This disclosure relates in general to electrical submersible well pumps (ESP), particularly to a radial support bearing located between top and bottom bearings, the radial support bearing having a radially compressible ring biased against an inner surface of the pump housing.
Electrical submersible well pumps are often used to pump liquids from hydrocarbon producing wells. A typical ESP includes a pump driven by an electrical motor. The pump is often a centrifugal type with numerous stages, each stage having an impeller and a diffuser. Top and bottom bearings provide the radial support for the shaft in the pump. The top and bottom bearings are rigidly mounted to the housing of the pump. The diffusers are stacked together and slide into the bore of the housing during assembly. An elastomeric seal, normally an O-ring, may be on the outer diameters of the diffusers. The O-rings seal to the inside surface of the housing, preventing leakage of fluid through the small annular clearances between the outer diameters of the diffusers and the housing.
These pumps can be quite lengthy, up to 30 feet, thus slight off-center misalignment of the portion of the shaft between the top and bottom bearings can occur. Eccentric portions of the shaft can lead to orbiting and bearing side load. The resulting vibration can be particularly a problem with high speed pumps, as it can create heat much more so than at normal speed. The heat can damage the pump components, leading to failure.
A submersible well fluid pump comprises a tubular pump housing having a longitudinal axis and a bore with a housing inner wall. A rotatable shaft extends along the axis. The pump has a plurality of stages, each stage having a diffuser non-rotatably mounted in the housing and an impeller that rotates with the shaft. A top bearing through which the shaft extends mounts to the housing inner wall above the stages. A bottom bearing through which the shaft extends mounts to the housing inner wall below the stages. An intermediate bearing mounts in the housing between the top bearing and the bottom bearing and is non-rotatable relative to the housing. The intermediate bearing has a bearing outer wall with a metal spring radially biased against the housing inner wall.
The intermediate bearing in some embodiments is positioned between one of the diffusers and one of the impellers. The intermediate bearing has a hub having a hub bore through which the shaft extends, the hub being surrounded by the bearing outer wall. A support extends between the hub and the bearing outer wall. A flow passage extends between the hub and the bearing outer wall for well fluid to flow through the intermediate bearing. An annular recess encircles the bearing outer wall in the embodiment shown. The spring is located in the recess.
A next lower one of the impellers is located directly below the intermediate bearing. A next upper one of the diffusers abuts an upper end of the bearing outer wall. In one embodiment shown, a lower portion of the bearing outer wall surrounds an upper portion of the next lower one of the impellers. The next upper one of the diffusers has a lower end in abutment with the bearing outer wall. An anti-rotation member may extend between the bearing outer wall and one of the diffusers.
A bearing sleeve may be mounted in the hub for rotation with the shaft. The bearing sleeve has a lower end in abutment with the next lower one of the impellers and is axially movable relative to the shaft. A non-rotating downward-facing up thrust surface is in a diffuser bore of the next upper one of the diffusers. During up thrust, the next lower one of the impellers pushes the bearing sleeve upward into engagement with the up thrust surface for transferring up thrust to the next upper one of the diffusers. In one embodiment, the up thrust surface is on a bushing fixed within a next upper one of the diffusers.
In one embodiment, the intermediate bearing comprises one of the diffusers. This diffuser serves as a radial bearing and also has diffuser passages for well fluid that extend inward and upward.
In the embodiments shown, the spring has an undulating configuration. More particularly, the spring comprises a wave spring having undulations with inward protruding indentations in contact with the bearing outer wall and outward protruding indentations in engagement with the housing inner wall. The wave spring is split and radially compressed between the bearing outer wall the housing inner wall.
The method and system of the present disclosure will now be described more fully hereinafter with reference to the accompanying drawings in which embodiments are shown. The method and system of the present disclosure may be in many different forms and should not be construed as limited to the illustrated embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey its scope to those skilled in the art. Like numbers refer to like elements throughout. In an embodiment, usage of the term “about” includes +/−5% of the cited magnitude. In an embodiment, usage of the term “substantially” includes +/−5% of the cited magnitude. The terms “upper” and “lower” and the like bare used only for convenience as the well pump may operate in positions other than vertical, including in horizontal sections of a well.
It is to be further understood that the scope of the present disclosure is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. In the drawings and specification, there have been disclosed illustrative embodiments and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation.
Referring to
ESP 11 also includes an electrical motor 17 for driving pump 12. Motor 17 connects to pump 12 via a seal section 19, which may have means for reducing a pressure differential between lubricant within motor 17 and the hydrostatic pressure of well fluid in the well. Intake 15 may be at the lower end of pump 12, in the upper end of seal section 19, or in a separate module. Also, ESP 11 may also include a gas separator, and if so intake 15 would be in the gas separator. In this embodiment, motor 17 is located below pump 12. If ESP 11 is suspended on coiled tubing, motor 17 would normally be above pump 12.
Referring to
Housing 21 has a bore that defines a cylindrical inward-facing housing inner wall 27. A shaft 29 extends through the bore of housing 21 along a longitudinal axis 31. A top bearing 33 provides radial stabilization for an upper portion of shaft 29. Top bearing 33 may be conventional, having a non-rotating bushing 35 in rotating sliding engagement with a sleeve 37 on shaft 29. A key (not shown) engages mating grooves in shaft 29 and sleeve 37, causing sleeve 37 to rotate with shaft 29. Top bearing 33 has well fluid flow passages indicated by the dotted lines in
A bottom bearing 39 provides radial stabilization for a lower portion of shaft 29. Bottom bearing 39 may also be conventional. In this example, bottom bearing 39 mounts within a bore in lower connector 25.
Pump stages are mounted in housing 21 between top bearing 33 and bottom bearing 39. Each pump stage includes a diffuser 41 and an impeller 43. Diffusers 41 are stacked together in a stack and do not rotate within housing 21. Each impeller 43 locates between two of the diffusers 41 and is keyed to shaft 29 for rotation in unison.
An intermediate bearing 45 in housing 21 about halfway between top bearing 33 and bottom bearing 39 provides radial stabilization for a central portion of shaft 29. The length of shaft 29, which may be up to 30 feet, may justify more than one intermediate bearings 45. If so, the spacing between intermediate bearings 45 may vary, such as between two and fifteen feet. Intermediate bearing 45 is secured within the stack of diffusers 41 for non-rotation. Intermediate bearing 45 has on its outer diameter at least one annular spring recess 47 for receiving a radially compressible spring (not visible in
Axial compression will be applied to the stack of diffusers 41 and intermediate bearing 45 during assembly, preventing the stack from rotating relative to housing 21. The compressive preload may be applied in various manners. In this embodiment, top bearing 33 has external threads secured to internal threads in housing 21. Tightening top bearing 33 exerts a downward compressive force through a compression ring 48 to the stack of diffusers 41. The compressive force passes through the stack of diffusers 41 to lower connector 25. The compressive force also passes through intermediate bearing 45, because it forms a part of the stack.
Impellers 43 may be identical, and one is shown in more detail in
Intermediate bearing 45 has a hub 59 with a hub bore 60 through which shaft 29 passes. Hub bore 60 is considerably larger in inner diameter than the outer diameter of shaft 29. Intermediate bearing 45 has a concentric outer wall 61 with an upper annular recess 63 on its upper end. Intermediate bearing recess 63 faces outward for receiving diffuser lip 53 of the next upper diffuser 41. The outer diameter of intermediate bearing 45 is no greater than the outer diameters of diffusers 41 because the entire stack of diffusers 41, including intermediate bearing 45, must be pushed into housing 21 during assembly. A typical transverse width of the clearance between the stack of diffusers 41 and housing inward-facing wall 27 is about 0.005 inch on a side.
In this embodiment, a spacer sleeve 65 fits between the lower end of intermediate bearing outer wall 61 and the diffuser recess 55 of the next lower diffuser 41. Spacer sleeve 65 surrounds the an upper portion of the next lower impeller 43. Spacer sleeve 65 could be integrally formed with intermediate bearing outer wall 61, thus it may be considered to be a lower portion of bearing outer wall 61. The lower portion of spacer sleeve 65 has the same configuration as diffuser lip 53 for mating with diffuser recess 55 of the next lower diffuser.
Because of the axial compression of the stack of diffusers 41, intermediate bearing 45 is non-rotatable relative to pump housing 21. In addition, an anti-rotation feature between intermediate bearing 45 and adjacent diffusers 41 may be employed. In this example, the anti-rotation feature comprises an anti-rotation pin and mating circular holes 67 in intermediate bearing upper recess 63 and the lip 53 of the next upper diffuser 41.
The next lower impeller 43 discharges well fluid into intermediate bearing flow passage 69 in intermediate bearing 45 between hub 59 and outer wall 61. Intermediate bearing flow passages 69 are parallel with axis 31, not curved like diffuser passages 49. Impellers 43 create down thrust as they discharge well fluid. In this example, the down thrust from one of the impellers 43 transfers through a thrust runner 71, which rotates with impeller 43, to a diffuser bushing 73 mounted for non-rotation within a receptacle in the next lower diffuser 41. The down thrust transfers through the stack of diffusers 41, including intermediate bearing outer wall 61, to lower connector 25 (
In this embodiment, diffuser bushing 73 has a flange 75 on its upper end that is engaged by runner 71. Flange 75 has an inner portion 75a that extends inward a short distance past the inner diameter of the cylindrical portion of diffuser bushing 73. Inner portion 75a defines a downward-facing shoulder in diffuser bushing 73.
Up thrust may also occur from time-to time, causing impellers 43 to move upward a short distance on shaft 29. In the
Uppermost sleeve 77d fits within the bore of diffuser bushing 73 in rotating sliding contact. During down thrust, the upper end of sleeve 77d is a short distance below flange inner portion 75a, which comprises an up thrust surface. During up thrust, the upper end of sleeve 77d will abut and slide against the downward-facing side of flange inner portion 75a, transferring up thrust to the diffuser 41 directly above intermediate bearing 45.
Sleeves 77a and 77b are in sliding rotational engagement with a non-rotating bushing 79 in hub 59. Retainer rings 81 (three shown) secure bushing 79 in hub 59. Retainer rings 81 are in an interference fit with the inner diameter of hub 59. The lower end of bushing 79 engages an upward-facing shoulder 82 in hub 59.
Intermediate bearing sleeves 77a and 77b are much thicker in transverse width from the inner to the outer diameters than sleeve 77c and diffuser sleeve 77d. In this example, the transverse width of intermediate bearing sleeves 77a and 77b is about one-half to two-thirds greater than the transverse width of sleeve 77c and diffuser sleeve 77d. The greater thickness is desirable, particularly because of erosion and abrasion that occurs in abrasive well fluid conditions. Runner 71, bushings 73, 79 and sleeves 77a, 77b, 77c and 77d may be formed of a hard, wear resistant material such as tungsten carbide. Also, as noted above, one or more of sleeves 77a, 77b, 77c and 77d may be integrally formed with others of the sleeves as a single monolithic piece.
Referring to
Prior to installation in intermediate bearing recess 47, wave spring 85 has a radial or transverse width from its circumscribed outer diameter at outward protruding indentations 91 to its circumscribed inner diameter at inward protruding indentations 93 that is greater than the radial distance from recess base 86 to housing inward-facing wall 27. Prior to installation in housing 21, the circumscribed outer diameter of outward protruding indentations 91 is greater than the inner diameter of housing inward-facing wall 27. The resiliency of wave spring 85 and end gap 89 enable it to be resiliently expanded over intermediate bearing outer wall 61 and snapped into recess 47. The resiliency also deflects the radial width of wave spring 85, causing it to fit tightly between base 86 of recess 47 and housing inward-facing wall 27. The deflection is elastic, less than the yield strength of the material of wave spring 85.
Each wave spring 85 has an axial dimension that is only slightly less than the axial dimension of recess 47. Referring to
Outward-protruding waves or indentations 91 are permanently formed in wave spring 85, creating convex shapes extending around wave spring 85. Outward-protruding indentations 91 extend from upper band 95 to lower band 97 and are parallel with axis 31 (
Referring to the alternate embodiment of
During down thrust, the upper end of sleeve 99 will be spaced below the lower end of diffuser bushing 73. The lower end of diffuser bushing 73 comprises an up thrust surface. During up thrust, the upper end of sleeve 99 bears against the lower end of diffuser bushing 73, transferring up thrust to diffuser 41. In this example, unlike diffuser sleeve 77d (
Another embodiment of an intermediate bearing is illustrated in
Diffuser bearing 101 has all of the same features as one of the diffusers 41 except O-ring seal 51 (
Pump 12 (
The present invention described herein, therefore, is well adapted to carry out the objects and attain the ends and advantages mentioned, as well as others inherent therein. While only a few embodiments of the invention has been given for purposes of disclosure, numerous changes exist in the details of procedures for accomplishing the desired results. These and other similar modifications will readily suggest themselves to those skilled in the art, and are intended to be encompassed within the spirit of the present invention disclosed herein and the scope of the appended claims.
This application claims priority to provisional application 62/885,649, filed Aug. 12, 2019.
Number | Date | Country | |
---|---|---|---|
62885649 | Aug 2019 | US |