The invention generally relates to an arrangement for loading and retaining knife edge seals within a compressor.
Turbine engines include high and low pressure compressors to provide compressed air for combustion within the engine. Each compressor typically includes multiple rotor disks. Stator blades extend between each rotor disk along a compressor axis. Knife edge seals are formed integrally into each rotor disk to contact the stator blades. The seals limit the recirculation of air within the compressor.
During operation of the compressor the rotor disk is repeatedly heated and cooled, resulting in compressive and tensile hoop stresses on the outer portion of the disk, including the knife edge seals. This cyclic loading from the thermal cycles fatigue the disk and knife edge seals. Any areas of concentrated stress are prone to cracking as a result of the fatigue. The hoop stress in the knife edge seals can practically be eliminated by making the knife edge seals non-integral to the disk, and segmented. This will increase the durability of the rotor.
An improved arrangement for loading and retaining knife edge seals within a compressor is needed.
An example compressor for a turbine engine according to this invention includes an arrangement for incorporating knife edge seals which are separate from the compressor disk.
A typical compressor includes multiple rotor disks having rotor blades mounted about the circumference of each of the disks. A plurality of stator blades extend axially between adjacent disks. A knife edge seal assembly is supported and retained by retaining flanges extending from a rim on each disk. The assembly is formed from a plurality of knife edge seals arranged about the circumference of a disk backbone of the disk assembly. The knife edge seals contact the stator blades to limit the recirculation of air within the compressor. Each knife edge seal has an over-lapping lip which prevents the air leakage between the seals.
To assemble the knife edge seals a lower seal body is inserted past retaining flanges on the disks and the knife edge seal is then rotated 90-degrees. Once rotated, grooves between the lower seal body and an upper seal body engage the retaining flanges. Consecutive knife edge seals are assembled in the same manner and pressed together to interlock with the circumferentially adjacent knife edge seal. A lock assembly is inserted between the retaining flanges in a similar manner to the knife edge seal. The lock assemblies and the knife edge seals are inserted until all have been assembled onto the disk. Slack is left to provide enough room for the last knife edge seal to be assembled. Upon completion the lock assemblies should be spaced from one another about the circumference of the disk backbone with a plurality of knife edge seals located between each lock assembly. Once all the knife edge seals have been assembled the slack used for assembly of the final knife edge seal must be reduced to prevent shifting and rotating of the knife edge seals during operation of the compressor. A set screw on each lock assembly is tightened, moving the lock assembly into a lock position. The lock assembly contacts the adjacent knife edge seals when locked to reduce the slack. The lock assemblies each include a rounded end of the set screw. The disk backbone includes a mating depression to prevent rotation of the lock assembly during compressor operation.
These and other features of the present invention can be best understood from the following specification and drawings, the following of which is a brief description.
Each disk 26 includes a disk rim 32. The disk rim 32 supports the rotor blades 28. A disk backbone 34 extends from each disk rim 32. A knife edge seal 36 is supported and retained by both of retaining flanges 38a and 38b (
Referring to
An example of the assembly process of the knife edge seals 36 onto the disk backbones 34a and 34b is described. A lock assembly 46 is inserted between the retaining flanges 38a and 38b. The lock assembly 46, shown in
The process of inserting the lock assemblies 46 and knife edge seals 36 is repeated until all the knife edge seals 36 and lock assemblies 46 have been assembled onto the disk 26. The lock assemblies 46 should be assembled to be spaced from one another about the circumference of the disk backbones 34a and 34b. A plurality of knife edge seals 36 should be located between each lock assembly 46. Slack is left to provide enough room for the last knife edge seal 36 to be assembled. That is, to provide enough space to insert and then rotate the knife edge seal 36 into position.
In one example, there are eight lock assemblies 46. The number of lock assemblies 46 and the number and length of the knife edge seals 36 may vary. One skilled in the art would be able to determine the appropriate numbers and lengths of knife edge seals 36 and lock assemblies 46.
Referring to
The lock assemblies 46 each include a first interlocking feature 56 and the disk backbone 34a includes a second interlocking feature 58. When the lock assemblies 46 are in the lock position the first interlocking feature 56 and the second interlocking feature 58 lock together to prevent circumferential movement of the lock assemblies 46. In the example shown the first interlocking feature 56 is a rounded end of set screw 50 and the second interlocking feature 58 is a depression in the disk backbone 34a. The second interlocking feature 58 may be a continuous depression or a plurality of depressions spaced around the circumference of the disk backbone 34a at desired location. Of course, the second interlocking feature 58 may be formed in the second disk backbone 34b, or partially formed in both the first and second disk backbones 34a and 34b
Although the example embodiment discloses an arrangement of assembling knife edge seals onto a rotor disk for a compressor the arrangement may be used for any rotor and seal assembly.
Although the disclosure shows a plurality of several of the structures, the claims may be broader than requiring a plurality of the structures, and may recite that “at least one” of the structures exist in the claimed structure. This may apply to the knife edge seals, the disk backbones, or the lock assemblies.
Although a preferred embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.
| Number | Name | Date | Kind |
|---|---|---|---|
| 1792288 | Dempster | Feb 1931 | A |
| 3067490 | Luthy et. al. | Dec 1962 | A |
| 3295825 | Hall, Jr. | Jan 1967 | A |
| 3701536 | Matthews et. al. | Oct 1972 | A |
| 4088422 | Martin | May 1978 | A |
| 7216871 | Datta | May 2007 | B1 |
| 7470113 | Tran et al. | Dec 2008 | B2 |
| 20070297897 | Tran et al. | Dec 2007 | A1 |
| Number | Date | Country | |
|---|---|---|---|
| 20080008582 A1 | Jan 2008 | US |