1. Field of the Invention
The present invention relates generally to floor tile systems. More particularly, the present invention relates to an interlocking tile system having individual tiles that provide the appearance of wood floorboards.
2. Related Art
Numerous types of flooring have been used to create multi-use surfaces for sports, as well as for other purposes. In recent years, the use of modular flooring assemblies made of synthetic materials has grown in popularity. Modular flooring systems generally comprise a series of interlocking tiles that can be permanently installed over a subfloor, such as concrete or wood, or temporarily laid down upon another surface from time to time when needed.
Such synthetic floors are advantageous for several reasons. One reason for the popularity of these types of systems is that they are typically formed of materials that are generally inexpensive and lightweight. Additionally, if one tile becomes damaged, it can be removed and replaced quickly and easily. If the flooring needs to be temporarily removed, the individual tiles making up the floor can easily be detached and stored for subsequent use.
Another reason for the popularity of these types of flooring assemblies is that the durable plastics from which they are formed are long-lasting. Also, unlike some other long-lasting alternatives, such as asphalt and concrete, interlocking tiles of polymer material are generally better at absorbing impact, and there is less risk of injury if a person falls on the plastic material, as opposed to concrete or asphalt. Moreover, the connections for modular flooring assemblies can be specially engineered to absorb lateral force to reduce injuries, as is described in U.S. Pat. No. 4,930,286. Additionally, these flooring assemblies generally require little maintenance as compared to other flooring, such as natural wood floors.
However, the appearance of a natural wood floor is considered very pleasing. Despite the advantages of modular polymer flooring assemblies, many people prefer the appearance of a wood floor. Interlocking polymer floor tile systems that have been produced heretofore have not been capable of providing such an appearance.
In one embodiment thereof, the present invention advantageously provides an interlocking polymer floorboard tile comprising an elongate rectangular plank having a length, a width, and sides, the length being at least four times the width, such that the plank resembles a wood floorboard. The elongate tile includes a top surface, a perimeter wall supporting the top surface and defining a perimeter boundary of the tile, a lattice-type support structure, supporting the top surface, and interlocking structure of loops and pins configured to mate and interlock with pins of adjacent similar tiles to form a floor covering resembling a natural wood plank floor.
In accordance with a more detailed aspect of the invention, the elongate plank includes a wood grain pattern imprinted on its top surface, to enhance the appearance of a natural wood floor.
In accordance with yet another more detailed aspect thereof, the invention advantageously provides an interlocking floor tile system, comprising a plurality of elongate rectangular polymer floor tiles having a length, a width, and sides, wherein, the plurality of elongate floor tiles are disposed on a substrate in parallel orientation with the interlocking structure of each tile interconnected to an adjacent tile, so as to form a floor covering resembling a wood plank floor.
In accordance with yet another more detailed aspect thereof, the invention advantageously provides a method for producing interlocking floor tiles, comprising the steps of providing an elongate, injection-molded polymer floor tile having a top surface and a length at least four times a width thereof, transferring a printed pattern to the top surface after molding of the tile, and applying a protective coating atop the printed pattern.
Additional features and advantages of the invention will be apparent from the detailed description which follows, taken in conjunction with the accompanying drawings, which together illustrate, by way of example, features of the invention.
Reference will now be made to the exemplary embodiments illustrated in the drawings, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Alterations and further modifications of the inventive features illustrated herein, and additional applications of the principles of the inventions as illustrated herein, which would occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention.
Referring to
As shown, the top 12 of the tile 10 is a smooth solid surface, having a wood grain pattern 14 disposed thereon. Like other similar interlocking floor tiles, the tile includes loops 16 on two adjacent sides, and pins 18 on the other two adjacent sides, as shown in
A plan view of a completed installation of floorboard tiles 10 is shown in
Tiles of varying length may also be provided to further stagger the joints and provide a more random, natural wood appearance. For example, longer tiles 22 and shorter tiles 24 may be incorporated into the floor system to give a more natural look. While a tile with ten loops and ten pins on each of its long sides is shown in
Referring to
Referring to
As noted above, prior modular interlocking flooring systems have not provided the appearance of a natural wood floor. Despite the advantages of modular polymer flooring assemblies, many people prefer the appearance of a wood floor. The present invention advantageously provides an interlocking polymer floor tile system that has an appearance resembling that of a natural wood floor.
In
In the process depicted in
Upon placement on the conveyor 42, the tile 10 initially passes through a surface treatment system 46 (step 80 in
The resistance of polyolefins to coating or decorating is especially problematic when the substance to be bonded is another polymer, like polyurethane. Polyurethane has very low reactivity, is very inert, and resists reaction with organic and inorganic chemicals. It is an excellent coating for a polyolefin floor material because it is scratch and abrasion resistant, and has a long-lasting high gloss appearance.
In order to sufficiently bond a coating or decoration to a polyolefin or other polymer, the surface is treated, or a secondary adhesion-promoting layer is added to increase the adhesion. There are a number of methods for doing this, including heat or flame treatment, the use of heat and pressure, chemical treatment, electron bombardment, and plasma or corona treatment. Of these various methods, plasma and heat treatment have a number of advantages that make them suitable to the present invention.
When a plastic surface is exposed to a high-energy electric arc plasma, the plasma interacts with the surface molecules, increasing their energy through a variety of mechanisms, depending on the specific polymer involved. In some cases, surface hydrogen is removed, leaving behind active bonding sites. Also, cross-linking or scission can occur in the surface molecules. This will change the surface energy of the material, making it easier for a coating to adhere. These are just a few of the possible chemical mechanisms by which plasma treatment increases the surface energy of a polymer material. The great benefit of using electric arc plasmas is that they are relatively low temperature, and can be used without damaging the surface of polymers and other relatively delicate materials. Through plasma treatment it is considered desirable to raise the dyne level of the tile surface to at least 72. This energy level appears to provide for complete wetting of the polymer surface, and promotes strong adhesion of coatings.
Heat or flame treatment are believed to activate the surface of the polymer primarily through the formation of oxides on its surface. These oxides are easier to bond to than the actual base polymer, thus providing more active chemical bonding sites for a coating. It will be apparent that heat or flame treatment must not heat the tile 10 to a temperature that will cause it to melt, warp, or become otherwise damaged. A temperature of between about 120° and 145° F. is believed to be sufficient to activate the surface without damaging the tile. With the conveyor 42 moving at a constant speed, the top surface 12 of the floor tile 10 passing through a plasma field and/or under a heater will be approximately uniformly activated.
Following the surface treatment system 46, the activated floor tile 10 moves immediately without stopping toward the wood grain applicator system 48 (step 82 in
It has been noted that the transfer tape applied to the plasma-activated surface has significantly enhanced adhesion performance over tape simply applied to the polyolefin tile. This is particularly important because of the unusually high exposure of the tile edge structure for the narrow wood grained tiles as compared to common square tiles. Indeed, the amount of exposed tile edge for a section of wood grain flooring in accordance with the present invention is as much as four times that of a square tile system. It is critical that the transfer tape not delaminate or peel back at the edges. The present invention provides an effective procedure and configuration to accomplish this objective.
It will be apparent that the floorboard tile of the present invention may be produced without the wood grain appearance—that is, bypassing the wood grain applicator system 48 and its associated step, as indicated by arrow 88 in
Alternatively, some pattern other than wood grain may be applied to the top surface of the tile. This could include any desired pattern, such as a uniform geometric design, an irregular pattern, or pictorial images, for example. Additionally, the pattern may include multiple colors if desired. It is possible to transfer any desired pattern to the top surface of the floor tile.
Returning to
The applicator roller 62 is provided with a resilient roller surface (e.g. 25 durometer), which allows the roller to press against and conform to any slight irregularities that may exist in the top surface 12 of the tile 10. This helps ensure good contact of the polyurethane with all areas of the tile surface. It will be apparent that the liquid polyurethane could be applied to the tile surface in other ways. For example, it could sprayed on, either automatically or manually, and could also be manually rolled on. Other alternatives are also possible. The polyurethane coating may be applied in a thickness ranging from 0.0005″ to 0.002″. The inventors have found that a coating thickness of 0.0015″ is suitable for many applications.
The polyurethane coating is preferably a one-part all-solids (i.e non-solvent based) UV-cured aliphatic polyurethane. This type of polyurethane is well known by those skilled in the art, and is readily commercially available from paint, resin, and coating suppliers. Alternatively, other forms of polyurethane coatings may be used. For example, water based or water-borne polyurethanes, aromatic polyurethanes, and solvent-based polyurethanes could be used in alternative embodiments of the invention. Aromatic polyurethanes present the characteristic of gradually turning yellow or amber with age. Solvent-based polyurethanes require significant time and/or heating to cure, and give off noxious gasses as they do so. Other types of chemical coatings may also be used, in addition to polyurethane. For example, urethane acrylates, urethane methacrylates, epoxy acrylates, and epoxy methacrylates may also be applied using a system that is consistent with the present invention. These coatings may be desirable for their scratch, scuff, wear resistance, hardness, and ability to be cured via UV or electron beam energy.
The specific chemical make-up of the all-solids UV-cured aliphatic polyurethane described above may be adjusted for optimum adhesion and other properties, depending on the specific polymer substrate and other factors, such as environmental concerns and the anticipated use of the tile. For example, various commercially available additives may be included in the polyurethane. Silicone may be added (from 0 to 10%) to make the polyurethane more hydrophobic, improve tape release and ease of maintenance, and to help prevent water from interfering with the bond between the polyurethane and the tile surface or another coating. Teflon powder (up to 25 microns in size) may be added (0 to 10%) to improve wear, scratch, scuff, mar, and abrasion resistance, and to modify the friction and hydrophobic characteristics of the coating.
Aluminum oxide powder (up to 50 microns in size) may be added (0 to 40%) to improve wear, scratch, scuff, mar, and abrasion resistance, and to provide increased friction. Iron oxide powder (up to 25 microns in size) may be added (0 to 5%) to provide improved wear resistance, increased friction, and to change static conductivity. Glass beads (up to 25 microns in size) may also be added (0 to 10%) to improve wear, scratch, scuff, mar, and abrasion resistance, and to provide modified friction and hydrophobic properties. Glass beads also help reflect and transmit UV light through the polyurethane coating, which will help with curing, as described below. Pigments may also be mixed into the polyurethane to provide some coloration, opacity, and other desired aesthetic characteristics. It will be apparent that there are hundreds of commercially available pigments that may be used. However, it will also be apparent that significant opacity will obscure the wood grain pattern, and can also hinder UV curing of the polyurethane coating.
Following application of the polyurethane coating, the tile 10 passes through a space 70 between the coating applicator 60 and a UV light curing system 72. This space has a length chosen in relation to the speed of the conveyor so as to provide a flattening-out time interval. This time interval allows the liquid polyurethane to flatten out before it is exposed to the UV light and cured. It will be apparent that when liquid coatings are applied with a roller, the coating may initially have ripples, dimples, and other irregularities in its surface. To allow these to dissipate, a brief time interval is needed to allow the liquid to assume a naturally flat, smooth surface under the force of gravity. Naturally, the length of the time interval required will depend on the viscosity of the polyurethane.
After the flattening-out time interval, the tile 10 enters the UV light curing system 72 (step 86 in
Following curing under the UV lamps, the tile is finished and ready to install. Additional coating applicators and UV curing systems could also be provided if it were desired to apply a second or subsequent polyurethane or other coatings. However, the inventors have found that because the wood grain pattern does not alter the physical contour of the top surface of the tile, one coat is usually sufficient. The result is a smooth, flat floor tile having a top surface with the appearance of a wood floorboard with a high gloss finish.
It is to be understood that the above-referenced arrangements are only illustrative of the application for the principles of the present invention. Numerous modifications and alternative arrangements can be devised without departing from the spirit and scope of the present invention while the present invention has been shown in the drawings and fully described above with particularity and detail in connection with what is presently deemed to be the most practical and preferred embodiments(s) of the invention, it will be apparent to those of ordinary skill in the art that numerous modifications can be made without departing from the principles and concepts of the invention as set forth in the claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US04/20471 | 6/24/2004 | WO | 8/25/2006 |
Number | Date | Country | |
---|---|---|---|
60482103 | Jun 2003 | US |