Frontal vehicle crashes are the most common type of crash resulting in fatalities. Small-overlap vehicle collisions, i.e., when the front corner of a vehicle collides with another vehicle or an object such as a tree or utility pole, are one class of frontal vehicle crashes. Passing a crash test for this type of collision can be challenging since most energy absorbing structures present in a vehicle are not engaged with the impactor since the overlap is small.
A vehicle energy absorbing system for a high-speed, small-overlap impact, includes: lobes spaced intermittently along a vehicle rail, wherein the lobes include an impact arm, a reactionary arm, and a base, wherein a shape of the base is complimentary to a shape of the vehicle rail and wherein the impact arm and the reactionary arm protrude outwardly from the base and the vehicle rail, wherein a channel is formed in the space between the base, the impact arm, and the reactionary arm, wherein the channel extends through the lobe from end to end; wherein the lobes have a geometrical configuration and comprise a material designed to absorb energy upon collision with an impactor; or deflect the vehicle away from an impactor; or transfer energy to the vehicle rails; or absorb energy upon collision with an impactor and deflect the vehicle away from an impactor; or absorb energy upon collision with an impactor and transfer energy to the vehicle rails.
A vehicle energy absorbing system for a high-speed, small-overlap impact, includes: lobes spaced intermittently along a vehicle rail, wherein the lobes include a honeycomb structure protruding outwardly from the vehicle rail at an angle thereto; wherein the lobes comprise a material designed to absorb energy upon collision with an impactor; or deflect the vehicle away from an impactor; or absorb energy upon collision with an impactor and deflect the vehicle away from an impactor.
A method of making a vehicle energy absorbing system, includes: forming lobes comprising an impact arm, a reactionary arm, and a base, wherein a shape of the base is complimentary to a shape of a vehicle rail to which the lobe is attached and wherein the impact arm and the reactionary arm protrude outwardly from the base and the vehicle rail, wherein a channel is formed in the space between the base, the impact arm, and the reaction arm, wherein the channel extends through the lobe from end to end; and attaching the base of the lobes intermittently to the vehicle rail.
The above described and other features are exemplified by the following figures and detailed description.
Refer now to the figures, which are exemplary embodiments, and wherein the like elements are numbered alike.
It is estimated that approximately 25% of overall accidents in the United States correspond to small-overlap impacts. Current regulations in the United States do not address this class of impact. The Insurance Institute of Highway Safety (IIHS) recently promulgated a test to address this issue. The test involves a 25% frontal overlap and 40 miles per hour (mph) (64 kilometers per hour (kph)) impact of a vehicle with a rigid barrier. The National Highway Transportation Safety Administration (NHTSA) is currently investigating test scenarios including an oblique impact scenario and is expected to release a test within the next few years. Small overlap frontal collisions pose challenges for vehicle manufacturers since the main crush-zone structures presently available in vehicles are concentrated in the middle fifty percent of the front end of the vehicle. When a crash involves these structures, the occupant compartment of the vehicle can be protected from intrusion and front airbags and safety belts can effectively restrain and protect occupants. Small overlap frontal collisions are primarily directed to a vehicle's outer edges, which are not protected by the presently available crush-zone structures in vehicles. Forces from the collision go directly to the front wheel, suspension system, and firewall. The front wheel can be forced rearward into the footwell of the vehicle, contributing even more intrusion into the occupant compartment and resulting in serious leg and foot injuries. The use of a vehicle energy absorbing system for a high-speed, small overlap impact can reduce the magnitude of forces on the front wheel, suspension system, and firewall during such a collision. The use of a vehicle energy absorbing system for a high-speed, small overlap impact can reduce the intrusion into the occupant compartment. The vehicle energy absorbing system can be located on a structural member, e.g., vehicle rail, an A pillar, crash can, etc., of the vehicle in order to absorb or transfer energy or deflect the vehicle away from an impactor during a collision. Impactor refers to a rigid member such as another vehicle, pole, wall, tree, barrier, etc.
The vehicle energy absorbing system for a high-speed, small overlap impact can include lobes spaced intermittently along a vehicle member including along a vehicle rail, along an A pillar of the vehicle, or along a combination of the vehicle rail and the A pillar. Optionally, the lobes can be placed on crash cans present at either end of a bumper beam assembly on the vehicle. The lobes can include an impact arm, a reactionary arm, and a base. The lobes can include multiple (i.e., greater than 1) impact arms, reactionary arms, or bases in any one lobe. It is to be understood that reference herein to an impact arm, a reactionary arm, or a base, also refers to embodiments in which multiple impact arms, reactionary arms, or bases are present. A shape of the base can be complimentary to a shape of the vehicle member to which it will be attached, e.g., a vehicle rail. For example, if the vehicle rail has a flat shape, the base can have a flat shape. If the vehicle rail has a curved shape, the base can have a curved shape. The impact arm and the reactionary arm can protrude outwardly from the base and the vehicle member (e.g., vehicle rail) such that a channel can be formed in the space located between the base, the impact arm, and the reactionary arm. The channel can extend through the lobe from end to end, e.g., from a top end to a bottom end of the lobe. Stated another way, the channel can extend from end to end of the lobe in the vertical direction. A cover can be placed on either or both of the ends of the lobe over the channel.
The lobes can have a geometrical configuration designed to absorb energy upon collision with an impactor; or deflect the vehicle away from an impactor; or transfer energy to the vehicle rails; or absorb energy upon collision with an impactor and deflect the vehicle away from the impactor; or absorb energy upon collision with an impactor and transfer energy to the vehicle rails. The lobes can comprise a material designed to absorb energy upon collision with an impactor; or deflect the vehicle away from an impactor; or transfer energy to the vehicle rails; or absorb energy upon collision with an impactor and deflect the vehicle away from the impactor; or absorb energy upon collision with an impactor and transfer energy to the vehicle rails.
The number of lobes present is not limited and can be any number that will provide the desired level of protection to the occupant compartment of the vehicle. For example, the number of lobes can be greater than or equal to 2; for example, greater than or equal to 3; for example, greater than or equal to 5; for example, greater than or equal to 10; for example, greater than or equal to 15; for example, greater than or equal to 20; for example, greater than or equal to 25. The lobes can be individual lobes. The lobes can be interconnected with one another. The lobes in the vehicle energy absorbing system can comprise a combination of individual lobes and interconnected lobes.
The lobes can comprise a metallic material, a polymeric material, a composite material, or a combination comprising at least one of the foregoing. The lobes can comprise any polymeric material or combination of polymeric materials that can be formed into the desired shape and provide the desired properties. Exemplary materials include polymeric materials as well as combinations of polymeric materials with elastomeric materials, and/or thermoset materials. In one embodiment, the polymeric materials comprise thermoplastic materials. Possible polymeric materials include polybutylene terephthalate (PBT); acrylonitrile-butadiene-styrene (ABS); polycarbonate (LEXAN™ and LEXAN™ EXL resins, commercially available from SABIC's Innovative Plastics business); polyethylene terephthalate (PET); polycarbonate/PBT blends; polycarbonate/ABS blends; copolycarbonate-polyesters; acrylic-styrene-acrylonitrile (ASA); acrylonitrile-(ethylene-polypropylene diamine modified)-styrene (AES); phenylene ether resins; blends of polyphenylene ether/polyamide (NORYL GTX™ resins, commercially available from SABIC's Innovative Plastics business); blends of polycarbonate/PET/PBT; PBT and impact modifier (XENOY™ resins, commercially available from SABIC's Innovative Plastics business); polyamides (Nylon 6, Nylon 6-6, Nylon 6-9, Nylon 6-10, Nylon 6-12, Nylon 11, Nylon 12, Nylon 4-6, etc.); phenylene sulfide resins; polyvinyl chloride PVC; high impact polystyrene (HIPS); polyolefins, e.g., low/high density polyethylene (L/HDPE), polypropylene (PP), expanded polypropylene (EPP); polyethylene and fiber composites; polypropylene and fiber composites (AZDEL Superlite™ sheets, commercially available from Azdel, Inc.); long fiber reinforced thermoplastics (VERTON™ resins, commercially available from SABIC's Innovative Plastics business) thermoplastic olefins (TPO), and carbon fiber reinforced polymeric composites (CFRP), as well as combinations comprising at least one of the foregoing.
An exemplary filled resin is STAMAX™ resin, which is a long glass fiber filled polypropylene resin also commercially available from SABIC's Innovative Plastics business. Some possible reinforcing materials include fibers, such as glass, carbon, and so forth, as well as combinations comprising at least one of the foregoing; e.g., long glass fibers and/or long carbon fiber reinforced resins. For example, carbon fiber reinforced polymeric composites can be utilized to form the lobes. Carbon fiber reinforced polymeric composites can be used as a coating (e.g., skin) on the lobes to provide the desired structural integrity to the lobes. The lobes can be formed from combinations comprising at least one of any of the above-described materials.
The lobes have a geometrical shape that can include a triangle, a cone, a pyramid, a cylinder, a square, a rectangle, a parallelogram, a trapezium, an ellipse, a hexagon, or a combination comprising at least one of the foregoing. For example, the lobe can include a triangular pyramid, a square pyramid, a hexagonal pyramid, a triangular prism, a pentagonal prism, a hexagonal prism, a cube, a cuboid, a cone with a flat top, a pentagonal cone, a pentagonal pyramid, a pentagonal pyramid with a flat top, or a combination comprising at least one of the foregoing. The impact arm or the reactionary arm or the impact arm and the reactionary can include a straight shape (i.e., a straight line), a corrugated shape, a trapezoidal shape, a saw-tooth shape, a sinusoidal shape, a lamellar shape, a triangular shape, an abs(sin) shape, a cycloid shape, or a combination comprising at least one of the foregoing.
The impact arm and the reactionary arm can converge from the base at an angle. The impact arm and the reactionary arm can converge toward one another and meet at a point or junction area located between the impact arm and the reactionary arm. The impact arm and the reactionary arm can converge toward an interface disposed between the arms. The angle at which the impact arm and the reactionary arm converge from the base can be 0° to 50°, for example, 0° to 45°, for example, 0° to 25°, for example 5° to 15°. The impact arm can have a length, l1 and the reactionary arm can have a length, l2. The length, l1 can be equal to l2, or l1 can be greater than l2, or l1 can be less than l2. The lobes can include a multilayer structure in the channel. The lobes can include ribs disposed between layers in the channel.
The lobes can include a honeycomb structure protruding outwardly from the vehicle rail at an angle thereto. The angle at which the honeycomb structure converges can be 0° to 50°, for example, 0° to 45°, for example, 0° to 25°, for example 5° to 15°. After collision with an impactor, the honeycomb structure can be crushed axially along a length, lh. The honeycomb structure can be attached to the rails via structural adhesives. The honeycomb structure can be attached to the rails with the help of fasteners. A base can optionally be present on the honeycomb structure to facilitate attachment to the vehicle.
The base can be attached to the vehicle, e.g., vehicle rail, A pillar, crash can, etc., by any method that will provide the desired level of attachment and will not cause the lobe to detach upon a collision. The base can be attached to the vehicle by hooks, a snap-fit connection, a mechanical fastener, a structural adhesive, or a combination comprising at least one of the foregoing. Holes or attachment points can be located on the vehicle at the position at which the lobe will be attached. For example, the base can be attached to the vehicle by hooks that can be inserted into corresponding holes on the vehicle, for example, corresponding holes on the vehicle rail. A vehicle can include the vehicle energy absorbing system.
Methods of making a vehicle energy absorbing system are also contemplated. A method of making a vehicle energy absorbing system can include forming lobes and attaching the lobes to a vehicle member. The lobes can include an impact arm, a reactionary arm, and a base. A shape of the base can be complimentary to a shape of the vehicle member to which it will be attached, e.g., vehicle rail, A pillar, crash can, etc. The impact arm and the reactionary arm can protrude outwardly from the base and the vehicle member. A channel can be formed in the space between the base, the impact arm, and the reactionary arm. The channel can extend vertically through the lobe from end to end. The lobes can have a geometrical configuration and can comprise a material designed to absorb energy upon collision with an impactor; or deflect the vehicle away from an impactor; or transfer energy to the vehicle rails; or absorb energy upon collision with an impactor and deflect the energy away from an impactor; or absorb energy upon collision with an impactor and transfer energy to the vehicle rails. Attaching the lobes to a vehicle member can include hooks, a snap-fit connection, a mechanical fastener, a structural adhesive, or a combination comprising at least one of the foregoing.
A method of making a vehicle energy absorbing system can include forming lobes and attaching the lobes to a vehicle member. The lobes can include a honeycomb structure protruding outwardly from the vehicle rail at an angle thereto. The angle at which the honeycomb structure converges can be 0° to 50°, for example, 0° to 45°, for example, 0° to 25°, for example 5° to 15°. The method can include forming in individual lobes or interconnected lobes, where the number of lobes is greater than or equal to 2 lobes.
A more complete understanding of the components, processes, and apparatuses disclosed herein can be obtained by reference to the accompanying drawings. These figures (also referred to herein as “FIG.”) are merely schematic representations based on convenience and the ease of demonstrating the present disclosure, and are, therefore, not intended to indicate relative size and dimensions of the devices or components thereof and/or to define or limit the scope of the exemplary embodiments. Although specific terms are used in the following description for the sake of clarity, these terms are intended to refer only to the particular structure of the embodiments selected for illustration in the drawings, and are not intended to define or limit the scope of the disclosure. In the drawings and the following description below, it is to be understood that like numeric designations refer to components of like function.
Impact arm 14 can have a length, l1, while reactionary arm 16 can have a length, l2. As illustrated in
Turning now to
The impact arm 14 or the reactionary arm 16 can comprise any shape that provides the desired properties for the lobe. For example, as demonstrated in
Turning now to
Impact arm 14 of lobe 12 will come into contact with impactor 32 before reactionary arm 16. Impact arm 14 and reactionary arm 16 can absorb energy from impactor 32, with each successive lobe absorbing and transferring energy away from the vehicle rail 1. Impact arm 14 and reactionary arm 16 can deflect the vehicle away from impactor 32. Impact arm 14 can absorb energy from impactor 32 and reactionary arm 16 can deflect the vehicle away from the impactor.
In
Turning now to
The vehicle energy absorbing system is further illustrated by the following non limiting examples. Unless otherwise specified, all examples were based upon simulations.
A rigid material is used for the impactor and the base is modelled using a blend of polyphenylene ether (PPE) and polyamide (PA) (NORYL GTX™), a thermoplastic material having a modulus of 2.5 GigaPascals (GPa) and a failure strain of 60% using LS-DYNA™ software. As described herein, a “rigid material” refers to a material that does not deform. In this example, a rigid material constrained in all directions with steel properties (e.g., modulus of approximately 210 GPa) is used. In the following examples, a component level simulation is performed using a vehicle rail with the vehicle energy absorbing system disclosed in
The vehicle energy absorbing systems and methods of making disclosed herein include at least the following embodiments:
A vehicle energy absorbing system for a high-speed, small-overlap impact, comprising: lobes spaced intermittently along a vehicle rail, wherein the lobes include an impact arm, a reactionary arm, and a base, wherein a shape of the base is complimentary to a shape of the vehicle rail and wherein the impact arm and the reactionary arm protrude outwardly from the base and the vehicle rail, wherein a channel is formed in the space between the base, the impact arm, and the reactionary arm, wherein the channel extends through the lobe from end to end; wherein the lobes have a geometrical configuration and comprise a material designed to absorb energy upon collision with an impactor; or deflect the vehicle away from an impactor; or transfer energy to the vehicle rails; or absorb energy upon collision with an impactor and deflect the vehicle away from an impactor; or absorb energy upon collision with an impactor and transfer energy to the vehicle rails.
The vehicle energy absorbing system of Embodiment 1, wherein the lobe further comprises a cover over the channel on one end of the lobe.
The vehicle energy absorbing system of Embodiment 1, wherein the lobe further comprises a cover over each end of the lobe.
The vehicle energy absorbing system of any of Embodiments 1-3, wherein the lobes are spaced intermittently along an A pillar of the vehicle.
The vehicle energy absorbing system of any of Embodiments 1-4, wherein the vehicle energy absorbing system comprises greater than or equal to 2 individual lobes.
The vehicle energy absorbing system of any of Embodiments 1-4, wherein the vehicle energy absorbing system comprises greater than or equal to 2 interconnected lobes.
The vehicle energy absorbing system of any of Embodiments 1-6, wherein the lobes comprise a material selected from a metallic material, a polymeric material, a composite material, or a combination comprising at least one of the foregoing.
The vehicle energy absorbing system of any of Embodiments 1-7, wherein the lobes have a geometrical shape selected from a triangle, a cone, a pyramid, a cylinder, a square, a rectangle, a parallelogram, trapezium, elliptical, hexagonal, or a combination comprising at least one of the foregoing.
The vehicle energy absorbing system of any of Embodiments 1-7, wherein the impact arm or the reactionary arm or the impact arm and the reactionary arm includes a corrugated shape.
The vehicle energy absorbing system of any of Embodiments 1-9, further comprising greater than or equal to 2 impact arms.
The vehicle energy absorbing system of any of Embodiments 1-10, further comprising greater than or equal to 2 reactionary arms.
The vehicle energy absorbing system of any of Embodiments 1-11, wherein the impact arm and the reactionary arm converge from the base at an angle.
The vehicle energy absorbing system of Embodiment 12, wherein the impact arm and the reactionary arm converge toward one another and meet at a point.
The vehicle energy absorbing system of any of Embodiments 1-11, wherein the impact arm and the reactionary arm converge toward an interface disposed between the arms, and optionally, wherein the impact arm and the reactionary arm converge from the base at an angle.
The vehicle energy absorbing system of any of Embodiments 12-14, wherein the angle is 0° to 45°.
The vehicle energy absorbing system of any of Embodiments 1-15, wherein the impact arm has a length, l1, and the reactionary arm has a length, l2, wherein l1 is equal to l2 or wherein l1 is not equal to l2.
The vehicle energy absorbing system of any of Embodiments 1-16, wherein the lobes comprise a multilayer structure in the channel.
The vehicle energy absorbing system of Embodiment 17, wherein the multilayer structure includes ribs disposed in the layers.
A vehicle energy absorbing system for a high-speed, small-overlap impact, comprising: lobes spaced intermittently along a vehicle rail, wherein the lobes include a honeycomb structure protruding outwardly from the vehicle rail at an angle thereto; wherein the lobes comprise a material designed to absorb energy upon collision with an impactor; or deflect the vehicle away from an impactor; or absorb energy upon collision with an impactor and deflect the vehicle away from an impactor.
The vehicle energy absorbing system of Embodiment 19, wherein honeycomb structure extends from the base at an angle of 0° to 45°.
The vehicle energy absorbing system of Embodiment 19 or Embodiment 20, wherein the honeycomb structure is crushed axially along a length, lh, after collision with an impactor.
The vehicle energy absorbing system of any of Embodiments 1-21, wherein the base is attached to the vehicle rail with a mechanism selected from hooks, snap-fit, mechanical fastener, structural adhesive, or a combination comprising at least one of the foregoing.
A vehicle comprising the vehicle energy absorbing system of any of Embodiments 1-22.
A method of making a vehicle energy absorbing system, comprising: forming lobes comprising an impact arm, a reactionary arm, and a base, wherein a shape of the base is complimentary to a shape of a vehicle rail to which the lobe is attached and wherein the impact arm and the reactionary arm protrude outwardly from the base and the vehicle rail, wherein a channel is formed in the space between the base, the impact arm, and the reaction arm, wherein the channel extends through the lobe from end to end; and attaching the base of the lobes intermittently to the vehicle rail.
The method of Embodiment 24, wherein the attaching includes hooks, a snap-fit connection, a mechanical fastener, a structural adhesive, or a combination comprising at least one of the foregoing.
The method of Embodiment 24 or Embodiment 25, wherein the vehicle energy absorbing system comprises greater than or equal to 2 individual lobes or wherein the vehicle energy absorbing system comprises greater than or equal to 2 interconnected lobes.
In general, the invention may alternately comprise, consist of, or consist essentially of, any appropriate components herein disclosed. The invention may additionally, or alternatively, be formulated so as to be devoid, or substantially free, of any components, materials, ingredients, adjuvants or species used in the prior art compositions or that are otherwise not necessary to the achievement of the function and/or objectives of the present invention.
All ranges disclosed herein are inclusive of the endpoints, and the endpoints are independently combinable with each other (e.g., ranges of “up to 25 wt. %, or, more specifically, 5 wt. % to 20 wt. %”, is inclusive of the endpoints and all intermediate values of the ranges of “5 wt. % to 25 wt. %,” etc.). “Combination” is inclusive of blends, mixtures, alloys, reaction products, and the like. Furthermore, the terms “first,” “second,” and the like, herein do not denote any order, quantity, or importance, but rather are used to denote one element from another. The terms “a” and “an” and “the” herein do not denote a limitation of quantity, and are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The suffix “(s)” as used herein is intended to include both the singular and the plural of the term that it modifies, thereby including one or more of that term (e.g., the film(s) includes one or more films). Reference throughout the specification to “one embodiment”, “another embodiment”, “an embodiment”, and so forth, means that a particular element (e.g., feature, structure, and/or characteristic) described in connection with the embodiment is included in at least one embodiment described herein, and may or may not be present in other embodiments. In addition, it is to be understood that the described elements may be combined in any suitable manner in the various embodiments.
Unless otherwise specified herein, any reference to standards, regulations, testing methods and the like, such as ASTM D256, ASTM D638, ASTM D790, ASTM D1238, ASTM D 4812, ASTM 4935, and UL94 refer to the standard, regulation, guidance or method that is in force at the time of filing of the present application.
While particular embodiments have been described, alternatives, modifications, variations, improvements, and substantial equivalents that are or may be presently unforeseen may arise to applicants or others skilled in the art. Accordingly, the appended claims as filed and as they may be amended are intended to embrace all such alternatives, modifications variations, improvements, and substantial equivalents.
This application is a 371 of International Application No. PCT/US2015/056358, filed Oct. 20, 2015, which claims priority to U.S. Application No. 62/072,749 filed Oct. 30, 2014, both of which are incorporated herein by reference in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/056358 | 10/20/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/069320 | 5/6/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
8474583 | Nagwanshi et al. | Jul 2013 | B2 |
8562068 | Yoshida | Oct 2013 | B2 |
8608231 | Mendivil et al. | Dec 2013 | B1 |
8646793 | Lam et al. | Feb 2014 | B1 |
8733823 | Brockhoff et al. | May 2014 | B2 |
9027695 | Nakamura et al. | May 2015 | B2 |
9061713 | Hashimoto | Jun 2015 | B2 |
9211915 | Abe | Dec 2015 | B2 |
9290138 | Muraji et al. | Mar 2016 | B2 |
9365245 | Donabedian | Jun 2016 | B2 |
9539966 | Kato et al. | Jan 2017 | B2 |
9550463 | Hara et al. | Jan 2017 | B2 |
9676416 | Kitakata et al. | Jun 2017 | B2 |
20030141712 | Miyasaka | Jul 2003 | A1 |
20040200659 | Miyasaka | Oct 2004 | A1 |
20080252087 | Roll et al. | Oct 2008 | A1 |
20130147233 | Miyashita | Jun 2013 | A1 |
20130175128 | Kumar et al. | Jul 2013 | A1 |
20130285414 | Alavandi et al. | Oct 2013 | A1 |
20140159420 | Hashimoto et al. | Jun 2014 | A1 |
20140167450 | Sotoyama et al. | Jun 2014 | A1 |
20140191105 | Dandekar et al. | Jul 2014 | A1 |
20140252741 | Corby et al. | Sep 2014 | A1 |
20140252742 | Lam et al. | Sep 2014 | A1 |
20140361559 | Sakakibara | Dec 2014 | A1 |
20150008703 | Furusaki | Jan 2015 | A1 |
20150246651 | Muraji | Sep 2015 | A1 |
20150246690 | Matsumoto | Sep 2015 | A1 |
20150314742 | Kato | Nov 2015 | A1 |
20150375789 | Kitakata | Dec 2015 | A1 |
20160052554 | Ozawa | Feb 2016 | A1 |
20160068191 | Kim | Mar 2016 | A1 |
20160159400 | Matsuoka | Jun 2016 | A1 |
20160362139 | Sekiguchi | Dec 2016 | A1 |
20170101135 | Kishima | Apr 2017 | A1 |
20170355399 | Munjurulimana | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
102009015155 | Sep 2010 | DE |
2702432 | Sep 1994 | FR |
2012166743 | Sep 2012 | JP |
2013241034 | Dec 2013 | JP |
2014156199 | Aug 2014 | JP |
Entry |
---|
Japanese Publication No. 2012166743; Date of Publication: Sep. 6, 2012; Abstract Only, 2 pages. |
Japanese Publication No. 2013241034; Date of Publication: Dec. 5, 2013; Abstract Only, 1 page. |
Japanese Publication No. 2014156199; Date of Publication: Aug. 28, 2014; Abstract Only, 1 page. |
French Patent No. 2702432; Date of Publication: Sep. 16, 1994; Abstract Only, 1 page. |
German Patent No. 102009015155; Date of Publication: Sep. 30, 2010; Abstract Only, 1 page. |
International Search Report; International Application No. PCT/US2015/056358; dated Jan. 27, 2016, 7 pages. |
Written Opinion of the International Search Report; International Application No. PCT/US2015/056358; dated Jan. 27, 2016, 6 pages. |
Written Opinion of the International Search Report; International Application No. PCT/US2015/056358; dated Oct. 4, 2016, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20170355399 A1 | Dec 2017 | US |
Number | Date | Country | |
---|---|---|---|
62072749 | Oct 2014 | US |