Intermetallic metallic composite, method of manufacture thereof and articles comprising the same

Abstract
Disclosed herein is an article comprising a plurality of domains fused together; wherein the domains comprise a core comprising a first metal; and a first layer disposed upon the core; the first layer comprising a second metal; the first metal being chemically different the second metal. Disclosed herein too is a method comprising rolling a sheet in a roll mill; the sheet comprising a first metal and having disposed upon each opposing face of the sheet a first layer that comprises a second metal; the second metal being chemically different from the first metal; cutting the sheet into a plurality of sheets; stacking the plurality of sheets; and rolling the stacked sheets in the roll mill to form a blank.
Description
BACKGROUND

1. Field of the Invention


This disclosure relates to intermetallic metallic composites, methods of manufacture thereof and articles comprising the same.


2. Description of the Related Art


In performing underground operations such as, for example oil and natural gas exploration, carbon dioxide sequestration, exploration and mining for minerals such as iron, uranium, and the like, exploration for water, and the like, it is often desirable to first drill a borehole that penetrates into the formation.


Once a borehole has been drilled, it is desirable for the borehole to be completed before minerals, hydrocarbons, and the like can be extracted from it. A completion involves the design, selection, and installation of equipment and materials in or around the borehole for conveying, pumping, or controlling the production or injection of fluids into the borehole. After the borehole has been completed, the extraction of minerals, oil and gas, or water can begin.


Sealing systems, such as packers, are commonly deployed in a borehole as completion equipment. Packers are often used to isolate portions of a borehole from one another. For example, packers are used to seal the annulus between a tubing string and a wall (in the case of uncased or open hole) or casing (in the case of cased hole) of the borehole, isolating the portion of the borehole uphole of the packer from the portion of the borehole downhole of the packer.


Sealing systems that isolate one portion of the borehole from another portion of the borehole generally employ an expandable component and a support member. The support member protects the expandable component until the expandable component is expanded in the borehole to effect the isolation. In order to expand the expandable component, it is desirable to first remove the support member. Removing the support member at the wrong rate can result in improper isolation of one part of the borehole from another. It is therefore desirable to use a support member that can be removed in a controlled fashion when desired.


SUMMARY

Disclosed herein is an article comprising a plurality of domains fused together; wherein the domains comprise a core comprising a first metal; and a first layer disposed upon the core; the first layer comprising a second metal; the first metal being chemically different the second metal; the article being used as a supporting element in a sealable system for oil exploration.


Disclosed herein too is an article comprising a plurality of domains fused together; wherein the domains comprise an intermetallic fine grained alloy that comprises a first metal and a second metal; wherein the domains comprise a gradient in composition between the first metal and the second metal; and wherein the first metal is chemically different the second metal.


Disclosed herein too is a method comprising rolling a sheet in a roll mill; the sheet comprising a first metal and having disposed upon each opposing face of the sheet a first layer that comprises a second metal; the second metal being chemically different from the first metal; cutting the sheet into a plurality of sheets; stacking the plurality of sheets; and rolling the stacked sheets in the roll mill to form a blank.


Disclosed herein too is a method comprising disposing upon a tube string, a sealing system; the sealing system comprising a expandable component and a support member; wherein the support member comprises a plurality of domains fused together; wherein the domains comprise a core comprising a first metal; and a first layer disposed upon the core; the first layer comprising a second metal; the first metal being chemically different the second metal; introducing the tube string into a well; and dissolving the support member.





BRIEF DESCRIPTION OF THE FIGURES

For detailed understanding of the present disclosure, references should be made to the following detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings, in which like elements have been given like numerals and wherein:



FIG. 1 is a depiction of an exemplary prior art sealing system; and



FIG. 2 is a depiction of an exemplary microstructure that is present in the article.





DETAILED DESCRIPTION

The invention now will be described more fully hereinafter with reference to the accompanying drawings, in which various embodiments are shown. This invention may, however, be embodied in many different forms, and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like reference numerals refer to like elements throughout.


It will be understood that when an element is referred to as being “on” another element, it can be directly on the other element or intervening elements may be present therebetween. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


It will be understood that, although the terms “first,” “second,” “third” etc. may be used herein to describe various elements, components, regions, domains, layers and/or sections, these elements, components, regions, domains, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, domain, layer or section from another element, component, region, domain, layer or section. Thus, “a first element,” “component,” “region,” “domain,” “layer” or “section” discussed below could be termed a second element, component, region, domain, layer or section without departing from the teachings herein.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” or “includes” and/or “including” when used in this specification, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof.


Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and the present disclosure, and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.


Exemplary embodiments are described herein with reference to cross sectional illustrations that are schematic illustrations of idealized embodiments. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments described herein should not be construed as limited to the particular shapes of regions as illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, a region illustrated or described as flat may, typically, have rough and/or nonlinear features. Moreover, sharp angles that are illustrated may be rounded. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the precise shape of a region and are not intended to limit the scope of the present claims.


The transition term “comprising” is inclusive of the transition terms “consisting of” and “consisting essentially of”.


All “inclusive” numerical ranges included herein are interchangeable and are inclusive of end points and all numerical values that lie between the endpoints.


As used herein a “borehole” may be any type of borehole in an earth formation such as a well, including, but not limited to, a producing well, a non-producing well, an experimental well, an exploratory well, a well for storage or sequestration, and the like.


Boreholes may be vertical, horizontal, some angle between vertical and horizontal, diverted or non-diverted, and combinations thereof, for example a vertical borehole with a non-vertical component.


The term “support member” refers to a device that supports the expandable component and the tubing string. The “support member” may also function to protect, guard and/or shield the expandable component from damage prior to its removal.


The term “expandable” as used in the “expandable component”, can encompass a variety of means by which the expansion can occur. The expansion can occur for example, through swelling, inflation via pressure, thermal expansion, and the like, or a combination thereof. Some expandable components may be actuated by hydraulic pressure transmitted either through the tubing bore, annulus, or a control line. Other expandable components may be actuated via an electric line deployed from the surface of the borehole. Furthermore, some expandable components have been used that employ materials that respond to the surrounding borehole fluids and borehole to form a seal.


Disclosed herein is an article for a sealing system that comprises a plurality of multilayered metallic domains that may comprise particles. In an exemplary embodiment, the article is a support member for a sealing system that is used in underground boreholes. Each domain comprises a metallic core that comprises a first metal. Disposed upon the metallic core is a first layer that comprises a second metal. The first layer may have disposed thereon an optional second layer that comprises a third metal. These multilayered metallic domains each function as a galvanic cell when exposed to borehole fluids. In one embodiment, these multilayered metallic domains are manufactured into a support member for a sealing system that can be dissolved in a controlled manner (when exposed to borehole fluids) to expose an expandable component to the surrounding borehole fluids. The surrounding borehole fluids cause it to swell to form a seal that isolates one portion of the borehole from another portion of the borehole.


Disclosed herein too is a method of manufacturing a support member that comprises the plurality of fused multilayered metallic domains that may comprise sheets or lamina. The method comprises manufacturing a sheet from the first metal and disposing upon the opposing surfaces of the sheet a layer of a second metal. An optional third layer of metal may then be disposed upon the opposing surfaces of the sheet. The sheet is then cut into several smaller sheets, which are stacked on one another to form a stack. The stack is subjected to roll milling until it is reduced to a thickness that is a fraction of the original thickness of the stacked sheets. The first multilayered sheet is once again cut into several sheets, which are stacked one on another and subjected to rolling to produce a second multilayered sheet. The process of forming sheets, cutting and stacking them, and then rolling them is repeated several times to produce a final sheet. The final sheet is then cut, stacked as before and forged into a desired shape (hereinafter termed the “article”).



FIG. 1 is a depiction of an exemplary sealing system 100. The sealing system 100 is disposed around a tubing string 102 and comprises an expandable component 104 and a support member 106. The support member 106 supports the expandable component 104 during the introduction of the tubing string 102 into the reservoir and prevents the expandable component 104 from degrading prior to the point at which it has to be utilized.


When the tubing string 102 has reached the point in the well at which it is to be used, the support member 106 is removed from the sealing system 100 and the expandable component 104 is subjected to expansion to isolate one portion of the wellbore from another portion of the wellbore.


In order to effect the desired use of the expandable component 104, the removal of the support member 106 has to be accomplished under controlled conditions. It is therefore desirable to have a support member 106 manufactured from a material that can be removed in a controlled fashion so that the swelling of the expandable component 104 can be brought about at the desired time to isolate one portion of the wellbore from another.


In an exemplary embodiment, the support member 106 is manufactured by stacking several multilayered metal sheets and repeatedly passing these sheets through a roll mill. In each “pass” through the roll mill, the thickness of the stack is reduced to about 15 to about 30% of the original thickness of the stack. A “pass” as defined herein is the process by which the original stack is reduced in thickness to about 15 to about 30% of the original thickness of the stack. A pass may involve multiple trips between the roll mills. In one embodiment, the thickness of the stack is reduced to about 20 to about 28% of the original thickness of the stack. In another embodiment, the thickness of the stack is reduced to about 22 to about 26% of the original thickness of the stack.


It is generally desirable to conduct a number of passes in the roll mill so as to reduce the thickness of the original sheet to about ⅛ to about 1/15 of its original thickness, specifically about 1/10 to about 1/13 of its original thickness. The number of passes conducted during the roll milling is about 2 to about 15, specifically about 3 to about 14 and more specifically about 5 to about 10.


The rolling process may be a cold rolling process or a hot rolling process. Cold rolling processes are generally conducted below the recrystallization temperature of the metal, while hot rolling processes are generally conducted at a temperature above the recrystallization temperature of the metal. The recrystallization temperature in consideration would be that for the metal or alloy having the highest recrystallization temperature of all of the metals in the article. In an exemplary embodiment, the rolling process is a hot rolling process. The rolling process is generally conducted at a temperature of about 150 to about 450° C. In an exemplary embodiment, the rolling process is generally conducted at a temperature of about 400 to about 437° C.


The process of forming multilayered sheets that are repeatedly rolled, cut and stacked produces a structure that comprises fine grained structure, including intermingled domains of a first and a second metal and their combinations. The structure of the domains in the article is similar to that which would be obtained from the sintering of individual particles each of which comprise a core and a plurality of layers disposed upon this core to begin with. In other words, the product comprises multistructured domains that contact one another. The multilayered domains in the article contact one another and have interstices located between these domains. In one embodiment, these domains are fused to one another. The domains may have gradients in composition between the first metal and the second metal. It may also have gradients in composition between the second metal and the third metal as well as between the first metal and the third metal.


In one embodiment, the domains may alternatively also comprise a fine-grained alloy rich in small intermetallic compound domains between the first metal and the second metal, the first metal and the third metal and the second metal and the third metal, with no layers between these respective metals. The presence of a fine grained alloy results in a number of advantages. Fine grained alloys with concentration gradients produce effective galvanic cells. These structures produce an improvement in strength due to fine grain sizes and dense intergranular regions over other structures that contain layered domains.



FIG. 2 is a depiction of an exemplary microstructure for articles manufactured by the method described herein. The FIG. 2 depicts the microstructure of an exemplary article 200 comprising the domains 202 described herein. As may be seen in FIG. 2, each domain comprises the core 204 that comprises the first metal, the first layer 206 that comprises the second metal, and the optional third layer 208 that comprises the third metal. As noted above, some domains may comprise a fine grained alloy that comprises an intermetallic compound.


The core may have an average domain size of about 44 to about 1400 micrometers. In an exemplary embodiment, the core may have an average domain size of about 63 to about 105 micrometers. The average domain size is a radius of gyration.


The core with the first layer disposed thereon may have an average domain size of about 45.1 to about 1445 micrometers. In an exemplary embodiment, the core with the first layer disposed thereon may have an average domain size of about 64.6 to about 108 micrometers.


The core with the first and the second layer disposed thereon may have an average domain size of about 45 to about 1600 micrometers. In an exemplary embodiment, the core with the first and the second layer disposed thereon may have an average domain size of about 65 to about 110 micrometers.


In one embodiment, in one method of manufacturing the support member, a sheet comprising a first metal is coated on its opposing faces with a layer of a second metal. The sheet may have an original thickness of about 0.05 to about 0.20 centimeters, specifically about 0.08 to about 0.18 centimeters, and more specifically about 0.1 to about 0.15 centimeters. Each layer of second metal may have a thickness of about 0.005 centimeters to about 0.02 centimeters, specifically about 0.003 to about 0.015 centimeters, and more specifically about 0.001 centimeters to about 0.013 centimeters. An optional third metal layer may be disposed on the opposing faces of the sheet to contact the second metal layer. The thickness of each third metal layer can be the same as the thickness of each second metal layer.


The first metal is generally present in an amount of about 60 to about 95 weight percent (wt %) based on the total weight of the article. An exemplary amount of the first metal is about 90 to about 92 wt % based on the total weight of the article.


The second metal is generally present in an amount of about 5 to about 40 wt %, based on the total weight of the article. An exemplary amount of the second metal is about 8 to about 10 wt % based on the total weight of the article.


The third metal is generally present in an amount of about 0.0001 to about 3 weight percent (wt %) based on the total weight of the article. An exemplary amount of the third metal is about 0.01 to about 0.1 wt % based on the total weight of the article.


In one embodiment, the layer of second metal may be disposed upon the sheet by techniques involving vapor deposition. Examples of suitable techniques for disposing the second layer include chemical or physical vapor deposition.


Chemical vapor deposition includes atmospheric chemical vapor deposition, low pressure chemical vapor deposition, ultrahigh vacuum chemical vapor deposition, aerosol assisted vapor deposition, direct liquid injection chemical vapor deposition, microwave plasma assisted chemical vapor deposition, plasma enhanced chemical vapor deposition, atomic layer chemical vapor deposition, hot wire (hot filament) chemical vapor deposition, metal organic chemical vapor deposition, combustion chemical vapor deposition, vapor phase epitaxy, rapid thermal chemical vapor deposition, hybrid physical chemical vapor deposition, or a combination comprising at least one of the foregoing processes. If combinations of the foregoing chemical vapor deposition processes are used, they may be employed simultaneously or sequentially.


Physical vapor deposition includes cathodic arc deposition, electron beam physical vapor deposition, evaporative deposition, pulsed laser deposition, sputter deposition or a combination comprising at least one of the foregoing processes. If combinations of the foregoing physical vapor deposition processes are used, they may be employed simultaneously or sequentially. Combinations of physical vapor deposition processes and chemical vapor deposition processes may also be used.


In another embodiment, the layer of second metal may be disposed upon the sheet by techniques involving electroless plating, electroplating, dip-coating or cold spraying. Combinations of such methods can also be used to apply the second layer to the sheet.


The first metal and the second metal are selected such that they are capable of forming a galvanic cell that can undergo corrosion in the presence of borehole fluids. In other words, if the first metal forms the anode of the galvanic cell, the second metal forms the cathode and vice versa. The first metal is different in composition from the second metal. The third metal is generally selected to control the rate of corrosion of the galvanic cell.


The first metal and the second metal may comprise transition metals, alkali metals, alkaline earth metals, or combinations thereof so long as the first metal is not the same as the second metal. The first metal may comprise aluminum, magnesium zinc, copper, iron, nickel, cobalt, or the like, or a combination comprising at least one of the foregoing metals. The second metal may comprise aluminum, magnesium zinc, copper, iron, nickel, cobalt, or the like, or a combination comprising at least one of the foregoing metals so long as it is chemically different from the first metal. In one embodiment, the second metal is electrolytically different from the first metal


The third metal may comprise nickel, aluminum, magnesium zinc, copper, iron, cobalt, or the like, or a combination comprising at least one of the foregoing metals so long as it is chemically different from the first metal. In one embodiment, the third metal is chemically different from the first metal and from the second metal. In another embodiment, the third metal is electrolytically different from the first metal and from the second metal.


In one exemplary embodiment, the first metal comprises aluminum, while the second metal comprises magnesium. The third metal may comprise nickel.


In another exemplary embodiment, the first metal comprises magnesium, while the second metal comprises aluminum. The third metal may comprise nickel.


In one embodiment, the sheet obtained after being subjected to a reduction in thickness may be stacked and forged in a roll mill into a blank. The blank may then be extruded into a desired shape to form the desired article. In an exemplary embodiment, the sheet obtained after being subjected to a 2 to 5-pass reduction in thickness may be stacked and forged in a roll mill into a blank. The blank is then be extruded into a final desired shape.


In another embodiment, the sheet obtained after being subjected to a reduction in thickness may be stacked and forged in a roll mill or in a press into round stock.


The process is advantageous in that it can be conducted rapidly when compared with a comparative sintering process involving powders. It also is desirable because it does not involve the formation and pressing of metal powders, which can sometimes be difficult. The process described herein can be advantageously used for manufacturing sheet stock for rolled tube, stamped flat items, billet materials for balls, and the like.


Support members manufactured by this method are advantageous because their dissolution by borehole fluids can be controlled. This permits the swelling of the expandable component to be controlled as well.


The article described herein can be used as a support member for a sealing system for underground wells from which oil and natural gas are extracted. In one method of using the support member, it is disposed upon an expandable component in a sealing system to support the expandable component until it is desired to have the expandable component expand and form a seal. When the tube string with the sealing system is moved underground during oil exploration, the borehole fluids interact with the support member setting up plurality of galvanic cells within the support member. The galvanic cells become operative causing the eventual corrosion of the support member and the exposure of the expandable component to the borehole fluids. The expandable component expands to causing sealing of one portion of the borehole from another portion of the well.


While the invention has been described in detail in connection with a number of embodiments, the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.

Claims
  • 1. An article comprising: a plurality of domains fused together; wherein the domains comprise: a core comprising a first metal; anda first layer disposed upon the core; the first layer comprising a second metal; the first metal being chemically different the second metal; wherein the domains comprise a gradient in composition between the first metal and the second metal; wherein the core is in the form of a particle having a domain size of 44 to 1400 micrometers, and wherein the plurality of domains have interstices between them;a second layer that is disposed upon the first layer, wherein the second layer comprises a third metal that is different from the first metal and the second metal; where the third metal is nickel, aluminum, magnesium zinc, copper, iron, cobalt, or a combination thereof; where the third metal is present in an amount of 0.01 to 0.1 wt %, based on a total weight of the article; where the second metal is present in an amount of 8 to 10 wt %, based on the total weight of the article.
  • 2. The article of claim 1, wherein the article is a supporting element in a sealable system for oil exploration.
  • 3. The article of claim 1, wherein the article is an actuating ball for a borehole system.
  • 4. The article of claim 1, wherein the first metal is aluminum, magnesium, zinc, copper, iron, nickel, cobalt, or a combination comprising at least one of the foregoing metals.
  • 5. The article of claim 1, wherein the first metal is aluminum.
  • 6. The article of claim 1, wherein the first metal is magnesium.
  • 7. The article of claim 1, wherein the second metal is aluminum, magnesium, zinc, copper, iron, nickel, cobalt, or a combination comprising at least one of the foregoing metals.
  • 8. The article of claim 1, wherein the second metal is aluminum.
  • 9. The article of claim 1, wherein the second metal is magnesium.
  • 10. The article of claim 1, wherein the article is manufactured by rolling a sheet comprising the first metal and coated on each of its opposing faces with a first layer comprising the second metal, cutting the rolled sheet into a plurality of sheets; stacking the plurality of sheets; re-rolling the stacked sheets in the roll mill; and repeatedly cutting, stacking and rolling the stacked sheets.
  • 11. An article comprising: a plurality of domains fused together; wherein the domains comprise: an intermetallic fine grained alloy that comprises a first metal, a second metal and a third metal; wherein the domains comprise a gradient in composition between the first metal and the second metal; and wherein the first metal is chemically different the second metal; wherein a core of the domain comprises the first metal and is in the form of a particle having a domain size of 44 to 1400 micrometers, and wherein the plurality of domains have interstices between them; where the third metal is different from the first metal and the second metal; where the third metal is nickel, aluminum, magnesium zinc, copper, iron, cobalt, or a combination thereof; where the third metal is present in an amount of 0.01 to 0.1 wt %, based on a total weight of the article; where the second metal is present in an amount of 8 to 10 wt %, based on the total weight of the article.
  • 12. The article of claim 11, wherein the article is a supporting element in a sealable system for oil exploration.
  • 13. The article of claim 11, wherein the article is an actuating ball for a borehole system.
  • 14. The article of claim 11, wherein the first metal is aluminum.
  • 15. The article of claim 11, wherein the first metal is magnesium.
  • 16. The article of claim 11, wherein the second metal is aluminum.
  • 17. The article of claim 11, wherein the second metal is magnesium.
US Referenced Citations (945)
Number Name Date Kind
1468905 Herman Sep 1923 A
1558066 Veazey et al. Oct 1925 A
1880614 Wetherill Oct 1932 A
2011613 Brown et al. Aug 1935 A
2094578 Blumenthal et al. Oct 1937 A
2189697 Baker Feb 1940 A
2222233 Mize Nov 1940 A
2225143 Baker et al. Dec 1940 A
2238895 Gage Apr 1941 A
2261292 Salnikov Nov 1941 A
2294648 Ansel et al. Sep 1942 A
2301624 Holt Nov 1942 A
2352993 Albertson Jul 1944 A
2394843 Cooke et al. Feb 1946 A
2672199 McKenna Mar 1954 A
2753941 Hebard et al. Jul 1956 A
2754910 Derrick et al. Jul 1956 A
2933136 Ayers et al. Apr 1960 A
2983634 Budininkas et al. May 1961 A
3057405 Mallinger Oct 1962 A
3066391 Vordahl Dec 1962 A
3106959 Huitt et al. Oct 1963 A
3142338 Brown Jul 1964 A
3152009 DeLong Oct 1964 A
3180728 Keir et al. Apr 1965 A
3180778 Stilli et al. Apr 1965 A
3196949 Thomas Jul 1965 A
3226314 Wellington et al. Dec 1965 A
3242988 McGuire et al. Mar 1966 A
3295935 Pflumm et al. Jan 1967 A
3316748 Lang et al. May 1967 A
3326291 Zandmer et al. Jun 1967 A
3347317 Zandemer Oct 1967 A
3347714 Broverman et al. Oct 1967 A
3390724 Caldwell Jul 1968 A
3395758 Kelly et al. Aug 1968 A
3406101 Kilpatrick Oct 1968 A
3416918 Henry Dec 1968 A
3434537 Zandmer Mar 1969 A
3465181 Colby et al. Sep 1969 A
3489218 Means Jan 1970 A
3513230 Rhees et al. May 1970 A
3600163 Badia et al. Aug 1971 A
3602305 Kisling Aug 1971 A
3637446 Elliott et al. Jan 1972 A
3645331 Maurer et al. Feb 1972 A
3660049 Benjamin May 1972 A
3765484 Hamby, Jr. et al. Oct 1973 A
3768563 Blount Oct 1973 A
3775823 Adolph et al. Dec 1973 A
3816080 Bomford et al. Jun 1974 A
3823045 Hielema Jul 1974 A
3878889 Seabourn Apr 1975 A
3894850 Kovalchuk et al. Jul 1975 A
3924677 Prenner et al. Dec 1975 A
3957483 Suzuki May 1976 A
4010583 Highberg Mar 1977 A
4039717 Titus Aug 1977 A
4050529 Tagirov et al. Sep 1977 A
4157732 Fonner Jun 1979 A
4248307 Silberman et al. Feb 1981 A
4284137 Taylor Aug 1981 A
4292377 Petersen et al. Sep 1981 A
4372384 Kinney Feb 1983 A
4373584 Silberman et al. Feb 1983 A
4373952 Parent Feb 1983 A
4374543 Richardson Feb 1983 A
4384616 Dellinger May 1983 A
4395440 Abe et al. Jul 1983 A
4399871 Adkins et al. Aug 1983 A
4407368 Erbstoesser Oct 1983 A
4422508 Rutledge, Jr. et al. Dec 1983 A
4450136 Dudek et al. May 1984 A
4452311 Speegle et al. Jun 1984 A
4475729 Costigan Oct 1984 A
4498543 Pye et al. Feb 1985 A
4499048 Hanejko Feb 1985 A
4499049 Hanejko Feb 1985 A
4524825 Fore Jun 1985 A
4526840 Jarabek Jul 1985 A
4534414 Pringle Aug 1985 A
4539175 Lichti et al. Sep 1985 A
4554986 Jones Nov 1985 A
4619699 Petkovic-Luton et al. Oct 1986 A
4640354 Boisson Feb 1987 A
4648901 Murray et al. Mar 1987 A
4664962 DesMarais, Jr. May 1987 A
4668470 Gilman et al. May 1987 A
4673549 Ecer Jun 1987 A
4674572 Gallus Jun 1987 A
4678037 Smith Jul 1987 A
4681133 Weston Jul 1987 A
4688641 Knieriemen Aug 1987 A
4690796 Paliwal Sep 1987 A
4693863 Del Corso et al. Sep 1987 A
4703807 Weston Nov 1987 A
4706753 Ohkochi et al. Nov 1987 A
4708202 Sukup et al. Nov 1987 A
4708208 Halbardier Nov 1987 A
4709761 Setterberg, Jr. Dec 1987 A
4714116 Brunner Dec 1987 A
4716964 Erbstoesser et al. Jan 1988 A
4719971 Owens Jan 1988 A
4721159 Ohkochi et al. Jan 1988 A
4738599 Shilling Apr 1988 A
4741973 Condit et al. May 1988 A
4768588 Kupsa Sep 1988 A
4775598 Jaeckel Oct 1988 A
4784226 Wyatt Nov 1988 A
4805699 Halbardier Feb 1989 A
4817725 Jenkins Apr 1989 A
4834184 Streich et al. May 1989 A
H635 Johnson et al. Jun 1989 H
4850432 Porter et al. Jul 1989 A
4853056 Hoffman Aug 1989 A
4869324 Holder Sep 1989 A
4869325 Halbardier Sep 1989 A
4880059 Brandell et al. Nov 1989 A
4889187 Terrell et al. Dec 1989 A
4890675 Dew Jan 1990 A
4901794 Baugh et al. Feb 1990 A
4909320 Hebert et al. Mar 1990 A
4917966 Wilde et al. Apr 1990 A
4921664 Couper May 1990 A
4929415 Okazaki May 1990 A
4932474 Schroeder, Jr. et al. Jun 1990 A
4938309 Emdy Jul 1990 A
4938809 Das et al. Jul 1990 A
4944351 Eriksen et al. Jul 1990 A
4949788 Szarka et al. Aug 1990 A
4952902 Kawaguchi et al. Aug 1990 A
4975412 Okazaki et al. Dec 1990 A
4977958 Miller Dec 1990 A
4981177 Carmody et al. Jan 1991 A
4986361 Mueller et al. Jan 1991 A
4997622 Regazzoni et al. Mar 1991 A
5006044 Walker, Sr. et al. Apr 1991 A
5010955 Springer Apr 1991 A
5036921 Pittard et al. Aug 1991 A
5048611 Cochran Sep 1991 A
5049165 Tselesin Sep 1991 A
5061323 DeLuccia Oct 1991 A
5063775 Walker, Sr. et al. Nov 1991 A
5073207 Faure et al. Dec 1991 A
5074361 Brisco et al. Dec 1991 A
5076869 Bourell et al. Dec 1991 A
5084088 Okazaki Jan 1992 A
5087304 Chang et al. Feb 1992 A
5090480 Pittard et al. Feb 1992 A
5095988 Bode Mar 1992 A
5103911 Heijnen Apr 1992 A
5117915 Mueller et al. Jun 1992 A
5161614 Wu et al. Nov 1992 A
5171734 Sanjurjo et al. Dec 1992 A
5178216 Giroux et al. Jan 1993 A
5181571 Mueller et al. Jan 1993 A
5183631 Kugimiya et al. Feb 1993 A
5188182 Echols, III et al. Feb 1993 A
5188183 Hopmann et al. Feb 1993 A
5204055 Sachs et al. Apr 1993 A
5222867 Walker, Sr. et al. Jun 1993 A
5226483 Williamson, Jr. Jul 1993 A
5228518 Wilson et al. Jul 1993 A
5234055 Cornette Aug 1993 A
5252365 White Oct 1993 A
5253714 Davis et al. Oct 1993 A
5271468 Streich et al. Dec 1993 A
5273569 Gilman et al. Dec 1993 A
5282509 Schurr, III Feb 1994 A
5285798 Banerjee et al. Feb 1994 A
5292478 Scorey Mar 1994 A
5293940 Hromas et al. Mar 1994 A
5304260 Aikawa et al. Apr 1994 A
5304588 Boysen et al. Apr 1994 A
5309874 Willermet et al. May 1994 A
5310000 Arterbury et al. May 1994 A
5316598 Chang et al. May 1994 A
5318746 Lashmore et al. Jun 1994 A
5380473 Bogue et al. Jan 1995 A
5387380 Cima et al. Feb 1995 A
5392860 Ross Feb 1995 A
5394236 Murnick Feb 1995 A
5394941 Venditto et al. Mar 1995 A
5398754 Dinhoble Mar 1995 A
5407011 Layton Apr 1995 A
5409555 Fujita et al. Apr 1995 A
5411082 Kennedy May 1995 A
5417285 Van Buskirk et al. May 1995 A
5425424 Reinhardt et al. Jun 1995 A
5427177 Jordan, Jr. et al. Jun 1995 A
5435392 Kennedy Jul 1995 A
5439051 Kennedy et al. Aug 1995 A
5454430 Kennedy et al. Oct 1995 A
5456317 Hood, III et al. Oct 1995 A
5456327 Denton et al. Oct 1995 A
5464062 Blizzard, Jr. Nov 1995 A
5472048 Kennedy et al. Dec 1995 A
5474131 Jordan, Jr. et al. Dec 1995 A
5477923 Jordan, Jr. et al. Dec 1995 A
5479986 Gano et al. Jan 1996 A
5494538 Kirillov et al. Feb 1996 A
5506055 Dorfman et al. Apr 1996 A
5507439 Story Apr 1996 A
5511620 Baugh et al. Apr 1996 A
5524699 Cook Jun 1996 A
5526880 Jordan, Jr. et al. Jun 1996 A
5526881 Martin et al. Jun 1996 A
5529746 Knoss et al. Jun 1996 A
5531735 Thompson Jul 1996 A
5533573 Jordan, Jr. et al. Jul 1996 A
5536485 Kume et al. Jul 1996 A
5558153 Holcombe et al. Sep 1996 A
5601924 Beane Feb 1997 A
5607017 Owens et al. Mar 1997 A
5623993 Van Buskirk et al. Apr 1997 A
5623994 Robinson Apr 1997 A
5636691 Hendrickson et al. Jun 1997 A
5641023 Ross et al. Jun 1997 A
5647444 Williams Jul 1997 A
5665289 Chung et al. Sep 1997 A
5677372 Yamamoto et al. Oct 1997 A
5685372 Gano Nov 1997 A
5701576 Fujita et al. Dec 1997 A
5707214 Schmidt Jan 1998 A
5709269 Head Jan 1998 A
5720344 Newman Feb 1998 A
5722033 Carden Feb 1998 A
5728195 Eastman et al. Mar 1998 A
5765639 Muth Jun 1998 A
5772735 Sehgal et al. Jun 1998 A
5782305 Hicks Jul 1998 A
5797454 Hipp Aug 1998 A
5820608 Luzio et al. Oct 1998 A
5826652 Tapp Oct 1998 A
5826661 Parker et al. Oct 1998 A
5829520 Johnson Nov 1998 A
5836396 Norman Nov 1998 A
5857521 Ross et al. Jan 1999 A
5881816 Wright Mar 1999 A
5896819 Turila et al. Apr 1999 A
5902424 Fujita et al. May 1999 A
5934372 Muth Aug 1999 A
5941309 Appleton Aug 1999 A
5960881 Allamon et al. Oct 1999 A
5964965 Schulz et al. Oct 1999 A
5985466 Atarashi et al. Nov 1999 A
5988287 Jordan, Jr. et al. Nov 1999 A
5990051 Ischy et al. Nov 1999 A
5992452 Nelson, II Nov 1999 A
5992520 Schultz et al. Nov 1999 A
6007314 Nelson, II Dec 1999 A
3030637 Whitehead Feb 2000 A
6024915 Kume et al. Feb 2000 A
6032735 Echols Mar 2000 A
6036777 Sachs Mar 2000 A
6047773 Zeltmann et al. Apr 2000 A
6050340 Scott Apr 2000 A
6069313 Kay May 2000 A
6076600 Vick, Jr. et al. Jun 2000 A
6079496 Hirth Jun 2000 A
6085837 Massinon et al. Jul 2000 A
6095247 Streich et al. Aug 2000 A
6119783 Parker et al. Sep 2000 A
6142237 Christmas et al. Nov 2000 A
6161622 Robb et al. Dec 2000 A
6167970 Stout et al. Jan 2001 B1
6170583 Boyce Jan 2001 B1
6171359 Levinski et al. Jan 2001 B1
6173779 Smith Jan 2001 B1
6176323 Weirich et al. Jan 2001 B1
6189616 Gano et al. Feb 2001 B1
6189618 Beeman et al. Feb 2001 B1
6213202 Read, Jr. Apr 2001 B1
6220350 Brothers et al. Apr 2001 B1
6220357 Carmichael et al. Apr 2001 B1
6228904 Yadav et al. May 2001 B1
6237688 Burleson et al. May 2001 B1
6238280 Ritt et al. May 2001 B1
6241021 Bowling Jun 2001 B1
6248399 Hehmann Jun 2001 B1
6250392 Muth Jun 2001 B1
6261432 Huber et al. Jul 2001 B1
6265205 Hitchens et al. Jul 2001 B1
6273187 Voisin, Jr. et al. Aug 2001 B1
6276452 Davis et al. Aug 2001 B1
6276457 Moffatt et al. Aug 2001 B1
6279656 Sinclair et al. Aug 2001 B1
6287332 Bolz et al. Sep 2001 B1
6287445 Lashmore et al. Sep 2001 B1
6302205 Ryll Oct 2001 B1
6315041 Carlisle et al. Nov 2001 B1
6315050 Vaynshteyn et al. Nov 2001 B2
6325148 Trahan et al. Dec 2001 B1
6328110 Joubert Dec 2001 B1
6341653 Firmaniuk et al. Jan 2002 B1
6341747 Schmidt et al. Jan 2002 B1
6349766 Bussear et al. Feb 2002 B1
6354372 Carisella et al. Mar 2002 B1
6354379 Miszewski et al. Mar 2002 B2
6357332 Vecchio Mar 2002 B1
6371206 Mills Apr 2002 B1
6372346 Toth Apr 2002 B1
6382244 Vann May 2002 B2
6390195 Nguyen et al. May 2002 B1
6390200 Allamon et al. May 2002 B1
6394180 Berscheidt et al. May 2002 B1
6394185 Constien May 2002 B1
6395402 Lambert et al. May 2002 B1
6397950 Streich et al. Jun 2002 B1
6401547 Hatfield et al. Jun 2002 B1
6403210 Stuivinga et al. Jun 2002 B1
6408946 Marshall et al. Jun 2002 B1
6419023 George et al. Jul 2002 B1
6439313 Thomeer et al. Aug 2002 B1
6446717 White et al. Sep 2002 B1
6457525 Scott Oct 2002 B1
6467546 Allamon et al. Oct 2002 B2
6470965 Winzer Oct 2002 B1
6491097 Oneal et al. Dec 2002 B1
6491116 Berscheidt et al. Dec 2002 B2
6513598 Moore et al. Feb 2003 B2
6513600 Ross Feb 2003 B2
6540033 Sullivan et al. Apr 2003 B1
6543543 Muth Apr 2003 B2
6561275 Glass et al. May 2003 B2
6588507 Dusterhoft et al. Jul 2003 B2
6591915 Burris et al. Jul 2003 B2
6601648 Ebinger Aug 2003 B2
6601650 Sundararajan Aug 2003 B2
6609569 Howlett et al. Aug 2003 B2
6612826 Bauer et al. Sep 2003 B1
6613383 George et al. Sep 2003 B1
6619400 Brunet Sep 2003 B2
6630008 Meeks, III et al. Oct 2003 B1
6634428 Krauss et al. Oct 2003 B2
6662886 Russell Dec 2003 B2
6675889 Mullins et al. Jan 2004 B1
6699305 Myrick Mar 2004 B2
6712153 Turley et al. Mar 2004 B2
6712797 Southern, Jr. Mar 2004 B1
6713177 George et al. Mar 2004 B2
6715541 Pedersen et al. Apr 2004 B2
6719051 Hailey, Jr. et al. Apr 2004 B2
6755249 Robison et al. Jun 2004 B2
6769491 Zimmerman et al. Aug 2004 B2
6776228 Pedersen et al. Aug 2004 B2
6779599 Mullins et al. Aug 2004 B2
6799638 Butterfield, Jr. Oct 2004 B2
6810960 Pia Nov 2004 B2
6817414 Lee Nov 2004 B2
6831044 Constien Dec 2004 B2
6883611 Smith et al. Apr 2005 B2
6887297 Winter et al. May 2005 B2
6896049 Moyes May 2005 B2
6896061 Hriscu et al. May 2005 B2
6899176 Hailey, Jr. et al. May 2005 B2
6899777 Vaidyanathan et al. May 2005 B2
6908516 Hehmann et al. Jun 2005 B2
6913827 George et al. Jul 2005 B2
6926086 Patterson et al. Aug 2005 B2
6932159 Hovem Aug 2005 B2
6939388 Angeliu Sep 2005 B2
6945331 Patel Sep 2005 B2
6951331 Haughom et al. Oct 2005 B2
6959759 Doane et al. Nov 2005 B2
6973970 Johnston et al. Dec 2005 B2
6973973 Howard et al. Dec 2005 B2
6983796 Bayne et al. Jan 2006 B2
6986390 Doane et al. Jan 2006 B2
7013989 Hammond et al. Mar 2006 B2
7013998 Ray et al. Mar 2006 B2
7017664 Walker et al. Mar 2006 B2
7017677 Keshavan et al. Mar 2006 B2
7021389 Bishop et al. Apr 2006 B2
7025146 King et al. Apr 2006 B2
7028778 Krywitsky Apr 2006 B2
7044230 Starr et al. May 2006 B2
7048812 Bettles et al. May 2006 B2
7049272 Sinclair et al. May 2006 B2
7051805 Doane et al. May 2006 B2
7059410 Bousche et al. Jun 2006 B2
7063748 Talton Jun 2006 B2
7090027 Williams Aug 2006 B1
7093664 Todd et al. Aug 2006 B2
7096945 Richards et al. Aug 2006 B2
7096946 Jasser et al. Aug 2006 B2
7097807 Meeks, III et al. Aug 2006 B1
7097906 Gardner Aug 2006 B2
7108080 Tessari et al. Sep 2006 B2
7111682 Blaisdell Sep 2006 B2
7128145 Mickey Oct 2006 B2
7141207 Jandeska, Jr. et al. Nov 2006 B2
7150326 Bishop et al. Dec 2006 B2
7163066 Lehr Jan 2007 B2
7165622 Hirth et al. Jan 2007 B2
7168494 Starr et al. Jan 2007 B2
7174963 Bertelsen Feb 2007 B2
7182135 Szarka Feb 2007 B2
7188559 Vecchio Mar 2007 B1
7210527 Walker et al. May 2007 B2
7210533 Starr et al. May 2007 B2
7217311 Hong et al. May 2007 B2
7234530 Gass Jun 2007 B2
7250188 Dodelet et al. Jul 2007 B2
7252162 Akinlade et al. Aug 2007 B2
7255172 Johnson Aug 2007 B2
7255178 Slup et al. Aug 2007 B2
7264060 Wills Sep 2007 B2
7267172 Hofman Sep 2007 B2
7267178 Krywitsky Sep 2007 B2
7270186 Johnson Sep 2007 B2
7287592 Surjaatmadja et al. Oct 2007 B2
7311152 Howard et al. Dec 2007 B2
7316274 Xu et al. Jan 2008 B2
7320365 Pia Jan 2008 B2
7322412 Badalamenti et al. Jan 2008 B2
7322417 Rytlewski et al. Jan 2008 B2
7325617 Murray Feb 2008 B2
7328750 Swor et al. Feb 2008 B2
7331388 Vilela et al. Feb 2008 B2
7337854 Horn et al. Mar 2008 B2
7346456 Le Bemadjiel Mar 2008 B2
7350582 McKeachnie et al. Apr 2008 B2
7353867 Carter et al. Apr 2008 B2
7353879 Todd et al. Apr 2008 B2
7360593 Constien Apr 2008 B2
7360597 Blaisdell Apr 2008 B2
7363970 Corre et al. Apr 2008 B2
7373978 Barry et al. May 2008 B2
7380600 Willberg et al. Jun 2008 B2
7384443 Mirchandani Jun 2008 B2
7387158 Murray et al. Jun 2008 B2
7387165 Lopez de Cardenas et al. Jun 2008 B2
7392841 Murray et al. Jul 2008 B2
7401648 Richard Jul 2008 B2
7416029 Telfer et al. Aug 2008 B2
7422058 O'Malley Sep 2008 B2
7426964 Lynde et al. Sep 2008 B2
7441596 Wood et al. Oct 2008 B2
7445049 Howard et al. Nov 2008 B2
7451815 Hailey, Jr. Nov 2008 B2
7451817 Reddy et al. Nov 2008 B2
7461699 Richard et al. Dec 2008 B2
7464764 Xu Dec 2008 B2
7472750 Walker et al. Jan 2009 B2
7478676 East, Jr. et al. Jan 2009 B2
7503390 Gomez Mar 2009 B2
7503399 Badalamenti et al. Mar 2009 B2
7509993 Turng et al. Mar 2009 B1
7510018 Williamson et al. Mar 2009 B2
7513311 Gramstad et al. Apr 2009 B2
7516791 Bryant et al. Apr 2009 B2
7527103 Huang et al. May 2009 B2
7537825 Wardle et al. May 2009 B1
7552777 Murray et al. Jun 2009 B2
7552779 Murray Jun 2009 B2
7559357 Clem Jul 2009 B2
7575062 East, Jr. Aug 2009 B2
7579087 Maloney et al. Aug 2009 B2
7591318 Tilghman Sep 2009 B2
7600572 Slup et al. Oct 2009 B2
7604049 Vaidya et al. Oct 2009 B2
7604055 Richard et al. Oct 2009 B2
7607476 Tom et al. Oct 2009 B2
7617871 Surjaatmadja et al. Nov 2009 B2
7635023 Goldberg et al. Dec 2009 B2
7640988 Phi et al. Jan 2010 B2
7661480 Al-Anazi Feb 2010 B2
7661481 Todd et al. Feb 2010 B2
7665537 Patel et al. Feb 2010 B2
7686082 Marsh Mar 2010 B2
7690436 Turley et al. Apr 2010 B2
7699101 Fripp et al. Apr 2010 B2
7703510 Xu Apr 2010 B2
7703511 Buyers et al. Apr 2010 B2
7708078 Stoesz May 2010 B2
7709421 Jones et al. May 2010 B2
7712541 Loretz et al. May 2010 B2
7723272 Crews et al. May 2010 B2
7726406 Xu Jun 2010 B2
7735578 Loehr et al. Jun 2010 B2
7743836 Cook et al. Jun 2010 B2
7752971 Loehr Jul 2010 B2
7757773 Rytlewski Jul 2010 B2
7762342 Richard et al. Jul 2010 B2
7770652 Barnett Aug 2010 B2
7771289 Palumbo et al. Aug 2010 B2
7775284 Richards et al. Aug 2010 B2
7775285 Surjaatmadja et al. Aug 2010 B2
7775286 Duphorne Aug 2010 B2
7784543 Johnson Aug 2010 B2
7793714 Johnson Sep 2010 B2
7793820 Hirano et al. Sep 2010 B2
7798225 Giroux et al. Sep 2010 B2
7798226 Themig Sep 2010 B2
7798236 McKeachnie et al. Sep 2010 B2
7806189 Frazier Oct 2010 B2
7806192 Foster et al. Oct 2010 B2
7810553 Cruickshank et al. Oct 2010 B2
7810567 Daniels et al. Oct 2010 B2
7819198 Birckhead et al. Oct 2010 B2
7828055 Willauer et al. Nov 2010 B2
7833944 Munoz et al. Nov 2010 B2
7849927 Herrera Dec 2010 B2
7851016 Arbab et al. Dec 2010 B2
7855168 Fuller et al. Dec 2010 B2
7861779 Vestavik Jan 2011 B2
7861781 D'Arcy Jan 2011 B2
7874365 East, Jr. et al. Jan 2011 B2
7878253 Stowe et al. Feb 2011 B2
7879367 Heublein et al. Feb 2011 B2
7896091 Williamson et al. Mar 2011 B2
7897063 Perry et al. Mar 2011 B1
7900696 Nish et al. Mar 2011 B1
7900703 Clark et al. Mar 2011 B2
7909096 Clark et al. Mar 2011 B2
7909104 Bjorgum Mar 2011 B2
7909110 Sharma et al. Mar 2011 B2
7909115 Grove et al. Mar 2011 B2
7913765 Crow et al. Mar 2011 B2
7918275 Clem Apr 2011 B2
7931093 Foster et al. Apr 2011 B2
7938191 Vaidya May 2011 B2
7946335 Bewlay et al. May 2011 B2
7946340 Surjaatmadja et al. May 2011 B2
7958940 Jameson Jun 2011 B2
7963331 Surjaatmadja et al. Jun 2011 B2
7963340 Gramstad et al. Jun 2011 B2
7963342 George Jun 2011 B2
7980300 Roberts et al. Jul 2011 B2
7987906 Troy Aug 2011 B1
7992763 Vecchio et al. Aug 2011 B2
8002821 Stinson Aug 2011 B2
8020619 Robertson et al. Sep 2011 B1
8020620 Daniels et al. Sep 2011 B2
8025104 Cooke, Jr. Sep 2011 B2
8028767 Radford et al. Oct 2011 B2
8033331 Themig Oct 2011 B2
8039422 Al-Zahrani Oct 2011 B1
8056628 Whitsitt et al. Nov 2011 B2
8056638 Clayton et al. Nov 2011 B2
8109340 Doane et al. Feb 2012 B2
8114148 Atanasoska et al. Feb 2012 B2
8127856 Nish et al. Mar 2012 B1
8153052 Jackson et al. Apr 2012 B2
8163060 Imanishi et al. Apr 2012 B2
8211247 Marya et al. Jul 2012 B2
8211248 Marya Jul 2012 B2
8226740 Chaumonnot et al. Jul 2012 B2
8230731 Dyer et al. Jul 2012 B2
8231947 Vaidya et al. Jul 2012 B2
8263178 Boulos et al. Sep 2012 B2
8276670 Patel Oct 2012 B2
8277974 Kumar et al. Oct 2012 B2
8297364 Agrawal et al. Oct 2012 B2
8327931 Agrawal et al. Dec 2012 B2
8403037 Agrawal et al. Mar 2013 B2
8425651 Xu et al. Apr 2013 B2
8459347 Stout Jun 2013 B2
8486329 Shikai et al. Jul 2013 B2
8490674 Stevens et al. Jul 2013 B2
8490689 McClinton et al. Jul 2013 B1
8535604 Baker et al. Sep 2013 B1
8631876 Xu et al. Jan 2014 B2
8663401 Marya et al. Mar 2014 B2
8715339 Atanasoska et al. May 2014 B2
8734602 Li et al. May 2014 B2
8905147 Fripp et al. Dec 2014 B2
8978734 Stevens Mar 2015 B2
8998978 Wang Apr 2015 B2
9044397 Choi et al. Jun 2015 B2
9057117 Harrison et al. Jun 2015 B2
9057242 Mazyar et al. Jun 2015 B2
9080098 Xu et al. Jul 2015 B2
9089408 Xu Jul 2015 B2
9119906 Tomantschger et al. Sep 2015 B2
9163467 Gaudette et al. Oct 2015 B2
9211586 Lavernia et al. Dec 2015 B1
9260935 Murphree et al. Feb 2016 B2
20010040180 Wittebrood et al. Nov 2001 A1
20010045285 Russell Nov 2001 A1
20010045288 Allamon et al. Nov 2001 A1
20020000319 Brunet Jan 2002 A1
20020007948 Bayne et al. Jan 2002 A1
20020014268 Vann Feb 2002 A1
20020020527 Kilaas et al. Feb 2002 A1
20020047058 Verhoff et al. Apr 2002 A1
20020066572 Muth Jun 2002 A1
20020092654 Coronado et al. Jul 2002 A1
20020104616 De et al. Aug 2002 A1
20020108756 Harrall et al. Aug 2002 A1
20020136904 Glass et al. Sep 2002 A1
20020139541 Sheffield et al. Oct 2002 A1
20020162661 Krauss et al. Nov 2002 A1
20030019639 MacKay Jan 2003 A1
20030037925 Walker et al. Feb 2003 A1
20030060374 Cooke, Jr. Mar 2003 A1
20030075326 Ebinger Apr 2003 A1
20030104147 Bretschneider Jun 2003 A1
20030111728 Thai et al. Jun 2003 A1
20030127013 Zavitsanos et al. Jul 2003 A1
20030141060 Hailey et al. Jul 2003 A1
20030141061 Hailey et al. Jul 2003 A1
20030141079 Doane et al. Jul 2003 A1
20030150614 Brown et al. Aug 2003 A1
20030155114 Pedersen et al. Aug 2003 A1
20030155115 Pedersen et al. Aug 2003 A1
20030159828 Howard et al. Aug 2003 A1
20030164237 Butterfield Sep 2003 A1
20030183391 Hriscu et al. Oct 2003 A1
20040005483 Lin Jan 2004 A1
20040020832 Richards et al. Feb 2004 A1
20040045723 Slup et al. Mar 2004 A1
20040055758 Brezinski et al. Mar 2004 A1
20040069502 Luke Apr 2004 A1
20040089449 Walton et al. May 2004 A1
20040094297 Malone et al. May 2004 A1
20040154806 Bode et al. Aug 2004 A1
20040159428 Hammond et al. Aug 2004 A1
20040159446 Haugen et al. Aug 2004 A1
20040182583 Doane et al. Sep 2004 A1
20040216868 Owen, Sr. Nov 2004 A1
20040231845 Cooke, Jr. Nov 2004 A1
20040251025 Giroux et al. Dec 2004 A1
20040256109 Johnson Dec 2004 A1
20040256157 Tessari et al. Dec 2004 A1
20040261993 Nguyen Dec 2004 A1
20040261994 Nguyen et al. Dec 2004 A1
20050034876 Doane et al. Feb 2005 A1
20050051329 Blaisdell Mar 2005 A1
20050064247 Sane et al. Mar 2005 A1
20050069449 Jackson et al. Mar 2005 A1
20050074612 Eklund et al. Apr 2005 A1
20050098313 Atkins et al. May 2005 A1
20050102255 Bultman May 2005 A1
20050106316 Rigney et al. May 2005 A1
20050161212 Leismer et al. Jul 2005 A1
20050161224 Starr et al. Jul 2005 A1
20050165149 Chanak et al. Jul 2005 A1
20050194143 Xu et al. Sep 2005 A1
20050205264 Starr et al. Sep 2005 A1
20050205265 Todd et al. Sep 2005 A1
20050205266 Todd et al. Sep 2005 A1
20050235757 De Jonge et al. Oct 2005 A1
20050241824 Burris, II et al. Nov 2005 A1
20050241825 Burris, II et al. Nov 2005 A1
20050257936 Lehr Nov 2005 A1
20050268746 Abkowitz et al. Dec 2005 A1
20050269097 Towler Dec 2005 A1
20050275143 Toth Dec 2005 A1
20050279501 Surjaatmadja et al. Dec 2005 A1
20060012087 Matsuda et al. Jan 2006 A1
20060013350 Akers Jan 2006 A1
20060045787 Jandeska, Jr. et al. Mar 2006 A1
20060057479 Niimi et al. Mar 2006 A1
20060081378 Howard et al. Apr 2006 A1
20060102871 Wang et al. May 2006 A1
20060108114 Johnson et al. May 2006 A1
20060108126 Horn et al. May 2006 A1
20060110615 Karim et al. May 2006 A1
20060116696 Odermatt et al. Jun 2006 A1
20060124310 Lopez de Cardenas Jun 2006 A1
20060124312 Rytlewski et al. Jun 2006 A1
20060131011 Lynde et al. Jun 2006 A1
20060131031 McKeachnie et al. Jun 2006 A1
20060131081 Mirchandani et al. Jun 2006 A1
20060144515 Tada et al. Jul 2006 A1
20060150770 Freim Jul 2006 A1
20060151178 Howard et al. Jul 2006 A1
20060153728 Schoenung et al. Jul 2006 A1
20060162927 Walker et al. Jul 2006 A1
20060169453 Savery et al. Aug 2006 A1
20060186602 Martin et al. Aug 2006 A1
20060207763 Hofman et al. Sep 2006 A1
20060213670 Bishop et al. Sep 2006 A1
20060231253 Vilela et al. Oct 2006 A1
20060269437 Pandey Nov 2006 A1
20060283592 Sierra et al. Dec 2006 A1
20070017674 Blaisdell Jan 2007 A1
20070017675 Hammami et al. Jan 2007 A1
20070029082 Giroux et al. Feb 2007 A1
20070039161 Garcia Feb 2007 A1
20070039741 Hailey Feb 2007 A1
20070044958 Rytlewski et al. Mar 2007 A1
20070044966 Davies et al. Mar 2007 A1
20070051521 Fike et al. Mar 2007 A1
20070053785 Hetz et al. Mar 2007 A1
20070054101 Sigalas et al. Mar 2007 A1
20070057415 Katagiri et al. Mar 2007 A1
20070062644 Nakamura et al. Mar 2007 A1
20070074601 Hong et al. Apr 2007 A1
20070074873 McKeachnie et al. Apr 2007 A1
20070102199 Smith et al. May 2007 A1
20070107899 Werner et al. May 2007 A1
20070107908 Vaidya et al. May 2007 A1
20070108060 Park May 2007 A1
20070119600 Slup et al. May 2007 A1
20070131912 Simone et al. Jun 2007 A1
20070134496 Katagiri et al. Jun 2007 A1
20070151009 Conrad, III et al. Jul 2007 A1
20070151769 Slutz et al. Jul 2007 A1
20070169935 Akbar et al. Jul 2007 A1
20070181224 Marya et al. Aug 2007 A1
20070185655 Le Bemadjiel Aug 2007 A1
20070187095 Walker et al. Aug 2007 A1
20070207182 Weber et al. Sep 2007 A1
20070221373 Murray Sep 2007 A1
20070221384 Murray Sep 2007 A1
20070227745 Roberts et al. Oct 2007 A1
20070259994 Tour et al. Nov 2007 A1
20070261862 Murray Nov 2007 A1
20070270942 Thomas Nov 2007 A1
20070272411 Lopez De Cardenas et al. Nov 2007 A1
20070272413 Rytlewski et al. Nov 2007 A1
20070277979 Todd et al. Dec 2007 A1
20070284109 East et al. Dec 2007 A1
20070284112 Magne et al. Dec 2007 A1
20070299510 Venkatraman et al. Dec 2007 A1
20080011473 Wood et al. Jan 2008 A1
20080020923 Debe et al. Jan 2008 A1
20080047707 Boney et al. Feb 2008 A1
20080060810 Nguyen et al. Mar 2008 A9
20080066923 Xu Mar 2008 A1
20080066924 Xu Mar 2008 A1
20080072705 Chaumonnot et al. Mar 2008 A1
20080078553 George Apr 2008 A1
20080081866 Gong et al. Apr 2008 A1
20080093073 Bustos et al. Apr 2008 A1
20080099209 Loretz et al. May 2008 A1
20080105438 Jordan et al. May 2008 A1
20080115932 Cooke May 2008 A1
20080121390 O'Malley et al. May 2008 A1
20080121436 Slay et al. May 2008 A1
20080127475 Griffo Jun 2008 A1
20080135249 Fripp et al. Jun 2008 A1
20080149325 Crawford Jun 2008 A1
20080149345 Marya et al. Jun 2008 A1
20080149351 Marya et al. Jun 2008 A1
20080169105 Williamson et al. Jul 2008 A1
20080169130 Norman et al. Jul 2008 A1
20080179060 Surjaatmadja et al. Jul 2008 A1
20080179104 Zhang et al. Jul 2008 A1
20080196801 Zhao et al. Aug 2008 A1
20080202764 Clayton et al. Aug 2008 A1
20080202814 Lyons et al. Aug 2008 A1
20080210473 Zhang et al. Sep 2008 A1
20080216383 Pierick et al. Sep 2008 A1
20080223586 Barnett Sep 2008 A1
20080223587 Cherewyk Sep 2008 A1
20080236829 Lynde Oct 2008 A1
20080236842 Bhavsar et al. Oct 2008 A1
20080248205 Blanchet et al. Oct 2008 A1
20080248413 Ishii et al. Oct 2008 A1
20080264205 Zeng et al. Oct 2008 A1
20080264594 Lohmueller et al. Oct 2008 A1
20080277109 Vaidya Nov 2008 A1
20080277980 Koda et al. Nov 2008 A1
20080282924 Saenger et al. Nov 2008 A1
20080296024 Huang et al. Dec 2008 A1
20080302538 Hofman Dec 2008 A1
20080314581 Brown Dec 2008 A1
20080314588 Langlais et al. Dec 2008 A1
20090038858 Griffo et al. Feb 2009 A1
20090044946 Schasteen et al. Feb 2009 A1
20090044949 King et al. Feb 2009 A1
20090050334 Marya et al. Feb 2009 A1
20090056934 Xu Mar 2009 A1
20090065216 Frazier Mar 2009 A1
20090074603 Chan et al. Mar 2009 A1
20090084553 Rytlewski et al. Apr 2009 A1
20090084556 Richards et al. Apr 2009 A1
20090084600 Severance Apr 2009 A1
20090090440 Kellett Apr 2009 A1
20090107684 Cooke, Jr. Apr 2009 A1
20090114381 Stroobants May 2009 A1
20090114382 Grove et al. May 2009 A1
20090126436 Fly et al. May 2009 A1
20090145666 Radford et al. Jun 2009 A1
20090151949 Marya et al. Jun 2009 A1
20090152009 Slay et al. Jun 2009 A1
20090155616 Thamida Jun 2009 A1
20090159289 Avant et al. Jun 2009 A1
20090178808 Williamson et al. Jul 2009 A1
20090194273 Surjaatmadja et al. Aug 2009 A1
20090205841 Kluge et al. Aug 2009 A1
20090211770 Nutley et al. Aug 2009 A1
20090226340 Marya Sep 2009 A1
20090226704 Kauppinen et al. Sep 2009 A1
20090242202 Rispler et al. Oct 2009 A1
20090242208 Bolding Oct 2009 A1
20090242214 Foster et al. Oct 2009 A1
20090255667 Clem et al. Oct 2009 A1
20090255684 Bolding Oct 2009 A1
20090255686 Richard et al. Oct 2009 A1
20090260817 Gambier et al. Oct 2009 A1
20090266548 Olsen et al. Oct 2009 A1
20090272544 Giroux et al. Nov 2009 A1
20090283270 Langeslag Nov 2009 A1
20090293672 Mirchandani Dec 2009 A1
20090301730 Gweily Dec 2009 A1
20090305131 Kumar et al. Dec 2009 A1
20090308588 Howell et al. Dec 2009 A1
20090317556 MacAry Dec 2009 A1
20090317622 Huang et al. Dec 2009 A1
20100003536 Smith et al. Jan 2010 A1
20100012385 Drivdahl et al. Jan 2010 A1
20100015002 Barrera et al. Jan 2010 A1
20100015469 Romanowski Jan 2010 A1
20100025255 Su et al. Feb 2010 A1
20100032151 Duphorne Feb 2010 A1
20100034857 Launag et al. Feb 2010 A1
20100038076 Spray et al. Feb 2010 A1
20100038595 Imholt et al. Feb 2010 A1
20100040180 Kim et al. Feb 2010 A1
20100044041 Smith et al. Feb 2010 A1
20100051278 Mytopher et al. Mar 2010 A1
20100055491 Vecchio et al. Mar 2010 A1
20100055492 Barsoum et al. Mar 2010 A1
20100089583 Xu et al. Apr 2010 A1
20100089587 Stout Apr 2010 A1
20100101803 Clayton et al. Apr 2010 A1
20100116495 Spray May 2010 A1
20100122817 Surjaatmadja et al. May 2010 A1
20100139930 Patel et al. Jun 2010 A1
20100200230 East, Jr. et al. Aug 2010 A1
20100209288 Marya Aug 2010 A1
20100236793 Bjorgum Sep 2010 A1
20100236794 Duan et al. Sep 2010 A1
20100243254 Murphy et al. Sep 2010 A1
20100252273 Duphorne Oct 2010 A1
20100252280 Swor et al. Oct 2010 A1
20100270031 Patel Oct 2010 A1
20100276136 Evans et al. Nov 2010 A1
20100276159 Mailand et al. Nov 2010 A1
20100282338 Gerrard et al. Nov 2010 A1
20100282469 Richard et al. Nov 2010 A1
20100294510 Holmes Nov 2010 A1
20100297432 Sherman et al. Nov 2010 A1
20100304182 Facchini et al. Dec 2010 A1
20100314105 Rose Dec 2010 A1
20100314126 Kellner Dec 2010 A1
20100319427 Lohbeck Dec 2010 A1
20100319870 Bewlay et al. Dec 2010 A1
20100326650 Tran et al. Dec 2010 A1
20110005773 Dusterhoft et al. Jan 2011 A1
20110036592 Fay Feb 2011 A1
20110048743 Stafford et al. Mar 2011 A1
20110052805 Bordere et al. Mar 2011 A1
20110056692 Lopez de Cardenas et al. Mar 2011 A1
20110056702 Sharma et al. Mar 2011 A1
20110067872 Agrawal Mar 2011 A1
20110067889 Marya et al. Mar 2011 A1
20110067890 Themig Mar 2011 A1
20110094406 Marya et al. Apr 2011 A1
20110100643 Themig et al. May 2011 A1
20110127044 Radford et al. Jun 2011 A1
20110132143 Xu et al. Jun 2011 A1
20110132612 Agrawal et al. Jun 2011 A1
20110132619 Agrawal et al. Jun 2011 A1
20110132620 Agrawal et al. Jun 2011 A1
20110132621 Agrawal et al. Jun 2011 A1
20110135530 Xu et al. Jun 2011 A1
20110135805 Doucet et al. Jun 2011 A1
20110135953 Xu et al. Jun 2011 A1
20110136707 Xu et al. Jun 2011 A1
20110139465 Tibbles et al. Jun 2011 A1
20110147014 Chen et al. Jun 2011 A1
20110186306 Marya et al. Aug 2011 A1
20110214881 Newton Sep 2011 A1
20110247833 Todd et al. Oct 2011 A1
20110253387 Ervin Oct 2011 A1
20110259610 Shkurti et al. Oct 2011 A1
20110277987 Frazier Nov 2011 A1
20110277989 Frazier Nov 2011 A1
20110284232 Huang Nov 2011 A1
20110284240 Chen Nov 2011 A1
20110284243 Frazier Nov 2011 A1
20110300403 Vecchio et al. Dec 2011 A1
20110314881 Hatcher et al. Dec 2011 A1
20120024109 Xu et al. Feb 2012 A1
20120046732 Sillekens et al. Feb 2012 A1
20120067426 Soni et al. Mar 2012 A1
20120090839 Rudic Apr 2012 A1
20120103135 Xu et al. May 2012 A1
20120107590 Xu et al. May 2012 A1
20120118583 Johnson et al. May 2012 A1
20120130470 Agnew May 2012 A1
20120145389 Fitzpatrick, Jr. Jun 2012 A1
20120168152 Casciaro Jul 2012 A1
20120177905 Seals et al. Jul 2012 A1
20120205120 Howell Aug 2012 A1
20120205872 Reinhardt et al. Aug 2012 A1
20120211239 Kritzler et al. Aug 2012 A1
20120234546 Xu et al. Sep 2012 A1
20120234547 O'Malley et al. Sep 2012 A1
20120269673 Koo et al. Oct 2012 A1
20120292053 Xu Nov 2012 A1
20120318513 Mazyar et al. Dec 2012 A1
20130004847 Kumar et al. Jan 2013 A1
20130008671 Booth et al. Jan 2013 A1
20130025409 Xu Jan 2013 A1
20130032357 Mazyar et al. Feb 2013 A1
20130048304 Agrawal Feb 2013 A1
20130048305 Xu et al. Feb 2013 A1
20130052472 Xu Feb 2013 A1
20130068461 Maerz et al. Mar 2013 A1
20130081814 Gaudette et al. Apr 2013 A1
20130084643 Commarieu et al. Apr 2013 A1
20130105159 Alvarez et al. May 2013 A1
20130126190 Mazyar et al. May 2013 A1
20130133897 Baihly et al. May 2013 A1
20130144290 Schiffl et al. Jun 2013 A1
20130146144 Joseph et al. Jun 2013 A1
20130146302 Gaudette et al. Jun 2013 A1
20130168257 Mazyar et al. Jul 2013 A1
20130186626 Aitken et al. Jul 2013 A1
20130240200 Frazier Sep 2013 A1
20130240203 Frazier Sep 2013 A1
20130299185 Xu et al. Nov 2013 A1
20130299192 Xu et al. Nov 2013 A1
20130300066 Xu et al. Nov 2013 A1
20130310961 Intriago Velez Nov 2013 A1
20130319668 Tschetter et al. Dec 2013 A1
20130327540 Hamid et al. Dec 2013 A1
20140014339 O'Malley et al. Jan 2014 A1
20140020712 Benson Jan 2014 A1
20140027128 Johnson et al. Jan 2014 A1
20140060834 Quintero et al. Mar 2014 A1
20140116711 Tang et al. May 2014 A1
20140124216 Fripp et al. May 2014 A1
20140154341 Manuel et al. Jun 2014 A1
20140186207 Bae et al. Jul 2014 A1
20140190705 Fripp et al. Jul 2014 A1
20140196899 Jordan et al. Jul 2014 A1
20140224507 Fripp et al. Aug 2014 A1
20140262327 Xu et al. Sep 2014 A1
20140284063 Fripp et al. Sep 2014 A1
20140332231 Themig et al. Nov 2014 A1
20140360728 Tashiro et al. Dec 2014 A1
20150060085 Xu Mar 2015 A1
20150093589 Mazyar et al. Apr 2015 A1
20150240337 Sherman et al. Aug 2015 A1
20150299838 Doud et al. Oct 2015 A1
20160209391 Zhang et al. Jul 2016 A1
20160258242 Hayter et al. Sep 2016 A1
Foreign Referenced Citations (55)
Number Date Country
2783346 Jun 2011 CA
2658384 Nov 2004 CN
101050417 Oct 2007 CN
101457321 Jun 2009 CN
008390 Apr 2007 EA
200870227 Feb 2009 EA
0033625 Aug 1981 EP
1174385 Jan 2002 EP
1798301 Aug 2006 EP
1857570 Nov 2007 EP
2782096 Feb 2000 FR
912956 Dec 1962 GB
1046330 Oct 1966 GB
1280833 Jul 1972 GB
1357065 Jun 1974 GB
61067770 Apr 1986 JP
7054008 Feb 1995 JP
8232029 Sep 1996 JP
2000073152 Mar 2000 JP
2000185725 Jul 2000 JP
2002053902 Feb 2002 JP
2004154837 Jun 2004 JP
2004225084 Aug 2004 JP
2004225765 Aug 2004 JP
2005076052 Mar 2005 JP
2009144207 Jul 2009 JP
2010502840 Jan 2010 JP
950014350 Nov 1995 KR
9111587 Aug 1991 WO
9909227 Feb 1999 WO
9947726 Sep 1999 WO
03008186 Jan 2003 WO
2004001087 Dec 2003 WO
2004073889 Sep 2004 WO
2007044635 Apr 2007 WO
2007095376 Aug 2007 WO
2008017156 Feb 2008 WO
2008034042 Mar 2008 WO
2008057045 May 2008 WO
2008079485 Jul 2008 WO
2008079777 Jul 2008 WO
2008142129 Nov 2008 WO
2009079745 Jul 2009 WO
2010012184 Feb 2010 WO
2010083826 Jul 2010 WO
2011071902 Jun 2011 WO
2012071449 May 2012 WO
2012164236 Dec 2012 WO
2012175665 Dec 2012 WO
2013053057 Apr 2013 WO
2013078031 May 2013 WO
2014121384 Aug 2014 WO
2015171585 Nov 2015 WO
2016032493 Mar 2016 WO
2016085798 Jun 2016 WO
Non-Patent Literature Citations (158)
Entry
International Search Report for Application No. PCT/US2012/044229, International Filing Date Jun. 26, 2012; Issued Jan. 30, 2013. (3 pages).
Murry, J. L. “Binary Alloy Phase Diagrams” Int. Met. Rev., 30(5) 1985 vol. 1, pp. 103-187.
Shigematsu, I. et al. “Surface treatment of AZ91D magnesium alloy by aluminum diffusion coating” Journal of Materials Science Letters 19 (2000) 473-475.
Song, G. et al. “Understanding Magnesium Corrosion” Advanced Engineering Materials 2003, 5, No. 12. pp. 837-858.
Patent Cooperation Treaty International Search Report and Written Opinion for International Patent Application No. PCT/US2012/034978 filed on Apr. 25, 2012, mailed on Nov. 12, 2012. (9 Pages).
“Declaration of Karl T. Hartwig in Support of Petitioner Pursuant to 37 C.F.R. § 42.120”, executed on Nov. 21, 2016 in support of U.S. Pat. No. 8,573,295, 52 pages.
EP Search Report, PCT/US2012049434; Application No. EP 12823958; Date: Jun. 15, 2016; 9 pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration; PCT/US2016/015948; Mail Date: May 3, 2016: 10 pages.
Wang, et al. “Laser claddling of eutectic-based Ti—Ni—Al alloy coating on magnesium surface”, Surface & Coatings Technology 205 (2010); pp. 189-194.
Yue, et al. “Laser cladding of Ni/Cu/Al functionally graded coating on magnesium substrate”, Surface & Coatings Technology 202 (2008); pp. 3043-3049.
Yue, et al. Microstructure and Phase Evolution in Laser Cladding of Ni/Cu/Al Multilayer on Magnesium Substrates; Metallurgical and Materials Transactions A, vol. 41A, Jan. 2010; pp. 212-223.
“Declaration of Karl T. Hartwig in Support of Petitioner Pursuant to 37 C.F.R. § 42.120”, executed on Nov. 21, 2016 in support of U.S. Pat. No. 9,101,978, 51 pages.
Callister, Jr., William D., Materials Science and Engineering an Introduction, Seventh Edition, 2006, pp. 111, 627, and G7.
Klar, Erhard, ASM Handbook: International Metals Handbook—Powder Metallurgy, vol. 7, 1997, pp. 14, 276, and 798.
Nie, “Patents of Methods to Prepare Intermetallic Matrix Composites: A Review”, Recent Patents on Materials Science 2008, vol. 1, pp. 232-240.
Pardo, et al.; “Corrosion Behaviour of Magnesium/Aluminium Alloys in 3.5 wt% NaC1”; Corrosion Science; 50; pp. 823-834; (2008).
Quik Drill Composite Frac Plug; Baker Hughes, Baker Oil Tools; Copyright 2002; 3 pages.
Reid, Gary Carl, “Literature evaluation of induced groundwater tracers, field tracer techniques, and hydrodynamic dispersion values in porous media”, Theisis in Geosciences (Masters), Texas Tech University, Aug. 1981, 109 pages.
Rose, et al.; “The application of the polyaromatic sulfonates as tracers in geothermal reservoirs”, Geothermics 30 (2001) pp. 617-640.
Saravanan et al, “Mechanically Alloyed Carbon Nanotubes (CNT) Reinforced Nanocrystalline AA 4032: Synthesis and Characterization”, Journal of Minerals and Materials Characterization and Engineering, vol. 9, No. 11 pp. 1027-1035 2010.
Schaffer, J.P. et al., The Science and Design of Engineering Materials, Second Edition, 1999, pp. 122, 123, 698, 699.
Seyni, et al., “On the interest of using degradable fillers in co-ground composite materials”, Powder Technology 190, (2009) pp. 176-184.
Shaw, “Benefits and Application of a Surface-Controlled Sliding Sleeve for Fracturing Operations”; Society of Petroleum Engineers, SPE Paper No. 147546; Oct. 30, 2011; 8 pages.
Shi, et al.; “Influence of the Beta Phase on the Corrosion Performance of Anodised Coatings on Magnesium-Aluminium Alloys”; Corrosion Science; 47; pp. 2760-2777; (2005).
Shimizu, et al., “Multi-walled carbon nanotube-reinforced magnesium alloy composites”, Scripta Materialia, vol. 58, Issue 4, Feb. 2008, pp. 267-270.
Shumbera, et al. “Improved Water Injector Performance in a Gulf of Mexico Deepwater Development Using an Openhole Frac Pack Completion and Downhole Filter System: Case History.” SPE Annual Technical Conference and Exhibition, Oct. 5-8, 2003.
Singh, et al., “Extended Homogeneity Range of Intermetallic Phases in Mechanically Alloyed Mg—Al Alloys”, Elsevier Sciences Ltd., Intemetallics 11, 2003, pp. 373-376.
Song, “Recent Progress in Corrosion and Protection of Magnesium Alloys”; Advanced Engineering Materials; 7(7); pp. 563-586; (2005).
Song, et al.; “A Possible Biodegradable Magnesium Implant Material,” Advanced Engineering Materials, vol. 9, Issue 4, Apr. 2007, pp. 298-302.
Song, et al.; “Corrosion Behaviour of AZ21, AZ501 and AZ91 in Sodium Chloride”; Corrosion Science; 40(10); pp. 1769-1791; (1998).
Song, et al.; “Corrosion Mechanisms of Magnesium Alloys”; Advanced Engineering Materials; 1(1); pp. 11-33; (1999).
Song, et al.; “Influence of Microstructure on the Corrosion of Diecast AZ91D”; Corrosion Science; 41; pp. 249-273; (1999).
Spencer et al., “Fluidized Bed Polymer Particle ALD Process for Producing HDPE/Alumina Nanocomposites”, The 12th International Conference on Fluidization—New Horizons in Fluidization Engineering, vol. RP4 (2007).
Stanley, et al.; “An Introduction to Ground-Water Tracers”, Department of Hydrology and Water Resources, University of Arizona, Mar. 1985, pp. 1-219.
Sun, et al.; “Colloidal Processing of Carbon Nanotube/Alumina Composites” Chem. Mater. 2002, 14, pp. 5169-5172.
Triolo et al., “Resolving the Completion Engineer's Dilemma: Permanent or Retrievable Packer?”; Society of Petroleum Engineers, SPE Paper No. 76711; May 20, 2002; 16 pages.
Tsipas et al. “Effect of High Energy Ball Milling on Titanium-Hydroxyapatite Powders” Powder Metallurgy, Maney Publishing, London, GB, vol. 46, No. 1, Mar. 2003 (Mar. 2003), pp. 73-77.
Vahlas, et al., “Principles and Applications of CVD Powder Technology”, Materials Science and Engineering R 53 (2006) pp. 1-72.
Vernon Constien et al., “Development of Reactive Coatings to Protect Sand-Control Screens”, SPE 112494, Copyright 2008, Society of Petroleum Engineers, Presented at the 2008 SPE International Symposium and Exhibition on Formation Damage Control.
Vickery, et al.; “New One-Trip Multi-Zone Frac Pack System with Positive Positioning.” European Petroleum Conference, Oct. 29-31, 2002, Aberdeen, UK. [Abstract Only].
Walters, et al.; “A Study of Jets from Unsintered-Powder Metal Lined Nonprecision Small-Caliber Shaped Charges”, Army Research Laboratory, Aberdeen Proving Ground, MD 21005-5066; Feb. 2001.
Wang, et al., “Contact-Damage-Resistant Ceramic/Single-Wall Carbon Nanotubes and Ceramic/Graphite Composites” Nature Materials, vol. 3, Aug. 2004, pp. 539-544.
Watanabe, et al., “Superplastic Deformation Mechanism in Powder Metallurgy Magnesium Alloys and Composites”, Acta mater. 49 (2001) pp. 2027-2037.
Watarai, Trend of research and development for magnesium alloys—reducing the weight of structural materials in motor vehicles, (2006) Science and technology trends, Quaterly review No. 18, 84-97.
Welch et al., “Nonelastomeric Sliding Sleeve Maintains Long Term Integrity in HP/HT Application: Case Histories” [Abstract Only], SPE Eastern Regional Meeting, Oct. 23-25, 1996, Columbus. Ohio.
Xie, Guoqiang et al., “TEM Observation of Interfaces between Particles in Al—Mg Alloy Powder Compacts Prepared by Pulse Electric Current Sintering”, Materials Transactions, 2002, pp. 2177-2180, vol. 43—No. 9.
Xu, et al., “Nanostructured Material-Based Completion Tools Enhance Well Productivity”; International Petroleum Technology Conference; Conference Paper IPTC 16538; International Petroleum Technology Conference 2013; 4 pages.
Zemel, “Tracers in the Oil Field”, University of Texas at Austin, Center for Petroleum and Geosystems, Jan. 1995, Chapters 1, 2, 3, 7.
Zeng, et al. “Progress and Challenge for Magnesium Alloys as Biomaterials,” Advanced Engineering Materials, vol. 10, Issue 8, Aug. 2008, pp. B3-B14.
Zhan, et al., “Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites” Nature Materials, vol. 2., Jan. 2003, pp. 38-42.
Zhang, et al.; “Formation of metal nanowires on suspended single-walled carbon nanotubes” Applied Physics Letter, vol. 77, No. 19 (2000), pp. 3015-3017.
Zhang, et al.; “High Strength Nanostructured Materials and Their Oil Field Applications”; Society of Petroleum Engineers; Conference Paper SPE 157092; SPE International Oilfield Nanotechnology Conference, 2012; 6 pages.
Zhang, et al.; “Metal Coating on Suspended Carbon Nanotubes and its Implication to Metal—Tube Interaction”, Chemical Physics Letters 331 (2000) 35-41.
Zhang, et al.; “Study on the Environmentally Friendly Anodizing of AZ91D Magnesium Alloy”; Surface and Coatings Technology 161; pp. 36-43; (2002).
Zhu et al., “The process of coating on ultrafine particles by surface hydrolysis reaction in a fluidized bed reactor”, Surface and Coatings Technology 135 (2000) 14-17.
German, Randall M., Powder Metallurgy Science, Second Edition, 1994, 102 pages.
Petition for Inter Partes Review; Case No. IPR2017-00326; U.S. Pat. No. 9,101,978; Nov. 23, 2016; 46 pages.
Petition for Inter Partes Review; Case No. IPR2017-00327; U.S. Pat. No. 8,573,295; Nov. 23, 2016; 53 pages.
Hsiao, et al., “Anodization of AZ91D Magnesium Alloy in Silicate-Containing Electrolytes”; Surface & Coatings Technology; 199; pp. 127-134; (2005).
Hsiao, et al., “Baking Treatment Effect on Materials Characteristics and Electrochemical Behavior of anodic Film Formed on AZ91D Magnesium Alloy”; Corrosion Science; 49; pp. 781-793; (2007).
Hsiao, et al., “Characterization of Anodic Films Formed on AZ91D Magnesium Alloy”; Surface & Coatings Technology; 190; pp. 299-308; (2005).
Hsiao, et al., “Effect of Heat Treatment on Anodization and Electrochemical Behavior of AZ91D Magnesium Alloy”; J. Mater. Res.; 20(10); pp. 2763-2771;(2005).
Huo et al.; “Corrosion of AZ91D Magnesium Alloy with a Chemical Conversion Coating and Electroless Nickel Layer”; Corrosion Science: 46; pp. 1467-1477; (2004).
International Search Report and Written Opinion, International Application No. PCT/US2016/041849, Date of Mailing Oct. 26, 2016, Korean Intellectual Property Office; International Search Report 5 pages, Written Opinion 7 pages.
International Search Report and Written Opinion; International Application No. PCT/US2010/057763; International Filing Date: Nov. 23, 2010; Date of Mailing: Jul. 28, 2011; 10 pages.
International Search Report and Written Opinion; International Application No. PCT/US2010/059257; International Filing Date: Dec. 7, 2010; Date of Mailing: Jul. 27, 2011; 8 pages.
International Search Report and Written Opinion; International Application No. PCT/US2010/059259; International Filing Date: Dec. 7, 2010; Date of Mailing: Jun. 13, 2011; 8 pages.
International Search Report and Written Opinion; International Application No. PCT/US2010/059263; International Filing Date: Dec. 7, 2010; Date of Mailing: Jul. 8, 2011; 9 pages.
International Search Report and Written Opinion; International Application No. PCT/US2010/059265; International Filing Date: Dec. 7, 2010; Date of Mailing: Jun. 16, 2011; 8 pages.
International Search Report and Written Opinion; International Application No. PCT/US2010/059268; International Filing Date: Dec. 7, 2010; Date of Mailing: Jun. 17, 2011; 8 pages.
International Search Report and Written Opinion; International Application No. PCT/US2011/043036; International Filing Date: Jul. 6, 2011; Date of Mailing: Feb. 23, 2012; 9 pages.
International Search Report and Written Opinion; International Application No. PCT/US2011/047000; International Filing Date: Aug. 9, 2011; Date of Mailing: Dec. 26, 2011; 8 pages.
International Search Report and Written Opinion; International Application No. PCT/US2011/058099; International Filing Date: Oct. 27, 2011; Date of Mailing: May 11, 2012; 12 pages.
International Search Report and Written Opinion; International Application No. PCT/US2011/058105; International Filing Date: Oct. 27, 2011; Date of Mailing: May 1, 2012; 8 pages.
International Search Report and Written Opinion; International Application No. PCT/US2012/034973; International Filing Date: Apr. 25, 2012; Date of Mailing: Nov. 29, 2012; 8 pages.
International Search Report and Written Opinion; International Application No. PCT/US2012/038622; International Filing Date: May 18, 2012; Date of Mailing: Dec. 6, 2012; 12 pages.
International Search Report and Written Opinion; International Application No. PCT/US2012/044866; International Filing Date: Jun. 29, 2012; Date of Mailing: Jan. 2, 2013; 9 pages.
International Search Report and Written Opinion; International Application No. PCT/US2012/046231; International Filing Date: Jul. 11, 2012; Date of Mailing: Jan. 29, 2013; 9 pages.
International Search Report and Written Opinion; International Application No. PCT/US2012/047163; International Filing Date: Jul. 18, 2012; Date of Mailing Feb. 26, 2013; 12 pages.
International Search Report and Written Opinion; International Application No. PCT/US2012/049434; International Filing Date: Aug. 3, 2012; Date of Mailing: Feb. 1, 2013; 7 pages.
International Search Report and Written Opinion; International Application No. PCT/US2012/052836; International Filing Date: Aug. 29, 2012; Date of Mailing Feb. 1, 2013; 9 pages.
International Search Report and Written Opinion; International Application No. PCT/US2012/053339; International Filing Date: Aug. 31, 2012; Date of Mailing: Feb. 15, 2013; 11 pages.
International Search Report and Written Opinion; International Application No. PCT/US2012/053342; International Filing Date: Aug. 31, 2012; Date of Mailing: Feb. 19, 2013; 9 pages.
International Search Report and Written Opinion; International Application No. PCT/US2012/053350; International Filing Date: Aug. 31, 2012; Date of Mailing: Feb. 25, 2013; 10 pages.
International Search Report and Written Opinion; International Application No. PCT/US2012/071742; International Filing Date: Dec. 27, 2012; Date of Mailing: Apr. 22, 2013; 12 pages.
International Search Report and Written Opinion; International Application No. PCT/US2013/020046; International Filing Date: Jan. 3, 2013; Date of Mailing: Apr. 10, 2013; 7 pages.
International Search Report and Written Opinion; International Application No. PCT/US2013/050475; International Filing Date: Jul. 15, 2013; Date of Mailing: Oct. 10, 2013; 12 pages.
International Search Report and Written Opinion; International Application No. PCT/US2014/010862; International Filing Date: Jan. 9, 2014; Date of Mailing: Apr. 21, 2014; 9 pages.
International Search Report and Written Opinion; International Application No. PCT/US2014/049347; International Filing Date: Aug. 1, 2014; Date of Mailing: Nov. 24, 2014; 11 pages.
International Search Report and Written Opinion; International Application No. PCT/US2014/054720; International Filing Date: Sep. 9, 2014; Date of Mailing: Dec. 17, 2014; 10 pages.
International Search Report and Written Opinion; International Application No. PCT/US2014/058997, International Filing Date: Oct. 3, 2014; Date of Mailing: Jan. 12, 2015; 12 pages.
International Search Report and Written Opinion; International Application No. PCT/US2015/066353; International Filing Date: Dec. 17, 2015; Date of Mailing: Apr. 1, 2016; 14 pages.
International Search Report for related PCT Application No. PCT/US2013/035258, dated Jul. 4, 2013, pp. 1-4.
International Search Report for related PCT Application No. PCT/US2013/035261, dated Jul. 10, 2013, pp. 1-4.
International Search Report for related PCT Application No. PCT/US2013/035262, dated Jul. 1, 2013, pp. 1-4.
International Search Report for related PCT Application No. PCT/US2013/068062, dated Feb. 12, 2014, pp. 1-3.
Kuzumaki, et al.; “Mechanical Characteristics and Preparation of Carbon Nanotube Fiber-Reinforced Ti Composite”, Advanced Engineering Materials, 2000, 2, No. 7.
Lavernia et al., “Cryomilled Nanostructured Materials: Processing and Properties”, Materials Science and Engineering A, 493, (2008) pp. 207-214.
Lee, et al., “Effects of Ni addition on hydrogen storage properties of Mg17AL12 alloy”, Materials Chemistry and Physics, 2011, 126, pp. 319-324.
Li, “Design of Abrasive Water Jet Perforation and Hydraulic Fracturing Tool,” Oil Field Equipment, Mar. 2011.
Li, et al., “Investigation of aluminium-based nancompsoites with ultra-high strength”, Materials Science and Engineering A, 527, pp. 305-316, (2009).
Lin et al., “Processing and Microstructure of Nano-Mo/Al2O3 Composites from MOCVD and Fluidized Bed”, Nanostructured Materials, Nov. 1999, vol. 11, No. 8, pp. 1361-1377.
Liu, et al., “Calculated Phase Diagrams and the Corrosion of Die-Cast Mg—Al Alloys”, Corrosion Science, 2009, 51, 606-619.
Liu, et al.; “Electroless Nickel Plating on AZ91 Mg Alloy Substrate”; Surface & Coatings Technology; 200; pp. 5087-5093; (2006).
Lunder, et al.; “The Role of Mg17Al12 Phase in the Corrosion of Mg Alloy AZ91”; Corrosion; 45(9); pp. 741-748; (1989).
Maisano, “Cryomilling of Aluminum-Based and Magnesium-Based Metal Powders”, Thesis, Virginia Tech, Jan. 13, 2006.
Majumdar, et al., “Laser Surface Engineering of a Magnesium Alloy with Al + Al2O3”, Surface and Coatings Technology 179 (2004) pp. 297-305.
Mathis, “Sand Management: A Review of Approaches and Concerns”, Society of Petroleum Engineers, SPE Paper No. 82240, SPE European Formation Damage Conference, The Hague, The Netherlands, May 13-14, 2003.
“Baker Hughes Refines Expandable Tubular Technology with Abaqus and Isight”, Simulia Realistic Simulation News, Jan./Feb. 2011, pp. 12-13.
“Optisleeve Sliding Sleeve”, [online]; [retrieved on Jun. 25, 2010]; retrieved from the Internet weatherford.com/weatherford/groups/.../weatherfordcorp/WFT033159.pdf.
“Reactivity series”, Wikipedia, http://en.wikipedia.org/w/index.php?title=Reactivity—series&printable=yes downloaded on May 18, 2014. 8 pages.
“Sliding Sleeve”, Omega Completion Technology Ltd, Sep. 29, 2009, retrieved on: www.omega-completion.com.
Adams, et al.; “Thermal stabilities of aromatic acids as geothermal tracers”, Geothermics, vol. 21, No. 3, 1992, pp. 323-339.
Ambat, et al., “Electroless Nickel-Plating on AZ91D Magnesium Alloy: Effect of Substrate Microstructure and Plating Parameters”; Surface and Coatings Technology; 179; pp. 124-134; (2004).
Aviles et al, “Degradable Alternative to Risky Mill-Out Operations in Plug and Perf”; SPE-173695-MS; Society of Petroleum Engineers; SPE/ICOTA Coiled Tubing & Well Intervention Conference & Exhibition; Mar. 24-25, 2015; 10 Pages.
Ayman, et al.; “Effect of Consolidation and Extrusion Temperatures on Tensile Properties of Hot Extruded ZK61 Magnesium Alloy Gas Atomized Powders via Spark Plasma Sintering”, Transactions of JWRI, vol. 38 (2009), No. 2, pp. 1-5.
Baker Hughes Incorporated. IN-Tallic Disintegrating Frac Balls. Houston: Baker Hughes Incorporated, 2011. Accessed Mar. 6, 2015.
Baker Hughes, “Flow Control Systems,” [online]; [retrieved on May 20, 2010]; retrieved from the Internet http://www.bakerhughes.com/products-and-services/completions-and-productions/well-completions/packers-and-flow-control/flow-control-systems.
Baker Hughes, “Multistage”, Oct. 31, 2011, BakerHughes.com; accessed Mar. 6, 2015.
Baker Oil Tools, “Baker Oil Tools Introduces Revolutionary Sand Control Completion Technology,” May 2, 2005.
Baker Oil Tools, “Z-Seal Metal-to-Metal Expandable Sealing Device Uses Expanding Metal in Place of Elastomers,” Nov. 6, 2006.
Bakshi et al., “Carbon nanotube reinforced metal matrix composites—a review,” International Materials Reviews; 2010, pp. 41-64, vol. 55, No. 1.
Bastow, et al., “Clustering and formation of nano-precipitates in dilute aluminum and magnesium alloys”, Materials Science and Engineering, 2003, C23, 757-762.
Bercegeay, et al., “A One-Trip Gravel Packing System”; Society of Petroleum Engineers, Offshort Technology Conference, SPE Paper No. 4771; Feb. 7-8, 1974.
Bin et al., “Advances in Fluidization CVD Technology”, East China University of Chemical Technology, China Academic Journal Electronic Publishing House, vol. 13, No. 4, Nov. 1992, pp. 360-365, English Abstract on p. 366.
Birbilis, et al., “Exploring Corrosion Protection of Mg Via Ionic Liquid Pretreatment”, Surface & Coatings Technology; 201, pp. 4496-4504, (2007).
Bououdina, et al., “Comparative Study of Mechanical Alloying of (Mg+Al) and (Mg+Al+Ni) Mixtures for Hydrogen Storage”, J. Alloys, Compds, 2002, 336, 222-231.
Bybee, “One-Trip Completion System Eliminates Perforations,” Completions Today, Sep. 2007, pp. 52-53.
Carrejo, et al., “Improving Flow Assurance in Multi-Zone Fracturing Treatments in Hydrocarbon Reservoirs with High Strength Corrodible Tripping Balls”; Society of Petroleum Engineers; SPE Paper No. 151613; Apr. 16, 2012; 6 pages.
Chang, et al., “Electrodeposition of Aluminum on Magnesium Alloy in Aluminum Chloride (A1C13)-1-ethyl-3-methylimidazolium chloride (EMIC) Ionic Liquid and Its Corrosion Behavior”; Electrochemistry Communications; 9; pp. 1602-1606; (2007).
Christoglou, et al., “Deposition of Aluminum on Magnesium by a CVD Process”, Surface and Coatings Technology 184 (2004) 149-155.
Chuan-Jun et al., “Study on Corrosion Kinetics of Mg—Ni alloys”, Journal of Kunming University of Science and Technology, vol. 34, No. 5, pp. 10-13, Oct. 2009.
Constantine, “Selective Production of Horizontal Openhole Completions Using ECP and Sliding Sleeve Technology.” SPE Rocky Mountain Regional Meeting, May 15-18, 1999, Gillette, Wyoming. [Abstract Only].
Coronado, “Development of an Internal Coiled Tubing Connector Utilizing Permanent Packer Technology”; Society of Petroleum Engineers, SPE Paper No. 46036; Apr. 15, 1998; 10 pages.
Curtin, et al., “CNT-reinforced ceramics and metals,” Materials Today, 2004, vol. 7, pp. 44-49.
European Search Report for EP Application No. 10836533.9 dated Jul. 27, 2015; 7 pages.
European Search Report for EP Application No. 10836538.8 dated Jul. 27, 2015; 7 pages.
European Search Report for EP Application No. 10836539.6 dated Jul. 27, 2015; 7 pages.
European Search Report for EP Application No. 10836540.4 dated Aug. 20, 2015; 7 pages.
European Search Report for EP Application No. 12827733.2 dated Jan. 21, 2015; 6 pages.
European Search Report for EP Application No. 12827915.5 dated Dec. 23, 2015; 8 pages.
European Search Report for EP Application No. 12828903.0 dated Dec. 23, 2015.
European Search Report for European Application No. 12820355.1-1353, dated Dec. 18, 2015, 9 pages.
Extended European Search Report for EP Application No. 10836539.6-1353, dated Jul. 27, 2015, 7 pages.
Extended European Search Report for EP Application No. 12828379.3-1373, dated May 20, 2016, 8 pages.
Extended European Search Report; EP Application No. 12822169.4-1605/2739812; Mailing Date: Nov. 17, 2015; 9 pages.
Feng, et al., “Electroless Plating of Carbon Nanotubes with Silver” Journal of Materials Science, 39, (2004) pp. 3241-3243.
Flahaut, et al., “Carbon Nanotube-Metal-Oxide Nanocomposites: Microstructure, Electrical Conductivity and Mechanical Properties” Acta amter. 48 (2000), pp. 3803-3812.
Forsyth, et al.; “An Ionic Liquid Surface Treatment for Corrosion Protection of Magnesium Alloy AZ31”; Electrochem. Solid-State Lett. 2006 vol. 9, Issue 11, B52-B55/ 9(11); Abstract only; 1 page.
Galanty, et al. “Consolidation of metal powders during the extrusion process,” Journal of Materials Processing Technology (2002), pp. 491-496.
Garfield, “Formation Damage Control Utilizing Composite-Bridge-Plug Technology for Monobore, Multizone Stimulation Operations,” SPE 70004, 2001, Society of Petroleum Engineers Inc., This paper was prepared for presentation at the SPE Per.
Garfield, New One-Trip Sand-Control Completion System that Eliminates Formation Damage Resulting From conventional Perforating and Gravel-Packing Operations:, SPE Annual Technical Conference and Exhibition, Oct. 9-12, 2005.
Garfield, et al., “Maximizing Inflow Performance in Soft Sand Completions Using New One-trip Sand Control Liner Completion Technology”, SPE European Formation Damage Conference, May 25-27, 2005.
Goh, et al., “Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique”, Nanottechnology 17 (2006) 7-12.
Gray, et al., “Protective Coatings on Magnesium and Its Alloys—a Critical Review”, Journal of Alloys and Compounds 336 (2002), pp. 88-113.
Han, et al., “Mechanical Properties of Nanostructured Materials”, Rev. Adv. Mater. Sci. 9(2005) 1-16.
Hermawan, et al., “Iron-manganese: new class of metallic degradable biomaterials prepared by powder metallurgy”, Powder Metallurgy, vol. 51, No. 1, (2008), pp. 38-45.
Hjortstam, et al. “Can we achieve ultra-low resistivity in carbon nanotube-based metal composites,” Applied Physics A (2004), vol. 78, Issue 8, pp. 1175-1179.
Related Publications (1)
Number Date Country
20130022832 A1 Jan 2013 US