The present application relates to a coupler for joining reinforcing tendons in concrete.
Concrete is capable of withstanding significant compressive loads, but is more susceptible to failure when subjected to significant tensile loads. Thus, concrete structures are often reinforced with steel bars, cables, or similar to enhance the structure's ability to withstand tensile forces.
A coupler is disclosed. The coupler includes a first chuck and a second chuck. The coupler also includes a coupler body including a first end, a second end, and a passageway extending between the first end and the second end, the first end secured to the first chuck, the second end secured to the second chuck. In addition, the coupler includes a cover, the cover extending along and enclosing the second chuck. Also, the coupler includes a cup, the cup covering an end surface of the first chuck, the cup in sealing engagement with the cover.
A system includes an intermediate anchor and a coupler. The coupler includes a first chuck adapted to receive an end of a first tendon, the first chuck including first external threads and a second chuck adapted to receive an end of a second tendon, the second chuck including second external threads, the second external threads having a reverse orientation relative to the first external threads. The coupler also includes a coupler body including a first end, a second end, and a passageway extending between the first end and the second end, the first end including first internal threads configured to engage the first external threads, the second end including second internal threads configured to engage the second external threads, whereby rotation of the coupler body in a first direction about the longitudinal axis of the coupler body simultaneously advances both the first chuck and the second chuck into the passageway. The coupler further includes a cover extending along the second chuck.
It is to be understood that the disclosure may be not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The disclosure is capable of other independent embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein may be for the purpose of description and should not be regarded as limiting.
The use of “including”, “comprising”, or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “secured” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “secured” are not restricted to physical or mechanical connections or couplings.
Although two portions 10a, 10b of concrete are shown in
Referring now to
As best shown in
As shown in
Cup 146 may include hole 158 therethrough, aligned with axis 66 such that an end of tendon 18a (
Referring again to
In some embodiments, first threaded portions 142, 154 may each comprise multi-lead threads (for example, triple-lead threads), and second threaded portions 194, 202 may also each comprise multi-lead threads. First chuck 86 and second chuck 90 may be threaded into the coupler body 82 more quickly (i.e., in fewer rotations). In some embodiments, the threads of second external threaded portion 194 may have a direction that is in reverse orientation with respect to the threads of first external threaded portion 142 of first chuck 86. For example, if first external threaded portion 142 includes right-hand threads, second external threaded portion 194 may include left-hand threads. As a result, rotation of coupler body 82 in a single direction can cause both first chuck 86 and second chuck 90 to advance into coupler body 82 simultaneously. Furthermore, in some embodiments, peripheral portion 206 of second flange 190 may be sealed, such as by O-ring 210, against an inner surface of cover 94.
During fabrication of reinforced concrete structure 1, tendon 18a may be first secured to first anchor 22. Intermediate anchor 30 may be positioned adjacent partition 26 and cup 146 may abut end surface 174 of intermediate anchor 30. First tendon 18a may be covered in a sheath and extended through intermediate anchor 30 and cup 146. A pocket former may be positioned adjacent intermediate anchor 30 and cup 146 to prevent or restrict concrete from completely embedding intermediate anchor 30 during formation of first concrete portion 10b. In some embodiments, cup 146 may act as a grout-exclusion plug during concrete placement. Concrete may be then poured into first portion 10a. After the concrete has set such that the concrete has a predetermined minimum compressive strength, first chuck 86 may be positioned over first tendon 18a and a sheath-cutting tool may remove a portion of the tendon sheath from the end. Wedges may be positioned in first tapered chamber 150 and tendon 18a may be tensioned such as by a hydraulic tensioner. As tension is applied, the wedges are forced into first tapered chamber 150 to secure tendon 18a within first chuck 86. An excess portion of tendon tail (i.e., the portion extending beyond a minimum protruding from first chuck 86) may be removed.
An end of second tendon 18b extends through second chuck 90, and wedges may be positioned in second tapered chamber 198 to secure the end of second tendon 18b to second chuck 90. Spacer 118 may be positioned within coupler body 82 of coupler 34, and coupler body 82 may be positioned between first chuck 86 and second chuck 90. In certain embodiments, because of the reverse threads on first external threaded portion 142 and second extended threaded portion 194, coupler body 82 may be rotated in a single direction to simultaneously advance both first chuck 86 and second chuck 90 into coupler body 82. Coupler body 82 and chucks 86, 90 join or splice tendons 18a, 18b. The tensioning force exerted on tendons 18a, 18b may be transmitted through intermediate anchor 30, through first chuck 86 and second chuck 90 via the wedges, and through coupler body 82 connecting first chuck 86 and second chuck 90. Cover 94 may be positioned over coupler body 82 and first chuck 86 and second chuck 90, and sealed against cup 146 on one end and against the sheathed tendon 18b on the other end.
The opposite end of tendon 18b may extend through second anchor 42 on an opposite end of second portion 10b. If second portion 10b is to be the final concrete portion to be cast for reinforced concrete structure 1, second tendon 18b may be tensioned, cut, and secured to second anchor 42 after concrete portion 10b is poured and set. Otherwise, the process may be repeated to connect tendon 18b to an additional tendon extending through additional concrete sections.
Cover 94 may seal against cup 146, which in turn seals against the sheath of tendon 18a. Tendons 18a, 18b and components of coupler 34 are sealed against moisture. Intermediate anchor 30 provides a temporary load bearing function until second tendon 18b can be joined and tensioned, but tendons 18a, 18b and coupler components may remain covered and sealed. The sealing of the internal components may be independent of an interface between intermediate anchor 30 and coupler 34.
The independent embodiments described above and illustrated in the figures are presented by way of example only and are not intended as a limitation upon the concepts and principles of the present disclosure. As such, it will be appreciated that various changes in the elements and their configuration and arrangement are possible without departing from the spirit and scope of the present disclosure. One or more independent advantages and/or independent features may be set forth in the claims.
This application is a non-provisional application which claims priority from U.S. provisional application No. 62/666,530, filed May 3, 2018, which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3850535 | Howlett et al. | Nov 1974 | A |
4318256 | Boonman | Mar 1982 | A |
4724639 | Moser | Feb 1988 | A |
4896470 | Sorkin | Jan 1990 | A |
4900193 | MacKinnon | Feb 1990 | A |
5072558 | Sorkin et al. | Dec 1991 | A |
5440842 | Sorkin | Aug 1995 | A |
5701707 | Sorkin | Dec 1997 | A |
5720139 | Sorkin | Feb 1998 | A |
5749185 | Sorkin | May 1998 | A |
5755065 | Sorkin | May 1998 | A |
5770286 | Sorkin | Jun 1998 | A |
5788398 | Sorkin | Aug 1998 | A |
5839235 | Sorkin | Nov 1998 | A |
5897102 | Sorkin | Apr 1999 | A |
6012867 | Sorkin | Jan 2000 | A |
6017165 | Sorkin | Jan 2000 | A |
6023894 | Sorkin | Feb 2000 | A |
6027278 | Sorkin | Feb 2000 | A |
6098356 | Sorkin | Aug 2000 | A |
6151850 | Sorkin | Nov 2000 | A |
6176051 | Sorkin | Jan 2001 | B1 |
6234709 | Sorkin | May 2001 | B1 |
6381912 | Sorkin | May 2002 | B1 |
6393781 | Sorkin | May 2002 | B1 |
6513287 | Sorkin | Feb 2003 | B1 |
6560939 | Sorkin | May 2003 | B2 |
6631596 | Sorkin | Oct 2003 | B1 |
6761002 | Sorkin | Jul 2004 | B1 |
6817148 | Sorkin | Nov 2004 | B1 |
6843031 | Sorkin | Jan 2005 | B1 |
7424792 | Sorkin | Sep 2008 | B1 |
7676997 | Sorkin | Mar 2010 | B1 |
D615219 | Sorkin | May 2010 | S |
7823345 | Sorkin | Nov 2010 | B1 |
7841061 | Sorkin | Nov 2010 | B1 |
7856774 | Sorkin | Dec 2010 | B1 |
7866009 | Sorkin | Jan 2011 | B1 |
7950196 | Sorkin | May 2011 | B1 |
8015774 | Sorkin | Sep 2011 | B1 |
8065845 | Sorkin | Nov 2011 | B1 |
8069624 | Sorkin | Dec 2011 | B1 |
8087204 | Sorkin | Jan 2012 | B1 |
8251344 | Sorkin | Aug 2012 | B1 |
9097014 | Sorkin | Aug 2015 | B1 |
10196820 | Sorkin | Feb 2019 | B2 |
20020178665 | Campbell | Dec 2002 | A1 |
20050097843 | Giesel | May 2005 | A1 |
20100303540 | Kim | Dec 2010 | A1 |
20180291628 | Butts | Oct 2018 | A1 |
20190234443 | Man | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
2368512 | Sep 2001 | CA |
102014008166 | Dec 2015 | DE |
9208019 | May 1992 | WO |
Entry |
---|
Extended European Search Report issued in EP App. No. 19172644.7, dated Aug. 29, 2019 (11 pages). |
Number | Date | Country | |
---|---|---|---|
20190338523 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
62666530 | May 2018 | US |