The intermediate sleeve of the present invention is simple to manufacture and easy to mount and dismount from an underlying print cylinder in flexographic, offset, and gravure printing systems. The design of the sleeve offers several advantages over prior bridge sleeves in that the air channels are provided without requiring the use of special air hoses which must be oriented and embedded in the sleeve. The elimination of such hoses allows the wall thickness of the sleeve to be minimized. In addition, because the air channels are typically formed longitudinally along the length of the sleeve, orifices may be provided at any desired location on the sleeve along the length of the channels. This permits the intermediate sleeve to be compatible with all types of print cylinders and printing sleeves.
The fiber-reinforced polymeric materials used to form the barrier layer in the sleeve construction are also beneficial as they have coefficients of thermal expansion which minimize changes in diameter to the sleeve which could otherwise occur due to processing temperatures encountered during fabrication of the sleeve and during the printing process, and thus provide protection against undesired deformation of the sleeve.
Referring now to
Print cylinder 12 is mounted for rotation about its longitudinal axis, and in use, would be part of a printing press or other print system (not shown). An air inlet 22 is provided which supplies air under pressure into the interior of the print cylinder from a source (not shown).
As shown in
As shown in
As shown in
After the air channels 60 are formed in the polymeric reinforcement layer 32, a barrier layer 34 is preferably applied over the reinforcement layer 32 to form an upper wall for the air channels. Barrier layer 34 may comprise an adhesive tape. Preferably, the barrier layer comprises a fiber-reinforced polymeric material which is wound around the surface of the sleeve by conventional winding techniques.
As shown in
The intermediate sleeve further includes air passageways 42 which extend from the inner base layer 30 to the air channels 60 in the polymeric reinforcement layer 32 to provide a path for pressurized air supplied from within the print cylinder to the air channels 60 and orifices 40.
Mounting of a printing sleeve (not shown) over the intermediate sleeve 10 may be accomplished by supplying air under pressure to the interior of printing cylinder 12. Printing cylinder 12 is equipped with a plurality of air passageways 66 which provide a path to air passageways 42 and air channels 60 in the intermediate sleeve as shown in
As there is often a need for print jobs having varying lengths, the intermediate sleeve 10 is designed to be readily mounted and dismounted from print cylinder 12. As new jobs are processed, intermediate sleeves having different outer diameters, but common inner diameters, may be exchanged by the press operator to provide the correct outer diameter for the desired print job. The intermediate sleeve of the present invention may be manufactured in many sizes and outer diameters to accommodate a variety of different image repeats as is common in the industry.
Having described the invention in detail and by reference to preferred embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the invention.
This application claims the benefit of U.S. Provisional Application No. 60/798,495 entitled INTERMEDIATE SLEEVE filed May 8, 2006. The entire contents of said application are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60798495 | May 2006 | US |