Sep. 27, 2012, 9 pgs. |
Number | Date | Country | |
---|---|---|---|
20130061549 A1 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
61532546 | Sep 2011 | US |