N/A
N/A
1. Field of the Invention
This invention relates to rotating control devices to be used in the field of fluid drilling equipment.
2. Description of the Related Art
Conventional oilfield drilling typically uses hydrostatic pressure generated by the density of the drilling fluid or mud in the wellbore in addition to the pressure developed by pumping of the fluid to the borehole. However, some fluid reservoirs are considered economically undrillable with these conventional techniques. New and improved techniques, such as underbalanced drilling and managed pressure drilling, have been used successfully throughout the world. Managed pressure drilling is an adaptive drilling process used to more precisely control the annular pressure profile throughout the wellbore. The annular pressure profile is controlled in such a way that the well is either balanced at all times, or nearly balanced with low change in pressure. Underbalanced drilling is drilling with the hydrostatic head of the drilling fluid intentionally designed to be lower than the pressure of the formations being drilled. The hydrostatic head of the fluid may naturally be less than the formation pressure, or it can be induced.
These improved techniques present a need for pressure management devices, such as rotating control heads or devices (referred to as RCDs). RCDs, such as proposed in U.S. Pat. No. 5,662,181, have provided a dependable seal in the annular space between a rotating tubular and the casing or a marine riser for purposes of controlling the pressure or fluid flow to the surface while drilling operations are conducted. Typically, a member of the RCD is designed to rotate with the tubular along with an internal sealing element(s) or seal(s) enabled by bearings. The seal of the RCD permits the tubular to move axially and slidably through the RCD. As best shown in FIG. 3 of the '181 patent, the RCD has its bearings positioned above a lower sealing element or stripper rubber seal, and an upper sealing element or stripper rubber seal is positioned directly and completely above the bearings. The '181 patent proposes positioning the RCD with a housing with a lateral outlet or port with a circular cross section for drilling fluid returns. As shown in FIG. 3 of the '181 patent, the diameter of a circular flange at the end of a circular conduit communicating with the port is substantially smaller than the combined height of the RCD and housing. The term “tubular” as used herein means all forms of drill pipe, tubing, casing, riser, drill collars, liners, and other tubulars for drilling operations as are understood in the art.
U.S. Pat. No. 6,138,774 proposes a pressure housing assembly with a RCD and an adjustable constant pressure regulator positioned at the sea floor over the well head for drilling at least the initial portion of the well with only sea water, and without a marine riser. As shown in FIG. 6 of the '774 patent, the diameters of the circular flanges are substantially smaller than the combined height of the RCD and pressure housing. Also shown in FIG. 6 of the '774 patent, a lubrication unit pressurized by a spring loaded piston is proposed that is separated from but in fluid communication with a housing disposed with a sealed bearing assembly. It is proposed that lubricant may be injected into fissures at the top and bottom of the bearing assembly to lubricate the internal components of the bearing assembly.
U.S. Pat. No. 6,913,092 B2 proposes a seal housing with a RCD positioned above sea level on the upper section of a marine riser to facilitate a mechanically controlled pressurized system that is useful in underbalanced subsea drilling. A remote controlled external disconnect/connect clamp is proposed for hydraulically clamping the bearing and seal assembly of the RCD to the seal housing. As best shown in FIG. 3 of the '092 patent, in one embodiment, the seal housing of the RCD is proposed to contain two lateral conduits extending radially outward to respective T-connectors for the return pressurized drilling fluid flow. As further shown in FIG. 3 of the '092 patent, each diameter of the two lateral conduits extending radially outward are substantially smaller than the combined height of the RCD and seal housing.
U.S. Pat. No. 4,949,796 proposes a bearing assembly with a rotatable sealing element disposed with an assembly carrier. The assembly carrier is proposed to be removably attached with a stationary housing with a clamping assembly.
U.S. Pat. No. 7,159,669 B2 proposes that the RCD positioned with an internal housing member be self-lubricating. The RCD proposed is similar to the Weatherford-Williams Model 7875 RCD available from Weatherford International of Houston, Tex. The '669 patent proposes two pressure compensation mechanisms that maintain a desired lubricant pressure in the bearing assembly. One pressure compensation mechanism is proposed to be disposed directly and completely above the bearings, and the other pressure compensation mechanism is proposed to be disposed directly and completely below the bearings. Both pressure compensation mechanisms are proposed to be disposed directly and completely between the upper and lower rotatable seals.
U.S. Pat. No. 7,487,837 proposes a remotely actuated hydraulic piston latching assembly for latching and sealing a RCD with the upper section of a marine riser or a bell nipple positioned on the riser.
Pub. No. US 2006/0144622 A1 proposes a system and method for cooling a RCD while regulating the pressure on its upper radial seal. Gas, such as air, and liquid, such as oil, are alternatively proposed for use in a heat exchanger in the RCD.
An annular blowout preventer (BOP) has been often used in conventional hydrostatic pressure drilling. As proposed in U.S. Pat. No. 4,626,135, when the BOP's annular seals are closed upon the drill string tubular, fluid is diverted via a lateral outlet or port away from the drill floor. However, drilling must cease because movement of the drill string tubular will damage or destroy the non-rotatable annular seals. During normal operations the BOP's annular seals are open, and drilling mud and cuttings return to the rig through the annular space. For example, the Hydril Company of Houston, Tex. has offered the Compact GK®7 1/16″-3000 and 5000 psi annular blowout preventers.
Small drilling rigs with short substructure heights have been used to drill shallow wells with conventional drilling techniques as described above. Some small land drilling rigs are even truck mounted. However, smaller drilling rigs and structures are generally not equipped for managed pressure and/or underbalanced drilling because they lack pressure containment or management capability. At the time many such rigs were developed and constructed, managed pressure and/or underbalanced drilling was not used. As a result of their limited substructure height, there is little space left for additional equipment, particularly if the rig already uses a BOP.
As a result of the shortage of drilling rigs created by the high demand for oil and gas, smaller drilling rigs and structures are being used to drill deeper wells. In some locations where such smaller rigs are used, such as in western Canada and parts of the northwestern and southeastern United States, there exist shallow pockets of H2S (sour gas), methane, and other dangerous gases that can escape to atmosphere immediately beneath the drill rig floor during drilling and/or workover operations. Several blowouts have occurred in drilling and/or workovers in such conditions. Even trace amounts of such escaping gases create health, safety, and environmental (HSE) hazards, as they are harmful to humans and detrimental to the environment. There are U.S. and Canadian regulatory restrictions on the maximum amount of exposure workers can have to such gases. For example, the Occupational Safety and Health Administration (OSHA) sets an eight hour daily limit for a worker's exposure to trace amounts of H2S gas when not wearing a gas mask.
Smaller drilling rigs and structures are also typically not able to drill with compressible fluids, such as air, mist, gas, or foam, because such fluids require pressure containment. There are numerous occasions in which it would be economically desirable for such smaller rigs to drill with compressible fluids. Also, HSE hazards could result without pressure containment, such as airborne debris, sharp sands, and toxins.
As discussed above, RCDs and their housings proposed in the prior art cannot fit on many smaller drilling rigs or structures due to the combined height of the RCDs and their housings, particularly if the rigs or structures already use a BOP. The RCD's height is a result in part of the RCD's bearings being positioned above the RCD's lower sealing element, the RCD's accommodation, when desired, for an upper sealing element, the means for changing the sealing element(s), the configurations of the housing, the area of the lateral outlet or port in the housing, the thickness of the bottom flange of the housing, and the allowances made for bolts or nuts on the mounting threaded rods positioned with the bottom flange of the housing.
RCDs have also been proposed in U.S. Pat. Nos. 3,128,614; 4,154,448; 4,208,056; 4,304,310; 4,361,185; 4,367,795; 4,441,551; 4,531,580; and 4,531,591. Each of the referenced patents proposes a conduit in communication with a housing port with the port diameter substantially smaller than the height of the respective combined RCD and its housing.
U.S. Pat. No. 4,531,580 proposes a RCD with a body including an upper outer member and a lower inner member. As shown in FIG. 2 of the '580 patent, a pair of bearing assemblies are located between the two members to allow rotation of the upper outer member about the lower inner member.
More recently, manufacturers such as Smith Services and Washington Rotating Control Heads, Inc. have offered their RDH 500® RCD and Series 1400 “SHORTY” rotating control head, respectively. Also, Weatherford International of Houston, Tex. has offered its Model 9000 that has a 500 psi working and static pressure with a 9 inch (22.9 cm) internal diameter of its bearing assembly. Furthermore, International Pub. No. WO 2006/088379 A1 proposes a centralization and running tool (CTR) having a rotary packing housing with a number of seals for radial movement to take up angular deviations of the drill stem. While each of the above referenced RCDs proposes a conduit communicating with a housing port with the port diameter substantially smaller than the height of the respective combined RCD and its housing, some of the references also propose a flange on one end of the conduit. The diameter of the proposed flange is also substantially smaller than the height of the respective combined RCD and its housing.
The above discussed U.S. Pat. Nos. 3,128,614; 4,154,448; 4,208,056; 4,304,310; 4,361,185; 4,367,795; 4,441,551; 4,531,580; 4,531,591; 4,626,135; 4,949,796; 5,662,181; 6,138,774; 6,913,092 B2; 7,159,669 B2; and 7,487,837; Pub. No. U.S. 2006/0144622 A1; and International Pub. No. WO 2006/088379 A1 are incorporated herein by reference for all purposes in their entirety. The '796, '181, '774, '092, '669 and '837 patents and the '622 patent publication have been assigned to the assignee of the present invention. The '614 patent is assigned on its face to Grant Oil Tool Company. The '310 patent is assigned on its face to Smith International, Inc. of Houston, Tex. The '580 patent is assigned on its face to Cameron Iron Works, Inc. of Houston, Tex. The '591 patent is assigned on its face to Washington Rotating Control Heads. The '135 patent is assigned on its face to the Hydril Company of Houston, Tex. The '379 publication is assigned on its face to AGR Subsea AS of Straume, Norway.
As discussed above, a long felt need exists for a low profile RCD (LP-RCD) system and method for managed pressure drilling and/or underbalanced drilling. It would be desirable to have a means for lubrication of the bearings of such a LP-RCD. It would be desirable to be able to efficiently replace the seal from the bearing assembly while leaving the bearing assembly in place. It would also be desirable to be able to efficiently remove the bearing assembly from its housing while leaving the housing in place.
A low profile RCD (LP-RCD) system and method for managed pressure drilling, underbalanced drilling, and for drilling with compressible fluids is disclosed. In several embodiments, the LP-RCD is positioned with a LP-RCD housing, both of which are configured to fit within the limited space available on some rigs, typically on top of a BOP or surface casing wellhead in advance of deploying a BOP. The lateral outlet or port in the LP-RCD housing for drilling fluid returns may have a flange having a diameter that is substantially the same as the height of the combined LP-RCD and LP-RCD housing. Advantageously, in one embodiment, an annular BOP seal is integral with a RCD housing so as to eliminate an attachment member, thereby resulting in a lower overall height of the combined BOP/RCD and easy access to the annular BOP seal upon removal of the RCD.
The ability to fit a LP-RCD in a limited space enables H2S and other dangerous gases to be being diverted away from the area immediately beneath the rig floor during drilling operations. The sealing element of the LP-RCD can be advantageously replaced from above, such as through the rotary table of the drilling rig, eliminating the need for physically dangerous and time consuming work under the drill rig floor. The LP-RCD enables smaller rigs with short substructure heights to drill with compressible fluids, such as air, mist, gas, or foam. One embodiment of the LP-RCD allows rotation of the inserted tubular about its longitudinal axis in multiple planes, which is beneficial if there is misalignment with the wellbore or if there are bent pipe sections in the drill string.
Another embodiment of the LP-RCD allows the LP-RCD to be removably disposed with a LP-RCD housing by rotating a bearing assembly rotating plate. The bearing assembly rotating plate is positioned with the LP-RCD housing on roller bearings. The LP-RCD bearing assembly outer member may have tabs positioned with receiving slots in the LP-RCD housing. The bearing assembly rotating plate may be rotated to a blocking position covering the bearing assembly outer member tabs and blocking removal of the LP-RCD from the LP-RCD housing. The bearing assembly rotating plate may also be rotated to an access position uncovering the bearing assembly outer member tabs and allowing removal of the LP-RCD from the LP-RCD housing.
A spring loaded lock member or pin may be movably disposed with the bearing assembly rotating plate. The lock pin may provide an attachment point for rotation of the plate. The lock pin may be moved to a locked position resisting relative rotation between the bearing assembly rotating plate and the LP-RCD housing. The lock pin may also be moved to an unlocked position allowing relative rotation between the bearing assembly rotating plate and the LP-RCD housing. The bearing assembly rotating plate may be locked in the access position and in a blocking position. In addition, a rod may be positioned through an access opening in the LP-RCD housing into a port in the bearing assembly rotating plate to rotate the bearing assembly rotating plate between blocking and access positions. A bearing assembly retainer plate may be disposed over the bearing assembly rotating plate and attached with the LP-RCD housing to block removal of the bearing assembly rotating plate.
The sealing element may be removably disposed with the LP-RCD bearing assembly by rotating a seal retainer ring. Tabs on a seal support member or ring that supports the seal may be disposed in slots in the LP-RCD bearing assembly inner member. The seal retainer ring may be disposed over the seal support ring. Tabs on the seal retainer ring may be positioned over the seal support ring tabs in the bearing assembly inner member slots. The seal retainer ring and its tabs may be rotated through a horizontal groove to a blocking position blocking removal of the sealing element from the bearing assembly. The seal retainer ring may also be rotated to an access position allowing removal of the sealing element from the bearing assembly. Spring loaded flipper dogs on the seal retainer ring may be moved to locked positions when the seal retainer ring is in the blocking position preventing relative rotation between the seal retainer ring and the LP-RCD bearing assembly inner member. The flipper dogs may also be moved to unlocked positions allowing relative rotation between the seal retainer ring and the LP-RCD bearing assembly inner member.
Alternatively, the sealing element may be removably disposed with the LP-RCD bearing assembly with a seal support member threadedly attached with the LP-RCD bearing assembly. The seal support member may be locked into position with a seal locking ring threadedly attached with the LP-RCD bearing assembly over the seal support member.
The LP-RCD bearing assembly may be self-lubricating with a plurality of spaced apart accumulators disposed radially outward of the bearings in the bearing assembly outer member. Each accumulator may have a spring loaded piston.
A better understanding of the present invention can be obtained with the following detailed descriptions of the various disclosed embodiments in the drawings:
Generally, a system and method is disclosed for converting a smaller drilling rig with a limited substructure height between a conventional open and non-pressurized mud-return system for hydrostatic pressure drilling, and a closed and pressurized mud-return system for managed pressure drilling or underbalanced drilling, using a low profile rotating control device (LP-RCD), generally designated as 10 in
Turning to
Turning to
LP-RCD 10A is positioned with an LP-RCD housing 18 with radial clamp 12. Clamp 12 may be manual, mechanical, hydraulic, pneumatic, or some other form of remotely operated means. Bottom or lower flange 23 of LP-RCD housing 18 is positioned and fixed on top of the lower housing HS with a plurality of equally spaced attachment members or swivel hinges 20 that are attached to the lower housing HS with threaded rod/nut 22 assemblies. Swivel hinges 20 can be rotated about a vertical axis prior to tightening of the threaded rod/nut 22 assemblies. Before the threaded rod/nut 22 assemblies are tightened, swivel hinges 20 allow for rotation of the LP-RCD housing 18 so that conduit 29, further described below, can be aligned with the drilling rig's existing line or conduit to, for example, its mud pits, shale shakers or choke manifold as discussed herein. Other types of connection means are contemplated as well, some of which are shown in
Stripper rubber seal 16 seals radially around tubular 14, which extends through passage 8. Metal seal support member or ring 17 is sealed with radial seal 21 in inner member 26 of LP-RCD 10A. Inner member 26 and seal 16 are rotatable in a horizontal plane with tubular 14. A plurality of bearings 24 positioned between inner member 26 and outer member 28 enable inner member 26 and seal 16 to rotate relative to stationary outer member 28. As can now be understood, bearings 24 for the LP-RCD 10A are positioned radially inside LP-RCD housing 18. As can also now be understood, the threaded connection between metal seal support ring 17 and inner member 26 allows seal 16 to be inspected for wear and/or replaced from above. It is contemplated that stripper rubber seal 16 may be inspected and/or replaced from above, such as through the rotary table or floor RF of the drilling rig, in all embodiments of the LP-RCD 10, eliminating the need for physically dangerous and time consuming work under drill rig floor RF.
Reviewing both
Turning now to
Turning now to
Turning next to
LP-RCD housing conduit 60 extends from the housing port, shown generally as 52. Conduit 60 has a width greater than its height, and then transitions, generally shown as 54, to a flange port, shown generally as 56, that is substantially circular. The cross sectional or flow areas of the two ports (52, 56), which are in communication, as well as the cross sectional or flow areas of the transition 54 therebetween, are substantially identical. However, different cross sectional areas and shapes are contemplated as well. It is contemplated that conduit 60 and port 52 may be in alignment with a portion of seal 16. A line or conduit (not shown), including a flexible conduit, may be connected to the flange 58. It is also contemplated that a flexible conduit may be attached directly to port 52 as compared to rigid conduit 60. It is contemplated that height H3 of the combined LP-RCD 10A and LP-RCD housing 50 in
LP-RCD 10B includes a bearing assembly and a sealing element, which includes a stripper rubber seal 83 supported by a metal seal support member or ring 85 having a thread 87A on ring 85 radially exterior surface. The bearing assembly includes an inner member 82, an outer ball member 84, and a plurality of bearings 90 therebetween. The inner member 82 has thread 87B on the top of its interior surface for a threaded connection with metal seal support ring 85. Exterior surface 84A of outer ball member 84 is preferably convex. Outer member 84 is sealed with seals 86 to socket member 88 that is concave on its interior surface 88A corresponding with the convex surface 84A of the outer member 84. LP-RCD 10B and socket member 88 thereby form a ball and socket type joint or connection. LP-RCD 10B is held by socket member 88, which is in turn attached to LP-RCD housing 80 with a radial clamp 12. As previously discussed, clamp 12 may be manual, mechanical, hydraulic, pneumatic, or some other form of remotely operated means. It is also contemplated that socket member 88 may be manufactured as a part of LP-RCD housing 80, and not clamped thereto.
LP-RCD housing 80 is sealed with radial seal 94 and threadably connected with radial thread 92A to attachment member or retainer ring 96. Although radial thread 92A is shown on the inside of the LP-RCD housing 80 and thread 92B on the radially outwardly facing surface of retainer ring 96, it is also contemplated that a radial thread could alternatively be located on the radially outwardly facing surface of a LP-RCD housing 80, and a corresponding thread on the inside of a retainer ring. In such an alternative embodiment, the retainer ring would be located outside of the LP-RCD housing. As best shown in
Stripper rubber seal 83 seals radially around tubular 110, which extends through passage 7. Metal seal support member or ring 85 is sealed by radial seal 89 with inner member 82 of LP-RCD 10B. Inner member 82 and seal 83 are rotatable with tubular 110 in a plane that is 90° from the longitudinal axis or center line CL of tubular 110. A plurality of bearings 90 positioned between inner member 82 and outer member 84 allow inner member 82 to rotate relative to outer member 84. As best shown in
LP-RCD housing 80 includes conduit 100 that initially extends from the housing port, generally shown as 102, with conduit 100 having a width greater than its height, and transitions, generally shown as 118, to a flange port, generally shown as 106, that is substantially circular. The cross sectional or flow areas of the two ports (102, 106), which are in communication, as well as the different cross sectional areas of the transition 118 therebetween, are substantially identical, similar to that shown in
It is contemplated that height H4 of the combined LP-RCD 108 and the LP-RCD housing 80 in
Turning to
LP-RCD 10C is positioned with an LP-RCD housing 132 with the bearing assembly. As best shown in
The bottom or lower flange 163 of LP-RCD housing 132 is positioned on top of lower member or housing HS with a plurality of attachment members or swivel hinges 140 that may be bolted to lower housing HS with bolts 142. Swivel hinges 140, similar to swivel hinges 20 shown in
Top ring 120, side ring 122, and stripper rubber seal 138 are rotatable in a horizontal plane with the tubular 14. A plurality of radial 128 and thrust 126 bearings positioned between the LP-RCD housing 132 on the one hand, and the top ring 120 and side ring 122 on the other hand, allow seal 138, top ring 120, and side ring 122 to rotate relative to the LP-RCD stationary housing 132. The inner race for the radial bearings, shown generally as 128, may be machined in the outside surfaces of the LP-RCD housing 132. As can now be understood, the bearings (126, 128) of LP-RCD 10C are positioned outside of LP-RCD housing 132.
LP-RCD housing 132 includes dual and opposed conduits (144, 162) that initially extend from dual and opposed housing ports, generally shown as (146, 160), with a width (preferably 14 inches or 35.6 cm) greater than their height (preferably 2 inches or 5.1 cm), and transition, generally shown as (150, 158), to flange ports, generally shown as (148, 156), that are substantially circular. The shape of conduits (144, 162) allow access to bolts 142. Housing ports (146, 160) are in communication with their respective flange ports (148, 156). The two ports, each of equal area, provide twice as much flow area than a single port. Other dimensions are also contemplated. It is also contemplated that conduits (144, 162) may be manufactured as a separate part from the LP-RCD housing 132, and be welded to the LP-RCD housing 132. The cross sectional or flow areas of the ports (146, 148, 156, 160), as well as the cross sectional or flow areas of the transition between them (150, 158) are preferably substantially identical. However, different cross sectional areas and shapes are contemplated as well. Lines or conduits (not shown), including flexible conduits, may be connected to flanges (152, 154).
It is contemplated that height H5 of the combined LP-RCD 10C positioned with LP-RCD housing 132 in
Although two conduits (144, 162) are shown in
Turning to
Housing 172 has a lateral conduit 174 with housing port 178 that is substantially circular, and perpendicular to axis DL. Port 178 is above seal E while being in communication with seal E. It is also contemplated that conduit 174 may be manufactured as a separate part from LP-RCD housing 172, and may be welded to LP-RCD housing 172. If desired, valve V1 may be attached to flange 176, and a second lateral conduit 192 may be attached with valve V1. Valve V1 may be manual, mechanical, electrical, hydraulic, pneumatic, or some other remotely operated means. Sensors S will be discussed below in detail in conjunction with
Turning to
As can now be understood, an annular BOP seal E and its operating components K are integral with housing 172 and the LP-RCD 10A to provide an overall reduction in height H6 while providing functions of both an RCD and an annular BOP. Moreover, the need for an attachment member between a LP-RCD 10 and the BOP seal E, such as attachment members (20, 43, 64, 96, 140) along with a bottom or lower flange (23, 163) in
It is contemplated that the operation of the integral housing 172 with annular BOP and LP-RCD 10A, as shown in
Threaded connection (19A, 19B) between ring 17 and inner member 26 allows seal 16 to be inspected or replaced from above when the seal 16 is worn. Full bore access may be obtained by removing clamp 12 and LP-RCD 10A including bearing assembly (24, 26, 170). Seal E may then be inspected or replaced from above by disconnecting connectors 182 from containment member 184, removing containment member 184 from housing 172 via the full bore access, thereby exposing seal E from above. It is also contemplated that removal of ring 17 while leaving the bearing assembly (24, 26, 170) in place may allow limited access to seal E for inspection from above.
It should be understood that although housing lower flange 180 is shown over ram-type BOP stack RB in
Turning to
Turning to
It is contemplated that the desired LP-RCD 10 may have any type or combination of seals to seal with inserted tubulars (14, 110), including active and/or passive stripper rubber seals. It is contemplated that the connection means between the different LP-RCD housings (18, 40, 50, 80, 132, 172) and the lower member or housing HS shown in
Method of Use
LP-RCD 10 may be used for converting a smaller drilling rig or structure between conventional hydrostatic pressure drilling and managed pressure drilling or underbalanced drilling. A LP-RCD (10A, 10B, 10C) and corresponding LP-RCD housing (18, 40, 50, 80, 132, 172) may be mounted on top of a lower member or housing HS (which may be a BOP) using one of the attachment members and connection means shown in
Conduit(s) may be attached to the flange(s) (34, 58, 108, 152, 154, 176), including the conduit configurations and valves shown in
For conventional drilling using housing 172 in the configuration shown in
As is known by those knowledgeable in the art, during conventional drilling a well may receive an entry of water, gas, oil, or other formation fluid into the wellbore. This entry occurs because the pressure exerted by the column of drilling fluid or mud is not great enough to overcome the pressure exerted by the fluids in the formation being drilled. Rather than using the conventional practice of increasing the drilling fluid density to contain the entry, integral housing 172 allows for conversion in such circumstances, as well as others, to managed pressure drilling.
To convert from the configurations shown in
Interlocking LP-RCD System
Turning to
As shown in
The seal element is removably positioned with bearing assembly inner member 226 with seal support ring tabs 234 in bearing assembly inner member receiving slots 236. Seal support ring tabs 234 in bearing assembly inner member receiving slots 236 resist relative rotation between seal support ring 232 and bearing assembly inner member 226. Seal retainer ring 238 is disposed over seal support ring 232 with seal retainer ring tabs 240 also in bearing assembly inner member receiving slots 236. As can be better understood from
After lowering seal retainer ring tabs 240 into bearing assembly inner member receiving slots 236 over seal support ring tabs 234, seal retainer ring 238 may then be rotated counterclockwise about a vertical axis moving seal retainer ring tabs 240 through the horizontal grooves 236A of receiving slots 236 from the access position to the blocking position. In the blocking position, at least some portion of seal retainer ring tabs 240 are in horizontal grooves 236A of receiving slots 236, thereby blocking removal of seal support ring 232 from bearing assembly inner member 226. When seal retainer ring 238 may not be rotated counterclockwise any further with seal retainer ring tabs 240 in the horizontal grooves 236A of receiving slots 236, seal retainer ring 238 is in its locked position. As can be understood, the locked position for seal retainer ring 238 is also a blocking position.
Spring loaded flipper dogs 242 are in their unlocked positions as shown in
Returning to
As can be better understood from
With bearing assembly outer member tabs 214 supported in LP-RCD housing receiving slots 218, bearing assembly rotating plate 210 may be rotated clockwise about a vertical axis, such as with lock member or pin 252 as an attachment point or other means, which are described in detail below with
As will be discussed in detail below with
Returning to
An inner radial seal 270A and an outer radial seal 270B may be disposed with each seal sleeve (268A, 268B). Inner seals 270A and outer seals 270B may be hydrodynamic rotary Kalsi Seals® available from Kalsi Engineering, Inc. of Sugar Land, Tex., although other types of seals are contemplated. Bearing assembly outer member 212 may have a top packing box 274 and a bottom packing box 276. The bearings 228 may be preloaded with top packing box 274, and the top packing box 274 and the preload held in place with angled bearing assembly set screws 278. There may be a top packing box port 280 and a bottom packing box port 282 for filling with lubricant. It is contemplated that if an outer seal 270B fails, the leak rate of the lubricant may be lowered or slowed with the use of the adjacent port (280, 282).
Cylindrical shaped accumulators (220, 220A) may be disposed in bearing assembly outer member 212. An accumulator piston (222, 222A) and spring (224, 224A) are disposed in each accumulator (220, 220A). Although two accumulators (220, 220A) are shown, it is also contemplated that there may be only one accumulator, or preferably a plurality of spaced apart accumulators that are disposed radially outward from the bearings 228 in bearing assembly outer member 212. The plurality of accumulators may be spaced a substantially equal distance apart from each other. It is contemplated that there may be thirty (30) spaced apart accumulators (220, 220A) of 1 inch (2.54 cm) diameter, although other amounts and sizes are contemplated. It is also contemplated that there may be only one accumulator extending continuously radially around the entire circumference of bearing assembly outer member 212. Such an accumulator may have a single ring shaped piston and a spring.
As best shown in
Accumulators (220, 220A) may be in radial alignment with the bearings 228. Seal retainer ring 238 and seal 230 may be directly radially inward of and in alignment with the bearing assembly. Accumulators (220, 220A) may be directly radially outward of and in alignment with the bearings 228. Bearing assembly rotating plate 210 may be directly radially outward of and in alignment with the bearing assembly. LP-RCD housing 200 may be directly radially outward of and in alignment with the bearing assembly. LP-RCD housing 200 may also be directly radially outward of and in alignment with the bearing assembly rotating plate 210. Bearing assembly retainer plate 208 may be directly radially outward of and in alignment with the bearing assembly. Bearing assembly retainer plate 208 may also be at least partially radially outward of the bearing assembly rotating plate 210.
Returning to
The diameter of LP-RCD housing well bore 264 may be approximately 13.63 inches (34.6 cm), although other diameters are contemplated. Although outlet conduit 266 is shown unitary or monolithic with LP-RCD housing 200, it is also contemplated that outlet conduit 266 may not be unitary with LP-RCD housing 200 and may be welded to the side of LP-RCD housing 200. Distance D7 between the bearing assembly and the inside surface of LP-RCD housing 200 may be 1.69 inches (4.3 cm), although other distances are contemplated.
In
Seal retainer ring 238 is also in a blocking position and is locked with bearing assembly inner member 226. Seal support ring 232 (not shown) with seal 230 are held by bearing assembly inner member 226. Seal retainer ring tabs 240 are disposed in and supported by bearing assembly inner member receiving slots 236. Seal retainer ring tabs 240 have been lowered into bearing assembly inner member receiving slots 236 over seal support ring tabs 234 (not shown) in the access position. Seal retainer ring 238 has then been rotated counterclockwise about a vertical axis to a blocking position with seal retainer ring tabs 240 in horizontal grooves 236A of receiving slots 236. Seal retainer ring 238 has been fully rotated in a counterclockwise direction with seal retainer ring tabs 240 in horizontal grooves 236A of receiving slots 236. Seal retainer ring flipper dogs 242 are in their locked positions in bearing assembly inner member receiving slots 236 as shown in detail view in
Turning to
As best shown in
As best shown in
In
In
In
Interlocking LP-RCD Method of Use
To assemble the LP-RCD 10D, seal 230 may be disposed with the bearing assembly by aligning and resting seal support ring tabs 234 in bearing assembly inner member receiving slots 236. Seal retainer ring 238 may be disposed over seal support ring 232 by aligning and lowering seal retainer ring tabs 240 over seal support ring tabs 234 in bearing assembly inner member receiving slots 236. Seal retainer ring 238 may be rotated in a counterclockwise direction about a vertical axis with seal retainer ring tabs 240 in horizontal grooves 236A of bearing assembly inner member receiving slots 236. After further counterclockwise rotation is resisted, seal retainer ring flipper dogs 242 may be moved to their locked positions in bearing assembly inner member receiving slots 236. As can now be understood, seal 230 is locked with the bearing assembly and blocked from removal.
The bearing assembly may be disposed with LP-RCD housing 200 by rotating bearing assembly rotating plate 210 to its access position in which bearing assembly rotating plate receiving slots 254 are aligned with LP-RCD housing receiving slots 218. Bearing assembly rotating plate 210 may be locked in its access position with lock pin 252 in its second locking position. The bearing assembly may be positioned with the LP-RCD housing 200 by aligning and lowering bearing assembly outer member tabs 214 through the bearing assembly receiving slots 254. The bearing assembly outer member tabs 214 may be supported in LP-RCD housing receiving slots 218. Lock member or pin 252 may then be refracted from its second locking position to the unlocked position. Bearing assembly rotating plate 210 may be rotated clockwise about a vertical axis to the blocking position. Lock pin 252 may then be moved to its first locking position to prevent relative rotation of bearing assembly rotating plate 210 with LP-RCD housing 200. As can now be understood, the bearing assembly is locked with the LP-RCD housing 200 and is blocked from removal.
LP-RCD 10D may be used for converting a smaller drilling rig or structure between conventional hydrostatic pressure drilling and managed pressure drilling or underbalanced drilling. LP-RCD 10D and corresponding LP-RCD housing 200 as shown in
Outlet flange 258 may be aligned as necessary before LP-RCD housing 200 is fully tightened against the lower member (202, HS). Conduit(s) may be attached to the outlet flange 258, including the conduit configurations and valves shown in
When desired, the stripper rubber seal 230 may be inspected and, if needed, replaced from above, by removing seal retainer ring 238 and lifting out seal support ring 232 and seal 230. Seal retainer ring 238 may be removed by moving flipper dogs 242 from their locked positions as shown in
When desired, the bearing assembly may be inspected and, if needed, replaced from above, by rotating bearing assembly rotating plate 210 counterclockwise about a vertical axis from a blocking position to its access position either with lock pin 252 as an attachment point, or with a rod 300 in rod receiving port 302A in bearing assembly rotating plate 210, or with both. As shown in
If alternative embodiment seal support ring or member 232A and seal 230A shown in
The foregoing disclosure and description of the invention are illustrative and explanatory thereof, and various changes in the details of the illustrated apparatus and system, and the construction and the method of operation may be made without departing from the spirit of the invention.
This application is a continuation-in-part of co-pending U.S. application Ser. No. 11/975,946 filed on Oct. 23, 2007, which application is hereby incorporated by reference for all purposes in its entirety and is assigned to the assignee of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
517509 | Williams | Apr 1894 | A |
1157644 | London | Oct 1915 | A |
1472952 | Anderson | Nov 1923 | A |
1503476 | Childs et al. | Aug 1924 | A |
1528560 | Myers et al. | Mar 1925 | A |
1546467 | Bennett | Jul 1925 | A |
1560763 | Collins | Nov 1925 | A |
1700894 | Joyce et al. | Feb 1929 | A |
1708316 | MacClatchie | Apr 1929 | A |
1769921 | Hansen | Jul 1930 | A |
1776797 | Sheldon | Sep 1930 | A |
1813402 | Hewitt | Jul 1931 | A |
2038140 | Stone | Jul 1931 | A |
1831956 | Harrington | Nov 1931 | A |
1836470 | Humason et al. | Dec 1931 | A |
1902906 | Seamark | Mar 1933 | A |
1942366 | Seamark | Jan 1934 | A |
2036537 | Otis | Apr 1936 | A |
2071197 | Burns et al. | Feb 1937 | A |
2085777 | Williams | Jul 1937 | A |
2124015 | Stone et al. | Jul 1938 | A |
2126007 | Gulberson et al. | Aug 1938 | A |
2144682 | MacClatchie | Jan 1939 | A |
2148844 | Stone et al. | Feb 1939 | A |
2163813 | Stone et al. | Jun 1939 | A |
2165410 | Penick et al. | Jul 1939 | A |
2170915 | Schweitzer | Aug 1939 | A |
2170916 | Schweitzer et al. | Aug 1939 | A |
2175648 | Roach | Oct 1939 | A |
2176355 | Otis | Oct 1939 | A |
2185822 | Young | Jan 1940 | A |
2199735 | Beckman | May 1940 | A |
2211122 | Howard | Aug 1940 | A |
2222082 | Leman et al. | Nov 1940 | A |
2233041 | Alley | Feb 1941 | A |
2243340 | Hild | May 1941 | A |
2243439 | Pranger et al. | May 1941 | A |
2287205 | Stone | Jun 1942 | A |
2303090 | Pranger et al. | Nov 1942 | A |
2313169 | Penick et al. | Mar 1943 | A |
2325556 | Taylor, Jr. et al. | Jul 1943 | A |
2338093 | Caldwell | Jan 1944 | A |
2480955 | Penick | Sep 1949 | A |
2506538 | Bennett | May 1950 | A |
2529744 | Schweitzer, Jr. | Nov 1950 | A |
2609836 | Knox | Sep 1952 | A |
2628852 | Voytech | Feb 1953 | A |
2646999 | Barske | Jul 1953 | A |
2649318 | Skillman | Aug 1953 | A |
2731281 | Knox | Jan 1956 | A |
2746781 | Jones | May 1956 | A |
2760750 | Schweitzer, Jr. et al. | Aug 1956 | A |
2760795 | Vertson | Aug 1956 | A |
2764999 | Stanbury | Oct 1956 | A |
2808229 | Bauer et al. | Oct 1957 | A |
2808230 | McNeil et al. | Oct 1957 | A |
2846178 | Minor | Aug 1958 | A |
2846247 | Davis | Aug 1958 | A |
2853274 | Collins | Sep 1958 | A |
2862735 | Knox | Dec 1958 | A |
2886350 | Horne | May 1959 | A |
2904357 | Knox | Sep 1959 | A |
2927774 | Ormsby | Mar 1960 | A |
2929610 | Stratton | Mar 1960 | A |
2962096 | Knox | Nov 1960 | A |
2995196 | Gibson et al. | Aug 1961 | A |
3023012 | Wilde | Feb 1962 | A |
3029083 | Wilde | Apr 1962 | A |
3032125 | Hiser et al. | May 1962 | A |
3033011 | Garrett | May 1962 | A |
3052300 | Haixtpton | Sep 1962 | A |
3096999 | Ahlstone et al. | Jul 1963 | A |
3100015 | Regan | Aug 1963 | A |
3128614 | Auer | Apr 1964 | A |
3134613 | Regan | May 1964 | A |
3176996 | Barnett | Apr 1965 | A |
3203358 | Regan et al. | Aug 1965 | A |
3209829 | Haeber | Oct 1965 | A |
3216731 | Dollison | Nov 1965 | A |
3225831 | Knox | Dec 1965 | A |
3259198 | Montgomery et al. | Jul 1966 | A |
3268233 | Brown | Aug 1966 | A |
3285352 | Hunter | Nov 1966 | A |
3288472 | Watkins | Nov 1966 | A |
3289761 | Smith et al. | Dec 1966 | A |
3294112 | Watkins | Dec 1966 | A |
3302048 | Gray | Jan 1967 | A |
3313345 | Fischer | Apr 1967 | A |
3313358 | Postlewaite et al. | Apr 1967 | A |
3323773 | Walker | Jun 1967 | A |
3333870 | Watkins | Aug 1967 | A |
3347567 | Watkins | Oct 1967 | A |
3360048 | Watkins | Dec 1967 | A |
3372761 | van Gils | Mar 1968 | A |
3387851 | Cugini | Jun 1968 | A |
3397928 | Galle | Aug 1968 | A |
3400938 | Williams | Sep 1968 | A |
3401600 | Wood | Sep 1968 | A |
3405763 | Pitts et al. | Oct 1968 | A |
3421580 | Fowler et al. | Jan 1969 | A |
3424197 | Yanagisawa | Jan 1969 | A |
3443643 | Jones | May 1969 | A |
3445126 | Watkins | May 1969 | A |
3452815 | Watkins | Jul 1969 | A |
3472518 | Harlan | Oct 1969 | A |
3476195 | Galle | Nov 1969 | A |
3481610 | Slator et al. | Dec 1969 | A |
3485051 | Watkins | Dec 1969 | A |
3492007 | Jones | Jan 1970 | A |
3493043 | Watkins | Feb 1970 | A |
3503460 | Gadbois | Mar 1970 | A |
3522709 | Vilain | Aug 1970 | A |
3529835 | Lewis | Sep 1970 | A |
3561723 | Cugini | Feb 1971 | A |
3583480 | Regan | Jun 1971 | A |
3587734 | Shaffer | Jun 1971 | A |
3603409 | Watkins | Sep 1971 | A |
3621912 | Wooddy, Jr. | Nov 1971 | A |
3631834 | Gardner et al. | Jan 1972 | A |
3638721 | Harrison | Feb 1972 | A |
3638742 | Wallace | Feb 1972 | A |
3653350 | Koons et al. | Apr 1972 | A |
3661409 | Brown et al. | May 1972 | A |
3664376 | Watkins | May 1972 | A |
3667721 | Vujasinovic | Jun 1972 | A |
3677353 | Baker | Jul 1972 | A |
3724862 | Biffle | Apr 1973 | A |
3741296 | Murman et al. | Jun 1973 | A |
3779313 | Regan | Dec 1973 | A |
3815673 | Bruce et al. | Jun 1974 | A |
3827511 | Jones | Aug 1974 | A |
3847215 | Herd | Nov 1974 | A |
3868832 | Biffle | Mar 1975 | A |
3872717 | Fox | Mar 1975 | A |
3924678 | Ahlstone | Dec 1975 | A |
3934887 | Biffle | Jan 1976 | A |
3952526 | Watkins et al. | Apr 1976 | A |
3955622 | Jones | May 1976 | A |
3965987 | Biffle | Jun 1976 | A |
3976148 | Maus et al. | Aug 1976 | A |
3984990 | Jones | Oct 1976 | A |
3992889 | Watkins et al. | Nov 1976 | A |
3999766 | Barton | Dec 1976 | A |
4037890 | Kurita et al. | Jul 1977 | A |
4046191 | Neath | Sep 1977 | A |
4052703 | Collins, Sr. et al. | Oct 1977 | A |
4053023 | Herd et al. | Oct 1977 | A |
4063602 | Howell et al. | Dec 1977 | A |
4087097 | Bossens et al. | May 1978 | A |
4091881 | Maus | May 1978 | A |
4098341 | Lewis | Jul 1978 | A |
4099583 | Maus | Jul 1978 | A |
4109712 | Regan | Aug 1978 | A |
4143880 | Bunting et al. | Mar 1979 | A |
4143881 | Bunting | Mar 1979 | A |
4149603 | Arnold | Apr 1979 | A |
4154448 | Biffle | May 1979 | A |
4157186 | Murray et al. | Jun 1979 | A |
4183562 | Watkins et al. | Jan 1980 | A |
4200312 | Watkins | Apr 1980 | A |
4208056 | Biffle | Jun 1980 | A |
4216835 | Nelson | Aug 1980 | A |
4222590 | Regan | Sep 1980 | A |
4249600 | Bailey | Feb 1981 | A |
4281724 | Garrett | Aug 1981 | A |
4282939 | Maus et al. | Aug 1981 | A |
4285406 | Garrett et al. | Aug 1981 | A |
4291772 | Beynet | Sep 1981 | A |
4293047 | Young | Oct 1981 | A |
4304310 | Garrett | Dec 1981 | A |
4310058 | Bourgoyne, Jr. | Jan 1982 | A |
4312404 | Morrow | Jan 1982 | A |
4313054 | Martini | Jan 1982 | A |
4326584 | Watkins | Apr 1982 | A |
4335791 | Evans | Jun 1982 | A |
4336840 | Bailey | Jun 1982 | A |
4337653 | Chauffe | Jul 1982 | A |
4345769 | Johnston | Aug 1982 | A |
4349204 | Malone | Sep 1982 | A |
4353420 | Miller | Oct 1982 | A |
4355784 | Cain | Oct 1982 | A |
4361185 | Biffle | Nov 1982 | A |
4363357 | Hunter | Dec 1982 | A |
4367795 | Biffle | Jan 1983 | A |
4378849 | Wilks | Apr 1983 | A |
4383577 | Pruitt | May 1983 | A |
4384724 | Derman | May 1983 | A |
4386667 | Millsapps, Jr. | Jun 1983 | A |
4387771 | Jones | Jun 1983 | A |
4398599 | Murray | Aug 1983 | A |
4406333 | Adams | Sep 1983 | A |
4407375 | Nakamura | Oct 1983 | A |
4413653 | Carter, Jr. | Nov 1983 | A |
4416340 | Bailey | Nov 1983 | A |
4423776 | Wagoner et al. | Jan 1984 | A |
4424861 | Carter, Jr. et al. | Jan 1984 | A |
4427072 | Lawson | Jan 1984 | A |
4439068 | Pokladnik | Mar 1984 | A |
4440232 | LeMoine | Apr 1984 | A |
4440239 | Evans | Apr 1984 | A |
4441551 | Biffle | Apr 1984 | A |
4444250 | Keithahn et al. | Apr 1984 | A |
4444401 | Roche et al. | Apr 1984 | A |
4448255 | Shaffer et al. | May 1984 | A |
4456062 | Roche et al. | Jun 1984 | A |
4456063 | Roche | Jun 1984 | A |
4457489 | Gilmore | Jul 1984 | A |
4478287 | Hynes et al. | Oct 1984 | A |
4480703 | Garrett | Nov 1984 | A |
4484753 | Kalsi | Nov 1984 | A |
4486025 | Johnston | Dec 1984 | A |
4488703 | Jones | Dec 1984 | A |
4497592 | Lawson | Feb 1985 | A |
4500094 | Biffle | Feb 1985 | A |
4502534 | Roche et al. | Mar 1985 | A |
4508313 | Jones | Apr 1985 | A |
4509405 | Bates | Apr 1985 | A |
4519577 | Jones | May 1985 | A |
4524832 | Roche et al. | Jun 1985 | A |
4526243 | Young | Jul 1985 | A |
4527632 | Chaudot | Jul 1985 | A |
4529210 | Biffle | Jul 1985 | A |
4531580 | Jones | Jul 1985 | A |
4531591 | Johnston | Jul 1985 | A |
4531593 | Elliott et al. | Jul 1985 | A |
4531951 | Burt et al. | Jul 1985 | A |
4533003 | Bailey et al. | Aug 1985 | A |
4540053 | Baugh et al. | Sep 1985 | A |
4546828 | Roche | Oct 1985 | A |
4553591 | Mitchell | Nov 1985 | A |
D282073 | Bearden et al. | Jan 1986 | S |
4566494 | Roche | Jan 1986 | A |
4575426 | Bailey | Mar 1986 | A |
4595343 | Thompson et al. | Jun 1986 | A |
4597447 | Roche et al. | Jul 1986 | A |
4597448 | Baugh | Jul 1986 | A |
4610319 | Kalsi | Sep 1986 | A |
4611661 | Hed et al. | Sep 1986 | A |
4615544 | Baugh | Oct 1986 | A |
4618314 | Hailey | Oct 1986 | A |
4621655 | Roche | Nov 1986 | A |
4623020 | Nichols | Nov 1986 | A |
4626135 | Roche | Dec 1986 | A |
4630680 | Elkins | Dec 1986 | A |
4632188 | Schuh et al. | Dec 1986 | A |
4646826 | Bailey et al. | Mar 1987 | A |
4646844 | Roche et al. | Mar 1987 | A |
4651830 | Crotwell | Mar 1987 | A |
4660863 | Bailey | Apr 1987 | A |
4688633 | Barkley | Aug 1987 | A |
4690220 | Braddick | Sep 1987 | A |
4697484 | Klee et al. | Oct 1987 | A |
4709900 | Dyer | Dec 1987 | A |
4712620 | Lim et al. | Dec 1987 | A |
4719937 | Roche et al. | Jan 1988 | A |
4722615 | Bailey et al. | Feb 1988 | A |
4727942 | Galle et al. | Mar 1988 | A |
4736799 | Ahlstone | Apr 1988 | A |
4745970 | Bearden et al. | May 1988 | A |
4749035 | Cassity | Jun 1988 | A |
4754820 | Watts et al. | Jul 1988 | A |
4757584 | Pav et al. | Jul 1988 | A |
4759413 | Bailey et al. | Jul 1988 | A |
4765404 | Bailey et al. | Aug 1988 | A |
4783084 | Biffle | Nov 1988 | A |
4807705 | Henderson et al. | Feb 1989 | A |
4813495 | Leach | Mar 1989 | A |
4817724 | Funderburg, Jr. et al. | Apr 1989 | A |
4822212 | Hall et al. | Apr 1989 | A |
4825938 | Davis | May 1989 | A |
4828024 | Roche | May 1989 | A |
4832126 | Roche | May 1989 | A |
4836289 | Young | Jun 1989 | A |
4844406 | Wilson | Jul 1989 | A |
4865137 | Bailey | Sep 1989 | A |
4882830 | Carstensen | Nov 1989 | A |
4909327 | Roche | Mar 1990 | A |
4949796 | Williams | Aug 1990 | A |
4955436 | Johnston | Sep 1990 | A |
4955949 | Bailey et al. | Sep 1990 | A |
4962819 | Bailey et al. | Oct 1990 | A |
4971148 | Roche et al. | Nov 1990 | A |
4984636 | Bailey et al. | Jan 1991 | A |
4995464 | Watkins et al. | Feb 1991 | A |
5009265 | Bailey et al. | Apr 1991 | A |
5022472 | Bailey et al. | Jun 1991 | A |
5028056 | Bemis et al. | Jul 1991 | A |
5035292 | Bailey | Jul 1991 | A |
5040600 | Bailey et al. | Aug 1991 | A |
5048621 | Bailey | Sep 1991 | A |
5062450 | Bailey | Nov 1991 | A |
5062479 | Bailey et al. | Nov 1991 | A |
5072795 | Delgado et al. | Dec 1991 | A |
5076364 | Hale et al. | Dec 1991 | A |
5082020 | Bailey | Jan 1992 | A |
5085277 | Hopper | Feb 1992 | A |
5101897 | Leismer et al. | Apr 1992 | A |
5137084 | Gonzales et al. | Aug 1992 | A |
5147559 | Brophey et al. | Sep 1992 | A |
5154231 | Bailey et al. | Oct 1992 | A |
5163514 | Jennings | Nov 1992 | A |
5165480 | Wagoner et al. | Nov 1992 | A |
5178215 | Yenulis et al. | Jan 1993 | A |
5182979 | Morgan | Feb 1993 | A |
5184686 | Gonzalez | Feb 1993 | A |
5195754 | Dietle | Mar 1993 | A |
5205165 | Jardine et al. | Apr 1993 | A |
5213158 | Bailey et al. | May 1993 | A |
5215151 | Smith et al. | Jun 1993 | A |
5224557 | Yenulis et al. | Jul 1993 | A |
5230520 | Dietle et al. | Jul 1993 | A |
5243187 | Hettlage | Sep 1993 | A |
5251869 | Mason | Oct 1993 | A |
5255745 | Czyrek | Oct 1993 | A |
5277249 | Yenulis et al. | Jan 1994 | A |
5279365 | Yenulis et al. | Jan 1994 | A |
5305839 | Kalsi et al. | Apr 1994 | A |
5320325 | Young et al. | Jun 1994 | A |
5322137 | Gonzales | Jun 1994 | A |
5325925 | Smith et al. | Jul 1994 | A |
5348107 | Bailey et al. | Sep 1994 | A |
5375476 | Gray | Dec 1994 | A |
5427179 | Bailey | Jun 1995 | A |
5431220 | Bailey | Jul 1995 | A |
5443129 | Bailey et al. | Aug 1995 | A |
5495872 | Gallagher et al. | Mar 1996 | A |
5529093 | Gallagher et al. | Jun 1996 | A |
5588491 | Tasson et al. | Dec 1996 | A |
5607019 | Kent | Mar 1997 | A |
5647444 | Williams | Jul 1997 | A |
5657820 | Bailey | Aug 1997 | A |
5662171 | Brugman et al. | Sep 1997 | A |
5662181 | Williams et al. | Sep 1997 | A |
5671812 | Bridges | Sep 1997 | A |
5678829 | Kalsi et al. | Oct 1997 | A |
5735502 | Levett et al. | Apr 1998 | A |
5738358 | Kalsi et al. | Apr 1998 | A |
5755372 | Cimbura | May 1998 | A |
5823541 | Dietle et al. | Oct 1998 | A |
5829531 | Hebert et al. | Nov 1998 | A |
5848643 | Carbaugh et al. | Dec 1998 | A |
5873576 | Dietle et al. | Feb 1999 | A |
5878818 | Hebert et al. | Mar 1999 | A |
5901964 | Williams et al. | May 1999 | A |
5944111 | Bridges | Aug 1999 | A |
5952569 | Jervis | Sep 1999 | A |
5960881 | Allamon et al. | Oct 1999 | A |
6007105 | Dietle et al. | Dec 1999 | A |
6016880 | Hall et al. | Jan 2000 | A |
6017168 | Fraser, Jr. | Jan 2000 | A |
6036192 | Dietle et al. | Mar 2000 | A |
6039118 | Carter et al. | Mar 2000 | A |
6050348 | Richarson et al. | Apr 2000 | A |
6070670 | Carter et al. | Jun 2000 | A |
6076606 | Bailey | Jun 2000 | A |
6102123 | Bailey et al. | Aug 2000 | A |
6102673 | Mott et al. | Aug 2000 | A |
6109348 | Caraway | Aug 2000 | A |
6109618 | Dietle | Aug 2000 | A |
6112810 | Bailey | Sep 2000 | A |
6120036 | Kalsi et al. | Sep 2000 | A |
6129152 | Hosie et al. | Oct 2000 | A |
6138774 | Bourgoyne, Jr. et al. | Oct 2000 | A |
6170576 | Bailey | Jan 2001 | B1 |
6202745 | Reimert et al. | Mar 2001 | B1 |
6209663 | Hosie | Apr 2001 | B1 |
6213228 | Saxman | Apr 2001 | B1 |
6227547 | Dietle et al. | May 2001 | B1 |
6230824 | Peterman et al. | May 2001 | B1 |
6244359 | Bridges et al. | Jun 2001 | B1 |
6263982 | Hannegan et al. | Jul 2001 | B1 |
6273193 | Hermann | Aug 2001 | B1 |
6315302 | Conroy et al. | Nov 2001 | B1 |
6315813 | Morgan et al. | Nov 2001 | B1 |
6325159 | Peterman et al. | Dec 2001 | B1 |
6334619 | Dietle et al. | Jan 2002 | B1 |
6352129 | Best | Mar 2002 | B1 |
6354385 | Ford et al. | Mar 2002 | B1 |
6361830 | Schenk | Mar 2002 | B1 |
6375895 | Daemen | Apr 2002 | B1 |
6382634 | Dietle et al. | May 2002 | B1 |
6386291 | Short | May 2002 | B1 |
6413297 | Morgan et al. | Jul 2002 | B1 |
6450262 | Regan | Sep 2002 | B1 |
6454007 | Bailey | Sep 2002 | B1 |
6457529 | Calder et al. | Oct 2002 | B2 |
6470975 | Bourgoyne et al. | Oct 2002 | B1 |
6478303 | Radcliffe | Nov 2002 | B1 |
6494462 | Dietle | Dec 2002 | B2 |
6504982 | Greer, IV | Jan 2003 | B1 |
6505691 | Judge | Jan 2003 | B2 |
6520253 | Calder | Feb 2003 | B2 |
6536520 | Snider et al. | Mar 2003 | B1 |
6536525 | Haugen et al. | Mar 2003 | B1 |
6547002 | Bailey et al. | Apr 2003 | B1 |
6554016 | Kinder | Apr 2003 | B2 |
6561520 | Kalsi et al. | May 2003 | B2 |
6581681 | Zimmerman et al. | Jun 2003 | B1 |
6607042 | Hoyer et al. | Aug 2003 | B2 |
RE38249 | Tasson et al. | Sep 2003 | E |
6655460 | Bailey et al. | Dec 2003 | B2 |
6685194 | Dietle et al. | Feb 2004 | B2 |
6702012 | Bailey et al. | Mar 2004 | B2 |
6708762 | Haugen et al. | Mar 2004 | B2 |
6720764 | Relton et al. | Apr 2004 | B2 |
6725951 | Looper | Apr 2004 | B2 |
6732804 | Hosie et al. | May 2004 | B2 |
6749172 | Kinder | Jun 2004 | B2 |
6767016 | Gobeli et al. | Jul 2004 | B2 |
6843313 | Hult | Jan 2005 | B2 |
6851476 | Gray et al. | Feb 2005 | B2 |
6877565 | Edvardsen | Apr 2005 | B2 |
6886631 | Wilson et al. | May 2005 | B2 |
6896048 | Mason et al. | May 2005 | B2 |
6896076 | Nelson et al. | May 2005 | B2 |
6904981 | van Riet | Jun 2005 | B2 |
6913092 | Bourgoyne et al. | Jul 2005 | B2 |
6945330 | Wilson et al. | Sep 2005 | B2 |
7004444 | Kinder | Feb 2006 | B2 |
7007913 | Kinder | Mar 2006 | B2 |
7011167 | Ebner et al. | Mar 2006 | B2 |
7025130 | Bailey et al. | Apr 2006 | B2 |
7028777 | Wade et al. | Apr 2006 | B2 |
7032691 | Humphreys | Apr 2006 | B2 |
7040394 | Bailey et al. | May 2006 | B2 |
7044237 | Leuchtenberg | May 2006 | B2 |
7073580 | Wilson et al. | Jul 2006 | B2 |
7077212 | Roesner et al. | Jul 2006 | B2 |
7080685 | Bailey et al. | Jul 2006 | B2 |
7086481 | Hosie et al. | Aug 2006 | B2 |
7152680 | Wilson et al. | Dec 2006 | B2 |
7159669 | Bourgoyne et al. | Jan 2007 | B2 |
7165610 | Hopper | Jan 2007 | B2 |
7174956 | Williams et al. | Feb 2007 | B2 |
7178600 | Luke et al. | Feb 2007 | B2 |
7191840 | Bailey | Mar 2007 | B2 |
7198098 | Williams | Apr 2007 | B2 |
7204315 | Pia | Apr 2007 | B2 |
7219729 | Bostick et al. | May 2007 | B2 |
7237618 | Williams | Jul 2007 | B2 |
7237623 | Hannegan | Jul 2007 | B2 |
7240727 | Williams | Jul 2007 | B2 |
7243958 | Williams | Jul 2007 | B2 |
7255173 | Hosie et al. | Aug 2007 | B2 |
7258171 | Bailey | Aug 2007 | B2 |
7278494 | Williams | Oct 2007 | B2 |
7278496 | Leuchtenberg | Oct 2007 | B2 |
7296628 | Robichaux | Nov 2007 | B2 |
7308954 | Martin-Marshall | Dec 2007 | B2 |
7325610 | Giroux et al. | Feb 2008 | B2 |
7334633 | Williams et al. | Feb 2008 | B2 |
7347261 | Markel et al. | Mar 2008 | B2 |
7350590 | Hosie et al. | Apr 2008 | B2 |
7363860 | Wilson et al. | Apr 2008 | B2 |
7367411 | Leuchtenberg | May 2008 | B2 |
7377334 | May | May 2008 | B2 |
7380590 | Hughes et al. | Jun 2008 | B2 |
7380591 | Williams | Jun 2008 | B2 |
7380610 | Williams | Jun 2008 | B2 |
7383876 | Gray et al. | Jun 2008 | B2 |
7389183 | Gray | Jun 2008 | B2 |
7392860 | Johnston | Jul 2008 | B2 |
7413018 | Hosie et al. | Aug 2008 | B2 |
7416021 | Williams | Aug 2008 | B2 |
7416226 | Williams | Aug 2008 | B2 |
7448454 | Bourgoyne et al. | Nov 2008 | B2 |
7451809 | Noske et al. | Nov 2008 | B2 |
7475732 | Hosie et al. | Jan 2009 | B2 |
7487837 | Bailey et al. | Feb 2009 | B2 |
7513300 | Pietras et al. | Apr 2009 | B2 |
7559359 | Williams | Jul 2009 | B2 |
7635034 | Williams | Dec 2009 | B2 |
7650950 | Leuchtenberg | Jan 2010 | B2 |
7654325 | Giroux et al. | Feb 2010 | B2 |
7669649 | Williams | Mar 2010 | B2 |
7699109 | May et al. | Apr 2010 | B2 |
7708089 | Williams | May 2010 | B2 |
7712523 | Snider et al. | May 2010 | B2 |
7717169 | Williams | May 2010 | B2 |
7717170 | Williams | May 2010 | B2 |
7726416 | Williams | Jun 2010 | B2 |
7743823 | Hughes et al. | Jun 2010 | B2 |
7762320 | Williams | Jul 2010 | B2 |
7766100 | Williams | Aug 2010 | B2 |
7779903 | Bailey et al. | Aug 2010 | B2 |
7789132 | Williams | Sep 2010 | B2 |
7789172 | Williams | Sep 2010 | B2 |
7793719 | Snider et al. | Sep 2010 | B2 |
7798250 | Williams | Sep 2010 | B2 |
7802635 | Leduc et al. | Sep 2010 | B2 |
7823665 | Sullivan | Nov 2010 | B2 |
7836946 | Bailey et al. | Nov 2010 | B2 |
7836973 | Belcher et al. | Nov 2010 | B2 |
7926593 | Bailey et al. | Apr 2011 | B2 |
8096711 | Beauchamp et al. | Jan 2012 | B2 |
8286734 | Hannegan et al. | Oct 2012 | B2 |
20030106712 | Bourgoyne et al. | Jun 2003 | A1 |
20030164276 | Snider et al. | Sep 2003 | A1 |
20040017190 | McDearmon et al. | Jan 2004 | A1 |
20050151107 | Shu | Jul 2005 | A1 |
20050161228 | Cook et al. | Jul 2005 | A1 |
20060037782 | Martin-Marshall | Feb 2006 | A1 |
20060108119 | Bailey et al. | May 2006 | A1 |
20060144622 | Bailey et al. | Jul 2006 | A1 |
20060157282 | Tilton et al. | Jul 2006 | A1 |
20060191716 | Humphreys | Aug 2006 | A1 |
20070051512 | Markel et al. | Mar 2007 | A1 |
20070095540 | Kozicz | May 2007 | A1 |
20070163784 | Bailey | Jul 2007 | A1 |
20080169107 | Redlinger et al. | Jul 2008 | A1 |
20080210471 | Bailey et al. | Sep 2008 | A1 |
20080236819 | Foster et al. | Oct 2008 | A1 |
20080245531 | Noske et al. | Oct 2008 | A1 |
20080296016 | Hughes | Dec 2008 | A1 |
20090025930 | Iblings et al. | Jan 2009 | A1 |
20090050373 | Loretz | Feb 2009 | A1 |
20090101351 | Hannegan et al. | Apr 2009 | A1 |
20090101411 | Hannegan et al. | Apr 2009 | A1 |
20090139724 | Gray et al. | Jun 2009 | A1 |
20090152006 | Leduc et al. | Jun 2009 | A1 |
20090161997 | Beauchamp et al. | Jun 2009 | A1 |
20090166046 | Edvardson et al. | Jul 2009 | A1 |
20090200747 | Williams | Aug 2009 | A1 |
20090211239 | Askeland | Aug 2009 | A1 |
20090236144 | Todd et al. | Sep 2009 | A1 |
20090301723 | Gray | Dec 2009 | A1 |
20100008190 | Gray et al. | Jan 2010 | A1 |
20100025047 | Sokol | Feb 2010 | A1 |
20100175882 | Bailey et al. | Jul 2010 | A1 |
20110024195 | Hoyer | Feb 2011 | A1 |
20110036629 | Bailey et al. | Feb 2011 | A1 |
20110036638 | Sokol | Feb 2011 | A1 |
Number | Date | Country |
---|---|---|
199927822 | Sep 1999 | AU |
200028183 | Sep 2000 | AU |
200028183 | Sep 2000 | AU |
2363132 | Sep 2000 | CA |
2447196 | Apr 2004 | CA |
0290250 | Nov 1988 | EP |
0290250 | Nov 1988 | EP |
267140 | Mar 1993 | EP |
1375817 | Jan 2004 | EP |
1519003 | Mar 2005 | EP |
1659260 | May 2006 | EP |
2 053 197 | Apr 2009 | EP |
1161299 | Aug 1969 | GB |
2019921 | Nov 1979 | GB |
2067235 | Jul 1981 | GB |
2 362 668 | Nov 2001 | GB |
2362668 | Nov 2001 | GB |
2394738 | May 2004 | GB |
2394741 | May 2004 | GB |
2449010 | Aug 2007 | GB |
WO 9306335 | Apr 1993 | WO |
WO 9945228 | Sep 1999 | WO |
WO 9950524 | Oct 1999 | WO |
WO 9951852 | Oct 1999 | WO |
WO 9950524 | Dec 1999 | WO |
WO 0052299 | Sep 2000 | WO |
WO 0052300 | Sep 2000 | WO |
WO 0179654 | Oct 2001 | WO |
WO 0236928 | May 2002 | WO |
WO 0250398 | Jun 2002 | WO |
WO 03071091 | Aug 2003 | WO |
WO 2006088379 | Aug 2006 | WO |
WO 2007092956 | Aug 2007 | WO |
WO 2008133523 | Nov 2008 | WO |
WO 2008156376 | Dec 2008 | WO |
WO 2009017418 | Feb 2009 | WO |
WO 2009123476 | Oct 2009 | WO |
WO-2012-041996 | Apr 2012 | WO |
WO 2012041996 | Apr 2012 | WO |
Entry |
---|
US 6,708,780, 11/15/2001, Bourgoyne, et al. (withdrawn). |
The Modular T BOP Stack System, Cameron Iron Works © 1985 (5 pages). |
Cameron HC Collet Connector, © 1996 Cooper Cameron Corporation, Cameron Division (12 pages). |
Riserless drilling: circumventing the size/cost cycle in deepwater—Conoco, Hydril project seek enabling technologies to drill in deepest water depths economically, May 1986 Offshore Drilling Technology (pp. 49, 50, 52, 53, 54 and 55). |
U.S. Appl. No. 60/079,641, Abandoned, but Priority Claimed in above US Patent Nos. 6,230,824B1 and 6,102,673 and PCT WO 99/50524, Mar. 27, 1998. |
U.S. Appl. No. 60/122,530, Abandoned, but Priority Claimed in US Patent No. 6,470,975B1, Mar. 2, 1999. |
U.S. Appl. No. 61/205,209, Abandoned, but priority claimed in US2010/0175882A1, Jan. 15, 2009. |
Williams Tool Company—Home Page—Under Construction Williams Rotating Control Heads (2 pages); Seal-Ability for the pressures of drilling (2 pages); Williams Model 7000 Series Rotating Control Heads (1 page); Williams Model 7000 & 7100 Series Rotating Control Heads (2 pages); Williams Model IP1000 Rotating Control Head (2 pages); Williams Conventional Models 8000 & 9000 (2 pages); Applications Where Using a Williams rotating control head while drilling is a plus (1 page); Williams higher pressure rotating control head systems are Ideally Suited for New Technology Flow Drilling and Closed Loop Underbalanced Drilling (UBD) Vertical and Horizontal (2 pages); and How to Contact US (2 pages). |
Offshore—World Trends and Technology for Offshore Oil and Gas Operations, Mar. 1998, Seismic: Article entitled, “Shallow Flow Diverter JIP Spurred by Deepwater Washouts” (3 pages including cover page, table of contents and p. 90). |
Williams Tool Co., Inc. Rotating Control Heads and Strippers for Air, Gas, Mud, and Geothermal , Drilling Worldwide—Sales Rental Service, © 1988 (19 pages). |
Williams Tool Co., Inc. 19 page brochure © 1991 Williams Tool Co., Inc. (19 pages). |
FIG. 19 Floating Piston Drilling Choke Design: May of 1997. |
Blowout Preventer Testing for Underbalanced Drilling by Charles R. “Rick” Stone and Larry A. Cress, Signa Engineering Corp., Houston, Texas (24 pages) Sep. 1997. |
Williams Tool Co., Inc. Instructions, Assemble & Disassemble Model 9000 Bearing Assembly (cover page and 27 numbered pages). |
Williams Tool Co., Inc. Rotating Control Heads Making Drilling Safer While Reducing Costs Since 1968, © 1989 (4 pages). |
Williams Tool Company, Inc. International Model 7000 Rotating Control Head, 1991 (4 pages). |
Williams Rotating Control Heads, Reduce Costs Increase Safety Reduce Environmental Impact, 4 pages, (© 1995). |
Williams Rotating Control Heads, Reduce Costs Increase Safety Reduce Environmental Impact (4 pages). |
Williams Tool Co., Inc. Sales-Rental-Service, Williams Rotating Control Heads and Strippers for Air, Gas, Mud, and Geothermal Drilling, © 1982 (7 pages). |
Williams Tool Co., Inc., Rotating Control Heads and Strippers for Air, Gas, Mud, Geothermal and Pressure Drilling, © 1991 (19 pages). |
An Article—The Brief Jan. '96, The Brief's Guest Columnists, Williams Tool Co., Inc., Communicating Dec. 13, 1995 (Fort Smith, Arkansas), The When? and Why? of Rotating Control Head Usage, Copyright © Murphy Publishing, Inc. 1996 (2 pages). |
A reprint from the Oct. 9, 1995 edition of Oil & Gas Journal, “Rotating control head applications increasing,” by Adam T. Bourgoyne, Jr., Copyright 1995 by PennWell Publishing Company (6 pages). |
1966-1967 Composite Catalog-Grant Rotating Drilling Head for Air, Gas or Mud Drilling (1 page). |
1976-1977 Composite Catalog Grant Oil Tool Company Rotating Drilling Head Models 7068, 7368, 8068 (Patented), Equally Effective with Air, Gas, or Mud Circulation Media (3 pages). |
A Subsea Rotating Control Head for Riserless Drilling Applications; Daryl A. Bourgoyne, Adam T. Bourgoyne, and Don Hannegan—1998 (International Association of Drilling Contractors International Deep Water Well Control Conference held in Houston, Texas, Aug. 26-27, 1998) 14 pages). |
Hannegan, “Applications Widening for Rotating Control Heads,” Drilling Contractor, cover page, table of contents and pp. 17 and 19, Drilling Contractor Publications Inc., Houston, Texas, Jul. 1996. |
Composite Catalog, Hughes Offshore 1986-87 Subsea Systems and Equipment, Hughes Drilling Equipment Composite Catalog (pp. 2986-3004). |
Williams Tool Co., Inc. Technical Specifications Model for the Model 7100, (3 pages). |
Williams Tool Co., Inc. Website, Underbalanced Drilling (UBD), The Attraction of UBD (2 pages). |
Williams Tool Co., Inc. Website,. “Applications, Where Using a Williams Rotating Control Head While Drillings is a Plus” (2 pages). |
Williams Tool Co., Inc. Website, “Model 7100,” (3 pages). |
Composite Catalog, Hughes Offshore 1982/1983, Regan Products, © Copyright 1982 (Two cover sheets and 4308-27 thru 4308-43, and end sheet). See p. 4308-36 Type KFD Diverter. |
Coflexip Brochure; 1-Coflexip Sales Offices, 2-the Flexible Steel Pipe for Drilling and Service Applications, 3-New 5 I.D. General Drilling Flexible, 4-Applications, and 5-Illustration (5 unnumbered pages). |
Baker, Ron, “A Primer of Oilwell Drilling,” Fourth Edition, Published Petroleum Extension Service, The University of Texas at Austin, Austin, Texas, in cooperation with International Association of Drilling Contractors Houston, Texas © 1979 (3 cover pages and pp. 42-49 re Circulation System). |
Brochure, Lock down Lubricator System, Dutch Enterprises, Inc., “Safety with Savings” (cover sheet and 16 unnumbered pages); see above US Patent No. 4,836,289 referred to therein. |
Hydril GL series Annual Blowout Preventers (Patented—see Roche patents above), (cove sheet and 2 pages). |
Other Hydril Product Information (The GH Gas Handler Series Product is Listed), © 1996, Hydril Company (Cover sheet and 19 pages). |
Brochure, Shaffer Type 79 Rotating Blowout Preventer, NL Rig Equipment/NL Industries, Inc., (6 unnumbered pages). |
Shaffer, A Varco Company, (Cover page and pp. 1562-1568). |
Avoiding Explosive Unloading of Gas in a Deep Water Riser When SOBM in Use; Colin P. Leach & Joseph R. Roche—1998 (The Paper Describes an Application for the Hydril Gas Handler, The Hydril GH 211-2000 Gas Handler is Depicted in Figure 1 of the Paper) (9 unnumbered pages). |
Feasibility Study of Dual Density Mud System for Deepwater Drilling Operations; Clovis A. Lopes & A.T. Bourgoyne, Jr.—1997 (Offshore Technology Conference Paper No. 8465); (pp. 257-266). |
Apr. 1998 Offshore Drilling with Light Weight Fluids Joint Industry Project Presentation (9 unnumbered pages). |
Nakagawa, Edson Y., Santos, Helio and Cunha, J.C., “Application of Aerated-Fluid Drilling in Deepwater,” SPE/IACDC 52787 Presented by Don Hannegan, P.E., SPE © 1999 SPE/IADC Drilling Conference, Amsterdam, Holland, Mar. 9-11, 1999 (5 unnumbered pages). |
Brochure: “Inter-Tech Drilling Solutions, Ltd.'s RBOP™ Means Safety and Experience for Underbalanced Drilling,” Inter-Tech Drilling Solutions Ltd./Big D Rentals & Sales (1981) Ltd. and Color “Rotating BOP” (2 unnumbered pages). |
“Pressure Control While Drilling,” Shaffer® A Varco Company, Rev. A (2 unnumbered pages). |
Field Exposure (as of Aug. 1998), Shaffer® A Varco Company (1 unnumbered page). |
Graphic: “Rotating Spherical BOP” (1 unnumbered page). |
“JIP's Worl Brightens Outlook for UBD in Deep Waters” by Edson Yoshihito Nakagawa, Helio Santos and Jose Carlos Cunha, American Oil & Gas Reporter, Apr. 1999, pp. 53, 56, 58-60 and 63. |
“Seal-Tech 1500 PSI Rotating Blowout Preventer,” Undated, 3 pages. |
“RPM System 3000™ Rotating Blowout Preventer, Setting a new standard in Well Control,” by Techcorp Industries, Undated, 4 pages. |
“RiserCap™ Materials Presented at the 1999 LSU/MMS/IADC Well Control Workshop”, by Williams Tool Company, Inc., Mar. 24-25, pp. 1-14. |
“The 1999 LSU/MMS/IADC Well Control Workshop: An overview,” by John Rogers Smith. World Oil, Jun. 1999. Cover page and pp. 4, 41-42, and 44-45. |
Dag Oluf Nessa, “Offshore underbalanced drilling system could revive field developments,” World Oil, vol. 218, No. 10, Oct. 1997, 1 unnumbered page and pp. 83-84, 86, and 88. |
D.O. Nessa, “Offshore underbalanced drilling system could revive filed developments,” World Oil Exploration Drilling Production, vol. 218, No. 7, Color pages of Cover Page and pp. 3, 61-64, and 66, Jul. 1997. |
PCT Search Report, International Application No. PCT/US99/06695, 4 pages (date of Completion May 27, 1999). |
PCT Search Report, International Application No. PCT/GB00/00731, 3 pages (Date of Completion Jun. 16, 2000). |
National Academy of Sciences—National Research Council, “Design of a Deep Ocean Drilling Ship,” Cover Page and pp. 114-121. Undated but cited in above US Patent No. 6,230,824B1. |
History and Development of a Rotating Preventer, by A. Cress, Rick Stone, and Mike Tangedahl IADC/SPE 23931, 1992 IADC/SPE Drilling Conference, Feb. 1992, pp. 757-773. |
Helio Santos, Email message to Don Hannegan, et al., 1 page (Aug. 20, 2001). |
Rehm, Bill, “Practical Underbalanced Drilling and Workover,” Petroleum Extension Service, The University of Texas at Austin Continuing & Extended Education, Cover page, title page, copyright page, and pp. 6-6, 11-2, 11-3, G-9, and G-10 (2002). |
Williams Tool Company Inc., “Risercap™: Rotating Control Head System for Floating Drilling Rig Applications,” 4 unnumbered pages, (© 1999 Williams Tool Company, Inc.). |
Antonio C.V.M. Lage, Helio, Santos and Paulo R.C. Silva, Drilling With Aerated Drilling Fluid From a Floating Unit Part 2: Drilling the Well, SPE 71361, 11 pages (© 2001, Society of Petroleum Engineers, Inc.) |
Helio Santos, Fabio Rosa, and Christian Leuchtenberg, Drilling and Aerated Fluid from a Floating Unit, Part 1: Planning, Equipment, Test, and Rig Modifications, SPE/IADC 67748, 8 pages (© SPE/IADC Drilling Conference). |
E.Y. Nakagawa, H. Santos, J.C. Cunha and S. Shayegi, Planning of Deepwater Drilling Operations with Aerated Fluids, SPE 54283, 7 pages, (© 1999, Society of Petroleum Engineers). |
E.Y. Nakagawa, H.M.R. Santos and J.C. Cunha, Implementing the Light-Weight Fluids Drilling Technology in Deepwater Scenarios, 1999 LSU/MMS Well Control Workshop Mar. 24-25, 1999, 12 pages (1999). |
Press Release, “Stewart & Stevenson Introduces First Dual Gradient Riser,” Stewart & Stevenson, http:/www.ssss/com/ssss/20000831.asp, 2 pages (Aug. 31, 2000). |
Press Release: “Stewart & Stevenson introduces First Dual Gradient Riser,” Stewart & Stevenson, http:www/ssss/com/ssss/20000831.asp, 2 pages (Aug. 31, 2000). |
Williams Tool Company Inc., “Williams Tool Company Introduces the . . . Virtual Riser™,” 4 unnumbered pages, (© 1998 Williams Tool Company, Inc.). |
“PETEX Publications,” Petroleum Extension Service, University of Texas at Austin, 12 pages, (last modified Dec. 6, 2002). |
“BG in the Caspian region,” SPE Review, Issue 164, 3 unnumbered pages (May 2003). |
“Field Cases as of Mar. 3, 2003,” Impact Fluid Solutions, 6 pages (Mar. 3, 2003). |
“Determine in the Safe Application of Underbalanced Drilling Technologies in Marine Environments—Technical Proposal,” Maurer Technology, Inc., Cover Page and pp. 2-13 (Jun. 17, 2002). |
Colbert, John W., “John W. Colbert, P.E. Vice President Engineering Biographical Data,” Signa Engineering Corp., 2 unnumbered pages (undated). |
“Technical Training Courses,” Parker Drilling Co., http:/www.parkerdrilling.com/news/tech.html, 5 pages (last visited, Sep. 5, 2003). |
“Drilling equipment: Improvements from data recording to slim hole,” Drilling Contractor, pp. 30-32, (Mar./Apr. 2000. |
“Drilling conference promises to be informative,” Drilling Contractor, p. 10 (Jan./Feb. 2002). |
“Underbalanced and Air Drilling,” OGCI, Inc., http:/www.ogci.com/course—info.asp?counselD=410, 2 pages, (2003). |
“2003 SPE Calendar,” Society of Petroleum Engineers, Google cache of http:/www.spe.org/spe/cda/views/events/eventMaster/0,1470,1648—2194—632303.00.html; for “mud cap drilling”, 2 pages (2001). |
“Oilfield Glossary: reverse-circulating valve,” Schlumberger Limited, 1 page (2003). |
Murphy, Ross D. and Thompson, Paul B., “A drilling contractor's view of underbalanced drilling,” World Oil Magazine, vol. 223, No. 5, 9 pages (May 2002). |
“Weatherford UnderBalanced Services: General Underbalance Presentation to the DTI,” 71 unnumbered pages, © 2002. |
Rach, Nina M., “Underbalanced near-balanced drilling are possible offshore,” Oil & Gas Journal, Color Copies, pp. 39-44, (Dec. 1, 2003). |
Forrest, Neil et al., Subsea Equipment for Deep Water Drilling Using Dual Gradient Mud System, SPE/IADC Drilling Conference held in Amsterdam, The Netherlands, Feb. 27, 2001 to Mar. 1, 2001, Paper SPE/IADC 67707, © 2001 SPE/IADC Drilling Conference (8 pages); particularly see p. 3, col. 1, ¶ 4 and col. 2, ¶ 5 and Figs. 4-6; cited in 7V below where indicated as “technical background”. |
Hannegan, D.M.; Bourgoyne, Jr., A.T.: “Deepwater Drilling with Lightweight Fluids—Essential Equipment Required,” SPE/IADC 67708, pp. 1-6 (© 2001, SPE/IADC Drilling Conference). |
Hannegan, Don M., “Underbalanced Operations Continue Offshore Movement,” SPE 68491, pp. 1-3, (© 2001, Society of Petroleum Engineers, Inc.). |
Hannegan, D. and Divine, R., “Underbalanced Drilling—Perceptions and Realities of Today's Technology in Offshore Applications,” IADC/SPE 74448, p. 1-9, (© 2002, IADC/SPE Drilling Conference). |
Hannegan, Don M. and Wanzer, Glen: “Well Control Considerations—Offshore Applications of Underbalanced Drilling Technology,” SPE/IADC 79854, pp. 1-14, (© 2003, SPE/IADC Drilling Conference). |
Bybee, Karen, “Offshore Applications of Underbalanced—Drilling Technology,” Journal of Petroleum Technology, Cover Page and pp. 51-52, (Jan. 2004). |
Bourgoyne, Darryl A.; Bourgoyne, Adam T.; Hannegan, Don; “A Subsea Rotating Control Head for Riserless Drilling Applications,” IADC International Deep Water Well Control Conference, pp. 1-14, (Aug. 26-27, 1998) (see document T). |
Lage, Antonio C.V.M.; Santos, Helio; Silva, Paulo R.C.; “Drilling With Aerated Drilling Fluid From a Floating Unit Part 2: Drilling the Well,” Society of Petroleum Engineers, SPE 71361, pp. 1-11 (Sep. 30-Oct. 3, 2001)(see document BBB). |
Furlow, William; “Shell's seafloor pump, solids removal key to ultra-deep, dual-gradient drilling (Skid ready for commercialization),”Offshore World Trends and Technology for Offshore Oil and Gas Operations, Cover page, table of contents, pp. 54, 2 unnumbered pages, and 106 (Jun. 2001). |
Rowden, Michael V.: “Advances in riserless drilling pushing the deepwater surface string envelope (Alternative to seawater, CaCl2 sweeps);”Offshore World Trends and Technology for Offshore Oil and Gas Operations, Cover page, table of contents, pp. 56, 58, and 106 (Jun. 2001). |
Boye, John: “Multi Purpose Intervention Vessel Presentation,” M.O.S.T. Multi Operational Service Tankers, Weatherford International, Jan. 2004, 43 pages. (© 2003). |
GB Search Report, International Application No. GB 0324939.8, 1 page (Jan. 21, 2004). |
MicroPatent® list of patents citing US Patent No. 3,476,195, printed on Jan. 24, 2003. |
PCT Search Report, International Application No. PCT/EP2004/052167, 4 pages (Date of Completion Nov. 25, 2004). |
PCT Written Opinion of the International Searching Authority, International Application No. PCT/EP2004/052167, 6 pages. |
Supplementary European Search Report No. EP 99908371, 3 pages (Date of Completion Oct. 22, 2004). |
General Catalog, 1970-1971, Vetco Offshore, Inc., Subsea Systems; cover page, company page and numbered pp. 4800, 4816-4818; 6 pages total, in particular see numbered p. 4816 for “patented” Vetco H-4 connectors. |
General Catalog, 1972-73, Vetco Offshore, Inc., Subsea Systems; cover page; company page and numbered pp. 4498, 4509-4510; 5 pages total. |
General Catalog, 1974-75, Vetco Offshore, Inc.; cover page, company page and numbered pp. 5160, 5178-5179; 5 pages total. |
General Catalog, 1976-1977, Vetco Offshore, Inc., Subsea Drilling and Completion Systems; cover page and numbered pp. 5862-5863; 4 pages total. |
General Catalog, 1982-1983, Vetco; cover page and numbered pp. 8454-8455, 8479; 4 pages total. |
Shaffer, A Varco Company: Pressure Control While Drilling System, http:/www.tulsaequipm.com; printed Jun. 21, 2004; 2 pages. |
Performance Drilling by Precision Drilling. A Smart Equation, Precision Drilling, © 2002 Precision Drilling Corporation; 12 pages, in particular see 9th page for “Northland's patented RBOP . . . ”. |
RPM System, 3000™ Rotating Blowout Preventer: Setting a New Standard in Well Control, Weatherford, Underbalanced Systems: © 2002-2005 Weatherford; Brochure #333.01, 4 pages. |
Managed Pressure Drilling in Marine Environments, Don Hannegan, P.E.; Drilling Engineering Association Workshop, Moody Gardens, Galveston, Jun. 22-23, 2004; © 2004 Weatherford, 28 pages. |
Hold™ 2500 RCD Rotating Control Device web page and brochure, http://www.smith.com/hold2500; printed Oct. 27, 2004, 5 pages. |
Rehm, Bill, “Practical Underbalanced Drilling and Workover,” Petroleum Extension Service, The University of Texas at Austin Continuing & Extended Education, cover page, title page, copyright page and pp. 6-1 to 6-9, 7-1 to 7-9 (2002). |
“Pressured Mud Cap Drilling from a Semi-Submersible Drilling Rig,” J.H. Terwogt, SPE, L.B. Makiaho and N. van Beelen, SPE, Shell Malaysia Exploration and Production; B.J. Gedge, SPE, and J. Jenkins, Weatherford Drilling and Well Services (6 pages total); © 2005 (This paper was prepared for presentation at the SPE/IADC Drilling Conference held in Amsterdam, The Netherlands, Feb. 23-25, 2005). |
Tangedahl, M.J., et al., “Rotating Preventers: Technology for Better Well Control,” World Oil, Gulf Publishing Company, Houston, TX, US, vol. 213, No. 10, Oct. 1992, numbered pp. 63-64 and 66 (3 pages). |
European Search Report for EP 05 27 0083, Application No. 05270083.8-2315, European Patent Office, Mar. 2, 2006, corresponding to U.S. Appl. No. 10/995,980, published as US2006/0108119 A1 (now US 7,487,837 B2) (5 pages). |
Netherlands Search Report for NL No. 1026044, dated Dec. 14, 2005 (3 pages). |
Int'l. Search Report for PCT/GB 00/00731 corresponding to US :Patent No. 6,470,975 (Jun. 16, 2000) (2 pages). |
GB0324939.8 Examination Report corresponding to US Patent No. 6,470,975 (Mar. 21, 2006) (6 pages). |
GB0324939.8 Examination Report corresponding to US Patent No. 6,470,975 Jan. 22, 2004) (3 pages). |
2003/0106712 Family Lookup Report (Jan. 15, 2006) (5 pages). |
6,470,975 Family Lookup Report (Jun. 15, 2006) (5 pages). |
AU S/N 28183/00 Examination Report corresponding to US Patent No. 6,470,975 (1 page) (Sep. 9, 2002). |
NO S/N 20013953 Examination Report corresponding to US Patent No. 6,470,975 w/one page of English translation (3 pages) (Apr. 29, 2003). |
Nessa, D.O. & Tangedahl, M.L. & Saponia, J: Part 1: “Offshore underbalanced drilling system could revive field developments,” World Oil, vol. 218, No. 7, Cover p. 3, 61-64 and 66 (Jul. 1997); and Part 2: “Making this valuable reservoir drilling/completion technique work on a conventional offshore drilling platform.” World Oil, vol. 218 No. 10, Cover Page, 3, 83, 84, 86 and 88 (Oct. 1997) (see 5A, 5G above and 5I below). |
Int'l. Search Report for PCT/GB 00/00731 corresponding to US Patent No. 6, 470,975 (4 pages) (Jun. 27, 2000). |
Int'l. Preliminary Examination Report for PCT/GB 00/00731 corresponding to US Patent No. 6,470,975 (7 pages) (Dec. 14, 2000). |
NL Examination Report for WO 00/52299 corresponding to this U.S. Appl. No. 10/281,534 (3 pages) (Dec. 19, 2003). |
AU S/N 28181/00 Examination Report corresponding to US Patent No. 6,263,982 (1 page) (Sep. 6, 2002). |
EU Examination Report for WO 00/906522.8-2315 corresponding to US Patent No. 6,263,982 (4 pages) (Nov. 29, 2004). |
NO S/N 20013952 Examination Report w/two pages of English translation corresponding to US Patent No. 6,263,982 (4 pages) (Jul. 2, 2005). |
PCT/GB00/00726 Int'l. Preliminary Examination Report corresponding to US Patent No. 6,263,982 (10 pages) (Jun. 26, 2001). |
PCT/GB00/00726 Written Opinion corresponding to US Patent No. 6,263,982 (7 pages) (Dec. 18, 2000). |
PCT/GB00/00726 International Search Report corresponding to US Patent No. 6,263,982 (3 pages (Mar. 2, 1999). |
AU S/N 27822/99 Examination Report corresponding to US Patent No. 6,138,774 (1 page) (Oct. 15, 2001). |
EU 99908371.0-1266-US99/03888 European Search Report corresponding to US Patent No. 6,138,774 (3 pages) (Nov. 2, 2004). |
NO S/N 20003950 Examination Report w/one page of English translation corresponding to US Patent No. 6,138,774 (3 pages) (Nov. 1, 2004). |
PCT/US990/03888 Notice of Transmittal of International Search Report corresponding to US Patent No. 6,138,774 (6 pages) (Aug. 4, 1999). |
PCT/US99/03888 Notice of Transmittal of International Search Report corresponding to US Patent No. 6,138,774 (6 pages) (Aug. 4, 1999). |
PCT/US99/03888 Notice of Transmittal of International Preliminary Examination Report corresponding to US Patent No. 6,138,774 (15 pages) (Jun. 12, 2000). |
EU Examination Report for 05270083.8-2315 corresponding to U.S. Appl. No. 10/995,980, published as US 2006/0108119 A1 (now US 7,487,837 B2) (11 pages) (May 10, 2006). |
Tangedahl, M.J., et al. “Rotating Preventers: Technology for Better Well Control,” World Oil, Gulf Publishing Company, Houston, TX, US, vol. 213, No. 10, Oct. 1992, numbered pp. 63-64 and 66 (3 pages) XP 000288328 ISSN: 0043-8790 (see YYYY, 5X above). |
UK Search Report for Application No. GB 0325423.2, searched Jan. 30, 2004 corresponding to above US Patent No. 7,040,394 (one page). |
UK Examination Report for Application No. GB 0325423.2 (corresponding to above 5Z) (4 pages). |
Dietle, Lannie L., et al., Kalsi Seals Handbook, Document. 2137 Revision 1, © 1992-2005 Kalsi Engineering, Inc. of Sugar Land, Texas USA; front and back covers and 164 total pages; in particular forward p. ii for “Patent Rights”; Appendix A-6 for Kalsi seal part No. 381-6- and A-10 for Kalsi seal part No. 432-32-. as discussed in U.S. Appl. No. 11/366,078 application (now U S 7,836,946 B2) at number paragraph 70 and 71. |
Fig. 10 and discussion in U.S. Appl. No. 11/366,078 application, published as US2006/0144622 A1 (now U S 7,836,946 B2) of Background of Invention. |
Partial European search report R.46 EPC dated Jun. 27, 2007 for European Patent Application EP07103416.9-2315 corresponding to U.S. Appl. No. 11/366,078, published as US 2006/0144622 A1, now US Patent 7,836,946 (5 pages). |
Extended European search report R.44 EPC dated Oct. 9, 2007 for European Patent Application 07103416.9-2315 corresponding to U.S. Appl. No. 11/366,078, published as US-2006/0144622 A1, now US patent 7,836,946 (8 pages). |
U.S. Appl. No. 60/079,641, Mudlift System for Deep Water Drilling, filed Mar. 27, 1998, abandoned, but priority claimed in above US 6,230,824 B1 and 6,102,673 and PCT WO-99/50524 (54 pages). |
U.S. Appl. No. 60/122,530, Concepts for the Application of Rotating Control Head Technology to Deepwater Drilling Operations, filed Mar. 2, 1999, abandoned, but priority claimed in above US 6,470,975 B1 (54 pages). |
PCT/GB2008/050239 (corresponding to US2008/0210471 A1; now issued as US 7,926,593) Annex to Form PCT/ISA/206 Communication Relating to the Results of the Partial International Search dated Aug. 26, 2008 (4 pages). |
PCT/GB2008/050239 (corresponding to US2008/0210471 A1; now issued as US 7,926,593) International Search Report and Written Opinion of the International Searching Authority (19 pages). |
Vetco Gray Product Information CDE-PI-0007 dated Mar. 1999 for 59.0 Standard Bore CSO Diverter (2 pages) © 1999 by Vetco Gray Inc. |
Vetco Gray Capital Drilling Equipment KFDJ and KFDJ Model “J” Diverters (1 page) (no. date). |
Hydril Blowout Preventers Catalog M-9402 D (44 pages) © 2004 Hydrill Company LP; see annular and ram BOP seals on p. 41. |
Hydril Compact GK® 7 1/16-3000 & 5000 psi Annular Blowout Preventers, Catalog 9503B © 1999 Hydril Company (4 pages). |
Weatherford Controlled Pressure Drilling Williams® Rotating Marine Diverter Insert (2 pages). |
Weatherford Controlled Pressure Drilling Model 7800 Rotating Control Device © 2007 Weatherford(5 pages). |
Weatherford Controlled Pressure Drilling® and Testing Services Williams® Model 8000/9000 Conventional Heads © 2002-2006 Weatherford(2 pages). |
Weatherford “Real Results Rotating Control Device Resolves Mud Return Issues in Extended-Reach Well, Saves Equipment Costs and Rig Time” © 2007 Weatherford and “Rotating Control Device Ensures Safety of Crew Drilling Surface-Hole Section” © 2008 Weatherford (2 pages). |
Washington Rotating Control Heads, Inc. Series 1400 Rotating Control Heads (“Shorty”) printed Nov. 21, 2008 (2 pages). |
Smith Services product details for Rotating Control Device—RDH 500® printed Nov. 24, 2008 (4 pages). |
American Petroleum Institute Specification for Drill Through Equipment—Rotating Control Devices, API Specification 16RCD, First Edition, Feb. 2005 (84 pages). |
Weatherford Drilling & Intervention Services Underbalanced Systems RPM System 3000™ Rotating Blowout Preventer, Setting a New Standard in Well Control, An Advanced Well Control System for Underbalanced Drilling Operations, Brochure #333.00, © 2002 Weatherford (4 pages). |
Medley, George; Moore, Dennis; Nauduri, Sagar; Signa Engineering Corp.; SPE/IADC Managed Pressure Drilling & Underbalanced Operations (PowerPoint presentation; 22 pages). |
Secure Drilling Well Controlled, Secure Drilling™ System using Micro-Flux Control Technology, © 2007 Secure Drilling (12 pages). |
The LSU Petroleum Engineering Research & Technology Transfer Laboratory, 10-rate Step Pump Shut-down and Start-up Example Procedure for Constant Bottom Hole Pressure Manage Pressure Drilling Applications (8 pages). |
United States Department of the Interior Minerals Management Service Gulf of Mexico OCS Region NTL No. 2008-G07; Notice to Lessees and Operators of Federal Oil, Gas, and Sulphur Leases in the Outer Continental Shelf, Gulf of Mexico OCS Region, Managed Pressure Drilling Projects; Issue Date: May 15, 2008; Effective Date: Jun. 15, 2008; Expiration Date: Jun. 15, 2013 (9 pages). |
Gray, Kenneth; Dynamic Density Control Quantifies Well Bore Conditions in Real Time During Drilling; American Oil & Gas Reporter, Jan. 2009 (4 pages). |
Kotow, Kenneth J.; Pritchard, David M.; Riserless Drilling with Casing: A New Paradigm for Deepwater Well Design, OTC-19914-PP, © 2009 Offshore Technology Conference, Houston, TX May 4-7, 2009 (13 pages). |
Hannegan, Don M.; Managed Pressure Drilling—A New Way of Looking at Drilling Hydraulics—Overcoming Conventional Drilling Challenges; SPE 2006-2007 Distinguished Lecturer Series presentation (29 pages); see all but particularly see Figs. 14-20; cited in 7V below where indicated as “document cited for other reasons”. |
Turck Works Industrial Automation; Factor 1 Sensing for Metal Detection, cover page, first page and numbered pp. 1.157 to 1.170 (16 pages) (printed in Jan. 2009). |
Balluff Sensors Worldwide; Object Detection Catalog 08/09—Industrial Proximity Sensors for Non-Contact Detection of Metallic Targets at Ranges Generally under 50mm (2 inches); Linear Position and Measurement; Linear Position Transducers; Inductive Distance Sensors; Photoelectric Distance Sensors; Magneto-Inductive Linear Position Sensors; Magnetic Linear/Rotary Encoder System; printed Dec. 23, 2008 (8 pages). |
Inductive Sensors AC 2-Wire Tubular Sensors, Balluff product catalog pp. 1.109-1.120 (12 pages) (no. date). |
Inductive Sensors DC 2-Wire Tubular Sensors, Balluff product catalog pp. 1.125-1.136 (12 pages) (no date). |
Inductive Sensors Analog Inductive Sensors, Balluff product catalog pp. 1.157-1.170 (14 pages) (no date). |
Inductive Sensors DC 3-/4-Wire Inductive Sensors, Balluff product catalog pp. 1.72-1.92 (21 pages). |
Selecting Position Transducers: How to Choose Among Displacement Sensor Technologies; How to Choose Among Draw Wire, LVDT, RVDT, Potentiometer, Optical Encoder, Ultrasonic, Magnetostrictive, and Other Technologies; © 1996-2010, Space Age Control, Inc., printed Jan. 11, 2009 (7 page) (www..spaceagecontrol.com/selpt.htm). |
Liquid Flowmeters, Omega.com website; printed Jan. 26, 2009 (13 pages). |
Super Autochoke—Automatic Pressure Regulation Under All Conditions © 2009 M-I, LLC; MI Swaco website; printed Apr. 2, 2009 (1 page). |
Extended European Search Report R.61 EPC dated Sep. 16, 2010 for European Patent Application 08166660.4-1266/2050924 corresponding to U.S. Appl. No. 11/975,554, now US 2009/0101351 A1 (7 pages). |
Office Action from the Canadian Intellectual Property Office dated Nov. 13, 2008 for Canadian Application No. 2,580,177 corresponding to U.S. Appl. No. 11/366,078, published as US-2006/0144622 A1, now US Patent No. 7,836,946 B2 (3 pages). |
European Patent Application No. 08719084.9 (corresponding to the present published application US2008/0210471 A1, now issued as US 7,926,593) dated Nov. 16, 2010 (4 pages). |
Office Action from the Canadian Intellectual Property Office dated Apr. 15, 2008 for Canadian Application No. 2,527,395 corresponding to U.S. Appl. No. 10/995,980, published as US-2006/0108119 A1, now US Patent No. 7,487,837 B2 (3 pages). |
Office Action from the Canadian Intellectual Property Office dated Apr. 9, 2009 for Canadian Application No. 2,527,395 corresponding to U.S. Appl. No. 10/995,980, published as US-2006/0108119 A1, now US Patent No. 7,487,837 B2 (2 pages). |
Office Action from the Canadian Intellectual Property Office dated Dec. 15, 2009 for Canadian Application No. 2,681,868 corresponding to U.S. Appl. No. 10/995,980, published as US-2006/0108119 A1, now US Patent No. 7,487,837 B2 (2 pages). |
Examiner's First Report on Australian Patent Application No. 2005234651 from the Australian Patent Office dated Jul. 22, 2010 corresponding to U.S. Appl. No. 10/995,980, published as US-1 , 2006/0108119 A1, now US Patent No. 7,487,837 B2 (2 pages). |
Office Action from the Canadian Intellectual Property Office dated Sep. 9, 2010 for Canadian Application No. 2,707,738 corresponding to U.S. Appl. No. 10/995,980, published as US-2006/0108119 A1, now US Patent No. 7,487,837 B2 (2 pages). |
Web page of Ace Wire Spring & Form Company, Inc. printed Dec. 8, 2009 for “Garter Springs—Helical Extension & Compression” www..acewirespring.com/garter-springs.html (1 page). |
Extended European Search Report (R 61 EPC) dated Mar. 4, 2011 for European Application No. 0816665.8-1266/2053197 corresponding to U.S. Appl. No. 11/975,946, published as US 2009-0101411 A1 (13 pages). |
Canadian Intellectual Property Office Office Action dated Dec. 7, 2010, Application No. 2,641,238 entitled “Fluid Drilling Equipment” for Canadian Application corresponding to U.S. Appl. No. 11/975,946, published as US 2009-0101411 A1 (4 pages). |
Grosso, J.A., “An Analysis of Well Kicks on Offshore Floating Drilling Vessels,” SPE 4134, Oct. 1972, pp. 1-20, © 1972 Society of Petroleum Engineers (20 pages). |
Bourgoyne, Jr., Adam T., et al., “Applied Drilling Engineering,” pp. 168-171, © 1991 Society of Petroleum Engineers (6 pages). |
Wagner, R.R., et al., “Surge Field Tests Highlight Dynamic Fluid Response,” SPE/IADC 25771, Feb. 1993, pp. 883-892, © 1993 SPE/IADC Drilling Conference (10 pages). |
Solvang, S.A., et al., “Managed Pressure Drilling Resolves Pressure Depletion Related Problems in the Development of the HPHT Kristin Field,” SPE/IADC 113672, Jan. 2008, pp. 1-9, © 2008 IADC/SPE Managed Pressure Drilling and Underbalanced Operations Conference and Exhibition 9 pages). |
Rasmussen, Ovle Sunde, et al., “Evaluation of MPD Methods for Compensation of Surge-and-Swab Pressures in Floating Drilling Operations,” IADC/SPE 108346, Mar. 2007, pp. 1-11, © 2007 IADC/SPE Managed Pressure Drilling and Underbalanced Operations Conference and Exhibition (11 pages). |
Shaffer Drill String Compensator available from National Oilwell Varco of Houston, Texas, printed Mar. 23, 2010 from http://www.nov.com/ProductDisplay.aspx?ID=4954&taxID=121&terms=drill+string+compensators (1 page). |
Shaffer Crown Mounted Compensator available from National Oilwell Varco of Houston, Texas, printed Mar. 23, 2010 from http://www.nov.com/ProductDisplay.aspx?ID=4949&taxID=121&terms=active+drill+string+compensator (3 pages). |
Active heave compensator available from National Oilwell Varco of Houston, Texas, printed Mar. 23, 2010 from http://www.nov.com/ProductDisplay.aspx?ID=36778,taxID=740&terms=active+heave+compensator for (3 pages). |
Durst, Doug, et al., “Subsea Downhole Motion Compensator (SDMC): Field History, Enhancements, and the Next Generation,” IADC/SPE 59152, Feb. 2000, pp. 1-12, © 2000 Society of Petroleum Engineers, Inc. (12 pages). |
Sensoy, Taner, et al., Weatherford Secure Drilling Well Controlled Report “Surge and Swab effects d ue to the Heave motion of floating rigs”, Nov. 10, 2009 (7 pages). |
Hargreaves, David, et al., “Early Kick Detection for Deepwater Drilling: New Probabilistic Methods Applied in the Field”, SPE 71369, © 2001, Society of Petroleum Engineers, Inc. (11 pages). |
HH Heavy-Duty Hydraulic Cylinders catalog, The Sheffer Corporation, printed Mar. 5, 2010 from http://www.sheffercorp.com/layout—contact.shtm (27 pages). |
Unocal Baroness Surface Stack Upgrade Modifications (5 pages). |
Thomson, William T., Professor of Engineering, University of California, “Vibration Theory and Applications”, © 1848, 1953, 1965 by Prentice-Hall, Inc. title page, copyright page, contents page and numbered pp. 3-9 (10 pages). |
Active Heave Compensator, Ocean Drilling Program, www.oceandrilling.org (3 pages). |
3.3 Floating Offshore Drilling Rigs (Floaters); 3.3.1. Technologies Required by Floaters; 3.3.2. Drillships; 3.3.3. Semisubmersible Drilling Rig; 4.3.4. Subsea Control System; 4.4. Prospect of Offshore Production System (5 pages). |
Weatherford® Real Results First Rig Systems Solutions for Thailand Provides Safer, More Efficient Operations with Stabmaster® and Automated Side Doors, © 2009 Weatherford document No. 6909.00 discussing Weatherford's Integrated Safety Interlock System (ISIS) (1 page). |
U.S. Appl. No. 61/205,209, filed Jan. 15, 2009; Abandoned, but priority claimed in US2010/0175882A1 (24 pages). |
Smalley® Steel Ring Company, Spirolox®; pages from website http://www.spirolox.com/what—happened.php printed Apr. 27, 2010 (5 pages). |
Patent Cooperation Treaty International Searching Authority Invitation to Pay Additional Fees and, where Applicable, Protest Fee with Communication relating to the Results of the Partial International Search mailed Apr. 3, 2013, International Application No. PCT/EP2011/067057, now published as WO2012/041996 A2 (7 pages). |
Canadian Intellectual Property Office Action dated Oct. 1, 2012, Application No. 2,641,238, entitled “Fluid Drilling Equipment”for Canadian Application corresponding to U.S. Appl. No. 11/975,946, published as US 2009-0101411 A1, now US 8,286,734 B2 issued Oct. 16, 2012 (3 pages). |
Patent Cooperation Treaty Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority, or the Declaration, mailed May 27, 2013; International Application No. PCT-EP2011-067057, now published as WO-2012-041996 A2 (our matter 67PCT) (21 pages). |
Number | Date | Country | |
---|---|---|---|
20110036638 A1 | Feb 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11975946 | Oct 2007 | US |
Child | 12893391 | US |