1. Field of the Invention
The present invention relates to air brake hose connectors and, more particularly, to a connector having a mechanical interlock to prevent inadvertent decoupling.
2. Description of the Related Art
Air brake hose couplers, typically referred to as gladhand connectors, have two interlocking members fitted to the hoses that supply pressurized air from a locomotive to the railway air brakes of the railroad cars of a train and then coupled together to join the hoses together. Conventional gladhands used throughout in the rail industry do not include any mechanism that locks the gladhands together when in the coupled position. Instead, the prevailing gladhand design uses the compression of a rubber gasket between the faces of the two gladhands as the sole means to hold a rib in a groove, thus holding the gladhands together. This approach has proven to be unreliable in the field, however, as it is easily disconnected by involuntary forces, such as hose vibration. While the art includes locking mechanisms for gladhands, these approaches have not been adopted in the field because they require that the gladhands be unlocked through additional steps or manipulation that are not practical for current methods of rail car separation or compliant with the applicable industry regulations and standards, such as those promulgated by the Association of American Railroads (AAR). Thus, there is a need in the art for a gladhand design that mitigates the risk of unintended hose separation but allows for disconnection without additional steps or structure.
The present invention comprises a gladhand coupling having a coupling half having a face with an opening therethrough, a locking lug extending outwardly from the face of said coupling half and having a first ramped pad positioned at a predetermined location about the face and a ridge extending outwardly therefrom, and a flange extending from the face and having a second ramped pad positioned oppositely about the face from the first ramped pad, a third ramped pad spaced apart from the second ramped pad to define a slot therebetween, and a groove formed therein that corresponds to the ridge of the locking lug. A second gladhand coupling a second face with a second opening therethrough, a second locking lug extending outwardly from the second face of said second coupling half and having a fourth ramped pad positioned at a predetermined location about the second face and a second ridge extending therefrom, and a second flange extending from the second face and having a fifth ramped pad positioned oppositely about the second face from the third ramped pad, a sixth ramped pad spaced apart from the second ramped pad to define a second slot therebetween that can accept the first ramped pad, and a second groove extending therefrom may be connected to the first gladhand coupling half. The first coupling half and the second coupling half are movable between a disconnected position, wherein the first and fifth ramped pads are misaligned and the second and fourth ramped pads are misaligned, and a connected position, wherein the first and fifth ramped pads are aligned and the second and fourth ramped pads are aligned. The first coupling half and second coupling half are oriented at other than 180 degrees to each other when in the connected position. The first coupling half and the second coupling half are also movable into a released position where the fourth ramped pad can pass through the first slot and the first ramped pad can pass through the second slot. The first coupling half and second coupling half are oriented at about 180 degrees in the released position.
The present invention will be more fully understood and appreciated by reading the following Detailed Description in conjunction with the accompanying drawings, in which:
Referring now to the drawings, wherein like reference numerals refer to like parts throughout, there is seen in
Referring to
Each coupling half 12 further includes a pointed leg 40 on flange 28 and a notch 42 positioned at one end of lug 20 so that when two coupling halves 12 are connected together, leg 40 of flange is received in notch 42, thereby forming a stop that prevents rotations of coupling halves 12 past the locked position of gladhand coupling 10 seen in
As further seen in
Coupling halves 12 are joined to form gladhand coupling 10 by positioning the respective faces 16 of two coupling halves 12 against each other so that the longitudinal axes are misaligned, and then rotating one coupling half 12 relative to the other coupling half 12 past a 180 degree orientation until lug 20 of one coupling half 12 slides completely into channel 32 of flange 28 of the other coupling half 12, ridge 46 slides fully into groove 44, and pointed leg engages notch 42. As halves 12 are rotated toward the locked position of
Gladhand coupling 10 prevents inadvertent separation of halves 12 as follows. As coupling halves 12 are rotated into the locked position, sloped surfaces 26 and 38 guide surfaces 24 and 36 into opposing alignment despite any dimensional tolerances of the two coupling halves 12 and sealing gasket. Once gladhand coupling 10 is moved into the fully locked position of
The intentional uncoupling of a gladhand coupling, including gladhand coupling 10, involves using the train to pull the brake hoses tight, which forces halves 12 to rotate toward 180 degree opposite alignment relative to each other. As halves 12 rotate, the opposing ramped pads 22 and 34 rotate out of alignment allowing the resilient gaskets to compress sufficiently to allow ridge 46 to be pulled out of groove 44 by the train car forces so that coupling halves 12 can separate. Gladhand coupling 10 thus remains free for normal disconnection of gladhand couplings by an intentional rotation of halves 12 relative to each other, such as during a rail yard pull-apart, but reduces the incidents of inadvertent disconnection when in locked position. As no additional latches or locking mechanisms need to be manipulated to unlock coupling halves 12, coupler 10 can be disconnected simply by rotating the two coupling halves 12 relative to each other as is the practice with conventional gladhands, or pulling them apart as described above, thereby providing for a secure mechanical interconnection without the need for complex locking structure that must be separately unlocked before gladhand coupling 10 can be open to disconnect air hoses connected thereto.
Referring to
The present application is a continuation-in-part of U.S. application Ser. No. 15/003,104 filed on Jan. 21, 2016 and PCT Application No. PCT/US16/14267, filed on Jan. 21, 2016.
Number | Name | Date | Kind |
---|---|---|---|
157951 | Westinghouse, Jr. | Dec 1874 | A |
1797423 | Kelley | Mar 1931 | A |
2535740 | Knopp | Dec 1950 | A |
3052489 | Stoudt | Sep 1962 | A |
3241865 | Pumphrey | Mar 1966 | A |
D224107 | Mastis | Jul 1972 | S |
4366965 | Rhodes | Jan 1983 | A |
5129243 | Kassebaum | Jul 1992 | A |
5240311 | Bunker | Aug 1993 | A |
20070209705 | Nichols | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
1456861 | Jul 1966 | FR |
1006177 | Sep 1965 | GB |
Entry |
---|
International Search Report and Written Opinion Form PCT/ISA/220, International Applicaiton No. PCT/US2016/014267, pp. 1-10, dated Sep. 19, 2016. |
Number | Date | Country | |
---|---|---|---|
20170210397 A1 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2016/014267 | Jan 2016 | US |
Child | 15281924 | US | |
Parent | 15003104 | Jan 2016 | US |
Child | PCT/US2016/014267 | US |