Intermittent weaving splicer

Information

  • Patent Grant
  • 9533855
  • Patent Number
    9,533,855
  • Date Filed
    Thursday, January 24, 2013
    11 years ago
  • Date Issued
    Tuesday, January 3, 2017
    7 years ago
Abstract
Woven products using combined materials are provided. An intermittent weaving splicer terminates and combines materials having different functional and/or aesthetic properties to create woven products that reflect the different properties of the combined material. Further, a dynamic tensioner variably adjusts tension on the combined materials based on the different properties of the combined material.
Description
TECHNICAL FIELD

The present invention relates to a weaving system in general. More specifically, the present invention relates to an intermittent weaving splicer. The intermittent weaving splicer is contemplated to dynamically terminate and combine different materials, which are subsequently used to weave different types of textiles, apparel, accessories, and shoes. As well, the present invention relates to a dynamic tensioner that applies varying levels of tension to weaving materials based, at least in part, on properties of the material and/or a desired resulting woven product.


BACKGROUND

Traditionally, splicing devices have been used to join a yarn end of a first spool of yarn that has been consumed with an initial yarn end of a second spool of yarn. The splicing of the two yarn ends may be accomplished by mingling the fibers that compose the two yarns. This is typically a passive process that is initiated only upon recognition of a yarn end. As well, traditional weaving tensioning devices apply a constant level of tension to a weaving material as it is being woven.


SUMMARY OF THE INVENTION

This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter. The present invention is defined by the claims.


At a high level, the present invention is directed toward an intermittent weaving splicer that dynamically terminates a material (e.g., yarn, thread, fiber) and combines different materials to create a combined material having different functional or aesthetic properties along the length of the combined material. The combined material may subsequently be used in the weaving of a variety of structures including fabrics, textiles, composite base materials, apparel, shoes, and accessories. For example, aspects of the following may be implemented in the manufacture of two-dimensional and/or three-dimensional articles. The varying properties of the combined material may, in turn, impart different properties to the woven product at one or more locations.


The present invention is also directed to a dynamic tensioner that applies variable amounts of tension to the combined material while it is being woven. The amount of tension applied depends on the characteristics or properties of the combined material and/or a desired resulting product. The dynamic tensioner may be used in combination with the intermittent splicer to assist in the accurate placement of the combined material in the woven product.


Accordingly, in one aspect, the present invention is directed towards an intermittent weaving splicer comprising a first material input, a second material input, a first material terminator, a combining unit, and a combined material output.


In a second aspect, the present invention is directed to a weaving system comprising a loom, an intermittent weaving splicing device that terminates and combines material inputs to produce a combined material output, and a logic unit that interacts with the loom and the splicing device.


In yet another aspect, the present invention is directed to a method of using an intermittent weaving splicer comprising receiving a first material, receiving a second material, terminating the first material, joining the first material and the second material to produce a combined material, and outputting the combined material.





BRIEF DESCRIPTION OF THE DRAWINGS

Examples are described in detail below with reference to the attached drawing figures, wherein:



FIG. 1 depicts an exemplary intermittent weaving splicer within an exemplary weaving system in an aspect of the present invention;



FIG. 2 depicts an exemplary intermittent weaving splicer in association with a feeding component in an aspect of the present invention;



FIG. 3 depicts an exemplary portion of a woven product in an aspect of the present invention;



FIG. 4 depicts an exemplary portion of a woven product in an aspect of the present invention;



FIG. 5 depicts an exemplary portion of a woven product in an aspect of the present invention;



FIG. 6 depicts an exemplary pattern program used by a logic unit in an aspect of the present invention; and



FIG. 7 depicts an exemplary flow diagram illustrating a method of creating a combined material from a first material input and a second material input in an aspect of the present invention.





DETAILED DESCRIPTION

The subject matter of the present invention is described with specificity herein to meet statutory requirements. However, the description itself is not intended to limit the scope of this patent. Rather, the inventors have contemplated that the claimed subject matter might also be embodied in other ways, to include different steps or combinations of steps similar to the ones described in this document, in conjunction with other present or future technologies. Moreover, although the terms “step” and/or “block” might be used herein to connote different elements of methods employed, the terms should not be interpreted as implying any particular order among or between various steps herein disclosed unless and except when the order of individual steps is explicitly stated.


At a high level, the present invention is directed toward an intermittent weaving splicer that dynamically terminates a material (e.g., yarn, thread, fiber) and combines different materials to create a combined material having different functional or aesthetic properties along the length of the combined material. The combined material may subsequently be used in the weaving of a variety of structures including fabrics, textiles, composite base materials, apparel, shoes, and accessories. For example, aspects of the following may be implemented in the manufacture of two-dimensional and/or three-dimensional articles. The varying properties of the combined material may, in turn, impart different properties to the woven product at one or more locations.


The present invention is also directed to a dynamic tensioner that applies variable amounts of tension to the combined material while it is being woven. The amount of tension applied depends on the characteristics or properties of the combined material and/or a desired resulting product. The dynamic tensioner may be used in combination with the intermittent splicer to assist in the accurate placement of the combined material in the woven product.



FIG. 1 illustrates a system 100 that comprises an intermittent weaving splicer 114, a dynamic tensioner 120, a feeding component 118, a loom 122, and a logic unit 124. However, it is contemplated that additional components may be implemented in conjunction (or independently) with those depicted herein in exemplary aspects. Further, it is contemplated that any number of those components depicted, discussed, or implied in connection with FIG. 1 may also be implemented in exemplary aspects.


The intermittent splicer 114 may receive two or more materials such as material A 110 and material B 112 through one or more input ports. As used herein, a material received by the intermittent splicer 114 may include, for example, yarn, thread, webbing, strands, braids, and the like. Further, it is contemplated that the material may be formed, at least in part, with organic substances (e.g., cotton, rubber), polymer-based substances (e.g., nylon, polyester, synthetic rubber), metallic-based substances (e.g., copper, silver, gold, aluminum), and other engineered materials (e.g., aramid synthetic fibers, carbon-fiber, fiber glass). The material is also contemplated having varied physical characteristics (as will be discussed hereinafter). For example, the material may have varied diameter, elasticity, abrasion resistance, chemical reactivity traits, tension modulus, tensile strength, moisture absorbance, and the like.


The material A 110 and the material B 112 may comprise different types of materials. For instance, the materials 110 and 112 may differ in diameter, density, color, functional properties, aesthetic properties, mode of manufacture (extrusion, spun, molded, etc.), treatments applied to the materials 110 and 112, and so on. Functional properties may comprise elasticity, stiffness, water solubility, thermoreactivity, chemical reactivity, and the like. Treatments applied to the materials 110 and 112 may comprise water proofing, wax coating, and/or applying coatings that impart a matte, luster, reflective, or shiny finish to the materials 110 and 112. Treatments may also comprise reactive coatings that may react with water, heat, chemicals, and the like. Additionally, it is contemplated that a multi-substance material is used. A multi-substance material may be a material having an outer sheath of a different substance than an interior core. In this example, the outer sheath may impart certain characteristics to the multi-substance material that differ from the internal core. For example, the internal core may have a high elasticity and the outer core may be a reactive coating that prevents the stretch of the multi-substance material. Therefore, as will be discussed hereinafter, it is contemplated that portions of the outer core may be selectively removed (e.g., reactively removed by chemical means or light, for example) to allow the properties of the inner core to be exhibited in those portions where the outer core has been removed. Alternative arrangements of a multi-substance material are contemplated (e.g., reactive core, reactive fibers intertwined with non-reactive fibers).


Returning to FIG. 1, in an exemplary aspect, the intermittent splicer 114 may receive material A 110 through a first input port (not shown) and material B 112 through a second input port (not shown). Alternatively, material A 110 and material B 112 may be received through a single input port. Although only two materials are depicted in FIG. 1, it is contemplated that the intermittent splicer 114 may receive any number of materials. In an exemplary aspect, it is contemplated that the material is maintained by a spool-like structure for feeding into the intermittent splicer 114 for effective receipt.


The intermittent splicer 114 receives material A 110 and material B 112. After being received by the intermittent splicer 114, the materials may be fed through a measuring component 115 that measures predetermined distances of the materials 110 and 112. The measuring component may comprise a toggle wheel, a timing system that measures the rate and/or time at a known rate at which the materials 110 and 112 are being received, a caliper system, and/or a vision or optical system to measure the predetermined distances/lengths of a material. After predetermined distances have been measured for material A 110 and/or material B 112, the intermittent splicer 114 may be programmed to terminate material A 110 and/or material B 112 at predefined distances.


The intermittent splicer 114 may use mechanical means such as a knife to terminate (e.g., cut) the materials 110 and/or 112. As well (or in the alternative), the intermittent splicer 114 may use a laser, air, ultrasound, water, heat, chemicals, and the like to terminate the materials 110 and/or 112 at defined lengths. Therefore, it is contemplated that the intermittent splicer 114 is functional to terminate a continuous run of material at an intermediate point in the run. For example, a material may be maintained on a spool that has several hundred feet of continuous material prepared to be fed through the intermittent splicer 114. In this example, the intermittent splicer 114 may terminate the material at any point along the length of the several hundred feet of continuous material (any number of times). As a result, any desired length of material may be used at any portion of a resulting combined material resulting from the intermittent splitter 114.


The intermittent splicer 114 may be mechanically operated by one or more mechanisms controlled by the logic unit 124. For example, it is contemplated that the intermittent splicer 114 may, without intervention from a human operator, terminate a material using an electro-mechanical mechanism (e.g., an actuator, pneumatic, hydraulic, motor) and/or the like. By controlling the terminating portion of the intermittent splicer 114 by the logic unit 124, an automated system may be implemented that once started, may not require intervention by a human to manufacture an article having a variety of materials strategically located in a common weft pass (or warp).


Once terminated, the materials 110 and 112 may be joined together by the intermittent splicer 114 to create a combined material 116. Traditional methods of joining materials 110 and 112 together such as fraying the ends of materials 110 and 112 and joining the frayed ends may be employed. For example, the materials to be joined may be comprised of a plurality of fibers that when separated (e.g., frayed) at each respective end may then be intermeshed together to form an effective bond between a first end of a first material and a first end of a second material. Additionally, other methods to join the materials 110 and 112 may be used such as ultrasonic fusing, lasering, welding, adhesive, heat, wrapping, tying, folding, and/or twisting. Further, it is contemplated that a combined process may be implemented to terminate and fuse. For example, a melting process may both terminate a first thread and fuse the newly created end to a second thread.


It is contemplated that the intermittent splicer 114 may terminate a first material at a location along the length of the first material to form a first end and a second end relative to the location of termination. The first end, in this example, is proximate an output region of the intermittent splicer 114 and the second end is proximate an input region of the intermittent splicer 114. The first end, in this example, may be joined with a previous second end of a second material (e.g., also proximate the input portion of the intermittent splicer 114). Further, the second end of the first material may then be joined with a newly created first end (e.g., proximate the output portion of the intermittent splicer 114) of the second material. As will be discussed hereinafter, it is contemplated that any number of materials in any sequence may be joined.


The intermittent splicer 114 may also be comprised of one or more maintainers 119. A maintainer 119 may maintain one or more portions of the materials 110 and/or 112 in a desired position during a terminating process and/or during a joining process. For example, it is contemplated that a compression mechanism may hold the first material while terminating the first material. Further, it is contemplated that a maintainer may hold the combined material (e.g., first end of the first material) while being fused with a second end of the second material, even momentarily. However, it is also contemplated that the terminating and/or joining processes may be done on the fly (e.g., as the materials continue to pass through the intermittent splicer 114).


The intermittent splicer 114 may also comprise an expelling component 117 at the output portion. Once materials 110 and 112 have been combined to generate a combined material 116, the expelling component 117 expels the combined material 116 from the intermittent splicer 114. The expelling component 117 may mechanically expel the combined material 116 using rollers, conveyors, pulleys, and other mechanisms. The expelling component 117 may also/alternatively use, for example, air and/or water to expel the combined material 116 from the intermittent splicer 114. Further, it is contemplated that the combined material may be expelled from the intermittent splicer 114 by gravity and/or a pushing force exerted by an added material portion.


As can be seen from FIG. 1, the combined material 116 may comprise variable-length segments composed of material A 110 and material B 112. For instance, the combined material 116 may comprise a variable-length segment 116A composed of material A 110, a variable-length segment 116B composed of material B 112, and a variable-length segment 116C again composed of material A 110. Other arrangements are contemplated such as a B-A-B arrangement, an A-B-A-B arrangement, a B-A-B-A arrangement, and so on. When more than two materials are used, the composition of the combined segment 116 may be adjusted accordingly. By way of illustrative example, if materials A, B, and C are used, one possible composition may comprise A-C-B-A. As can be seen, a near-infinite number of possibilities exist based on the number of materials used, the possible arrangement of materials, and the lengths of each portion of material used.


It is contemplated that the intermittent splicer 114 may be used in conjunction with any mechanism, such as a loom. Further, it is contemplated that the intermittent splicer 114 may be used independently of other mechanisms. The intermittent splicer 114 may also be implemented during any portion of a manufacturing process (e.g., forming the warp, passing the weft).


In an exemplary aspect, once expelled from the intermittent splicer 114, the combined material 116 is received by the feeding component 118 via, for example, an input port. The feeding component 118 may passively receive the combined material 116 from the expelling component. The feeding component 118 may also actively retrieve the combined material 116 from the intermittent splicer 114. For instance, the feeding component 118 may generate a vacuum that draws the combined material 116 into the feeding component 118.


The feeding component 118 is also configured to subsequently feed the combined material 116 into the loom 122. The combined material 116 may be fed in to the loom 122 as a weft. However, as previously discussed, the combined material may be used in connection with forming a warp beam. If the combined material 116 is fed in as a weft, the feeding component 118 may comprise a shuttle, one or more rapiers, an air jet, a water jet, and the like.


The feeding component 118 may be associated with the dynamic tensioner 120. The dynamic tensioner 120 is configured to apply a variable amount of tension to the combined material 116 as it is being fed into the loom 122 by the feeding component 118. The amount of tension applied may depend on the properties of the combined material 116 as it is passing through the dynamic tensioner 120. For instance, a smaller degree of tension may be applied to a more elastic segment of the combined material 116 as compared to the amount of tension applied to a less elastic segment of the combined material 116. Applying variable amounts of tension depending on the properties of the combined material 116 helps to ensure that the combined material 116 is fed smoothly into the loom 122. Further, it is contemplated that the dynamic tensioner 120 dynamically adjusts tension based, at least in part, on the characteristics of the combined material 116 that has already passed through the dynamic tensioner 120 for a particular weft pass. For example, if a non-elastic portion of material initially passes through the dynamic tensioner 120, a greater amount of tension may be applied than when an elastic portion or even a subsequent non-elastic portion passes through the dynamic tensioner 120 on a common weft pass.


The dynamic tensioner 120 may apply tension by, for example, adjusting the diameter of the input port of the feeding component 118. In instances where the feeding component 118 is an air jet, tension may be adjusted by varying the amount of air used to propel the combined material 116 into the loom 122. Likewise, if the feeding component 118 is a water jet, tension may be adjusted by varying the force of the water used to propel the combined material into the loom 122. Further, it is contemplated that the dynamic tensioner 120 may be formed from one or more compressive surfaces that apply varied levels of compressive forces on the combined material (e.g., rotating (or not) mated discs in a pulley-like orientation that have graduated mated surfaces that may be separated or closed to impart a desired level of compressive force to a multiple material passing through the graduated mated surfaces).


The dynamic tensioner 120 may use a caliper-based system to determine when tension should be adjusted and how much the tension should be adjusted. For example, the caliper system may detect a thicker segment of the combined material 116 and increase the tension applied to the combined material 116. The dynamic tensioner 120 may also use a vision/optical system to visually detect a transition from one segment of the combined material 116 to an adjacent segment of the combined material 116. The vision/optical system may also detect properties of the segment that determine how much tension should be applied; the tension may then be adjusted accordingly. For instance, the vision/optical system may be configured to detect a color or texture change from one segment to the next of the combined material 116. Based on this change, the dynamic tensioner 120 may adjust the tension on the combined material 116. The dynamic tensioner 120 may also use a timing system to determine when tension should be adjusted. For example, the combined material 116 may be expelled from the intermittent splicer 114 at a constant rate. The dynamic tensioner 120 may adjust the tension depending on the rate of expulsion. The dynamic tensioner 120 may also receive inputs from, for example, the logic unit 124, and adjust the tension based on the received inputs. As a result, it is contemplated that one or more mechanisms may be implemented independently or in concert to adjust the dynamic tensioner 120 to impart one or more desired characteristics to a resulting product at one or more desired locations.


In one aspect, the dynamic tensioner 120 may be utilized as a quality control measure. For instance, the dynamic tensioner 120 may apply an additional amount of tension to the combined material 116 to adjust the combined material 116 after it has been fed as a weft through a shed. This may be used to correct minor deviations in alignment of the weft with respect to the pattern that is being woven. For example, if a combined material has a particular portion intended to be placed at a particular location (e.g., at a particular location laterally along the warps), the dynamic tensioner 120 may impart an elevated level of tension to allow the combined material to slightly extend a length at which it crosses a portion of the warp. Similarly, it is contemplated that the dynamic tensioner 120 may impart a decreased level of tension to allow the combined material to slightly reduce a length affecting a location as portion crosses a particular warp. Additional mechanisms for adjusting a location of the combined material are contemplated that may not affect the stretch of the combined material (e.g., incorporating an excess portion at either (or both) ends of a weft pass to allow for lateral alignment by the feeding component 118.


Although the dynamic tensioner 120 is shown in FIG. 1 as being integrally attached to the feeding component 118, other arrangements are contemplated. For instance, the dynamic tensioner 120 may be physically separate from the feeding component 118. The dynamic tensioner 120 may be located between the intermittent splicer 114 and the feeding component 118. Alternatively, the dynamic tensioner 120 may be located between the feeding component 128 and the loom 122. Further, as previously discussed, it is contemplated that one or more components may be omitted entirely or in part, in an exemplary aspect.


As mentioned, the feeding component 118 feeds the combined material 116 into the loom 122 as either a warp or a weft. The loom 122 may comprise any type of weaving structure. For example, the loom 122 may comprise a single or multiple-beam loom, a Jacquard loom, a Dobby loom, and other looms known in the art.


The logic unit 124 may be programmably-coupled to the intermittent splicer 114, the feeding component 118, the dynamic tensioner 120, and/or the loom 122 through a wireless or wired connection. The logic unit may be comprised of a processor and memory to perform one or more of the functions provided herein. Computer-readable media having instructions embodied thereon for performing one or more functions may be implemented with the logic unit 124 to effectuate one or more of the functions. The logic unit 124 may instruct these various components based on, for example, a pattern program to produce a woven product conforming to the pattern.



FIG. 6 depicts an exemplary pattern program 600 that may be captured (e.g., by a camera) and processed by the logic unit 124 to calculate what segment lengths of material A 110 and/or material B 112 are needed at each weft (and/or warp) level. The pattern program 600 comprises a series of lines corresponding to wefts with a pattern superimposed on the lines. The lengths of various segments of the pattern program 600 may be determined by the logic unit 124 and subsequently communicated to, for example, the intermittent splicer 124. For example, the logic unit 124 may determine a length/distance of segment 610 (corresponding to material A 110), segment 612 (corresponding to material B 112), and segment 614 (corresponding to material A 110). The various lengths/distances of these segments 610, 612, and 614 may be communicated by the logic unit 124 to the intermittent splicer 114; the intermittent splicer 114 then terminates and combines materials based on these inputs.


Further, the logic unit 124 may also be programmably-coupled to the various vision/optical, timing, toggle wheel, and caliper-based systems associated with these components. The logic unit 124 may, in one aspect, receive inputs from the various vision/optical, timing, toggle wheel, and caliper-based systems, and, based on these inputs and a programmed pattern/structure, instruct the intermittent splicer 114 to terminate the material A 110 or the material B 112 at a predetermined location. Further, the logic unit 124 may instruct the dynamic tensioner 120 to apply a predetermined amount of tension to the combined material 116 based on received inputs. Any and all such aspects are within the scope of the invention.


As provided herein, it is contemplated that the logic unit 124 may be comprised of a computing device. Therefore, the logic unit 124 may maintain one or more set of instructions useable by one or more components (e.g., intermittent splicer, loom, dynamic tensioner, Jacquard loom, measurement components, quality control components) to manufacture an article. The instructions may include logic capable of coordinating the automatic terminating and splicing of materials such that when inserted through a shed may be positioned in a defined location relative to the warp beam. Further, the logic may ensure the proper alignment and positioning of one or more portions of a multiple material element as integrated into an article.


The logic unit 124 may store the instructions or may receive the instructions. For example, it is contemplated that the logic unit 124 may be connected via a network to one or more computing devices that maintain parameters to complete a particular article. Upon receiving an indication to manufacture a particular article, the proper instructions (or portions thereof) are communicated to the logic unit 124 for controlling one or more components to effectuate the manufacturing of the article. As such, it is contemplated that the logic unit 124 may be responsible for ensuring that typically disparate components may operate in concert to automatically produce an article through the coordination of one or more functions of each of the components.


Turning now to FIG. 2, another aspect of the invention is illustrated. FIG. 2 depicts a system 200 comprising a material source 210, a material 212, a material 214, an intermittent splicer 216 that is integrally connected to a feeding component 218, and a receiving component 220. The feeding component 218 and the receiving component 220 may comprise a first rapier and a second rapier. Traditional weaving technology employs rapiers to feed wefts across a shed. A first rapier feeding a weft is met by a second rapier at a point across the width of the weave. The second rapier takes the weft and completes the journey of the weft across the width of the weave (e.g., the length of the warp beam).


The feeding component 218 may be dynamically programmed (by, for example, a logic unit) to deliver the weft to the receiving component 220 at varying distances along the width of the weave instead of at the midway point of the weave. Further, the intermittent splicer 216 may be programmed to terminate material 212 and/or material 214 and generate a combined material prior to the feeding component 218 meeting the receiving component 220 and transferring the combined material.



FIG. 3 depicts a close-up view of an exemplary woven product 300 that may be produced by the system 100. The woven product 300 comprises a series of warp threads 310. Although the term “thread” is used for convenience sake, it is contemplated that the term “thread” may comprise any type of material discussed previously, including fabric materials, plastic materials, synthetic materials, metal materials, and the like. The woven product 300 also comprises a series of weft threads 312. In this example, a portion of the weft threads 312 comprises combined material weft threads generated by, for example, an intermittent splicer such as the intermittent splicer 114 of FIG. 1. Thread 314 provides an example of a weft thread that is comprised of one material, while thread 316 illustrates a weft thread comprised of more than one material.


The weft threads 312 are woven to produce an area 318. The area 318 may have different functional properties as compared to the remainder of the woven product 300. For instance, the area 318 may have a greater amount of stretch as compared to the remainder of the woven product 300. In another example, the area 318 may be composed of thermoreactive, and/or chemical reactive materials (e.g., water soluble). These materials may be treated with an appropriate agent (heat, water, and/or chemical) to eliminate the area 318 or to further change the functional properties of the area 318.


Additionally, the area 318 may have different aesthetic properties as compared to the remainder of the woven product 300. For instance, the area 318 may be a different color than the remainder of the woven product 300, or be composed of weft threads having a matte or shiny finish. The area 318 may comprise a logo, graphic elements, geometric-shaped patterns, or organically-shaped patterns. Further, the area 318 may be woven from weft threads having a different diameter as compared to the remainder of the woven product 300. This may help to impart a three-dimensional aspect to the area 318. Any and all such variations are within the scope of the invention.



FIG. 5 depicts another exemplary portion of a product 500 that may be produced by the system 100. The focus of FIG. 5 is on the combined material that makes up the weft threads 510. Because of this, the warp threads are not depicted. The combined material that makes up the weft threads 510 comprises a first segment 512 of a first material (material A), a second segment 514 of a second material (material B), and a third segment 516 of the first material (material A). The second material in the second segment 514 may comprise crimped yarn. An example of crimped yarn is a polyester fill, such as used for insulation in jackets or as stuffing in pillows. This type of yarn is generally resistant to stretching which gives it loft and volume. Other materials may be used. For example, an organic material that is crimped (e.g., cotton that has been crimped and maintained with a starch-like additive). However, crimped yarn typically stretches as heat is applied, particularly when under tension; the heat causing the crimped yarn to lose its crimp. Taking advantage of these properties of crimped yarn, heat may be selectively applied as a post process or after assembly to the portion of the product 500 containing the crimped yarn (i.e., area 518). The application of heat and/or tension may cause the area 518 to elongate or stretch which adds three-dimensionality to the product 500. One example where this type of process is useful is in the creation of a heel portion of a shoe upper.



FIG. 4 depicts an exemplary portion of a woven product 400 that may be produced by the system 200. The woven product comprises a set of warp threads 410 and a set of weft threads 412. Like above, the term “thread” is meant to encompass any number of materials. A portion of the weft threads 412 comprises weft threads of combined materials generated by an intermittent splicer such as the intermittent splicer 216 of FIG. 2. Weft thread 414 is an example of a weft thread of combined materials. Additionally, a portion of the weft threads 412 comprises weft threads composed of one type of material (for example, weft thread 416).


As described above, the system 200 comprises a feeding component (in this case, a first rapier) that may be dynamically adjusted to deliver weft threads different distances along the width of the weave. A corresponding receiving component (a second rapier) may also be dynamically adjusted to receive the weft thread at the point of handoff from the feeding component. An intermittent splicer may generate a weft of combined materials prior to the receiving component receiving the weft thread from the feeding component. The result is the ability to produce a variety of geometric or organically-shaped patterns having different functional and/or aesthetic properties. For instance, area 418 of the woven product 400 is composed of weft threads having different properties from the weft threads that make up the area 420. Like above with respect to FIGS. 3 and 5, the weft threads in the areas 418 and 420 may have different functional properties and/or different aesthetic properties.


As depicted, it is contemplated that any combination of combined materials may be implemented at any location to form a product having organic-shaped characteristic portions imparted by selectively changing underlying materials of a weft. For example, the characteristic portions may have varied aesthetic and/or functional characteristics at specified locations. The ability to selectively impart desired characteristics intermittently in a weft pass (as opposed to having a uniform characteristic along a complete weft pass) provides increased control of a weaving process.



FIG. 7 depicts a block diagram illustrating an exemplary method 700 for utilizing an intermittent splicer, in accordance with aspects of the present invention. At a block 702, a first material is received at the intermittent splicer. As previously discussed, the material may be any material, such as a yarn, thread, webbing, and the like. Receiving of a material may include a portion of the material entering one or more portions of the intermittent splicer. At a block 704, a second material is received at the intermittent splicer. As previously discussed, any number of materials may be received/utilized at/by an intermittent splicer.


At a block 706 a length of the first material is measured. The length may be measured to result in a particular length of the first material at a particular location within a resulting combined material. The measuring may be accomplished using mechanical mechanisms, timing mechanisms, optical mechanisms, and other techniques for measuring a length of a material. At a block 708, a determination is made to terminate the first. The determination may be accomplished utilizing a logic unit that controls a terminator of the intermittent splicer. The determination may be made, at least in part, based on the measured length of the first material and a desired length to be used in a resulting combined material. Further, the logic unit may rely on a programmed pattern that coordinates the intermittent splicer and one or more manufacturing machines (e.g., loom, knitting machine, braider), which may be used in conjunction with the intermittent splicer. Once a determination to terminate is made at the block 708, at a block 710 the first material is terminated. The termination may be effected by a mechanical cutting, a chemical process, a heating process, an ultrasonic process, and/or the like.


At a block 712, the first material and the second material are joined. The joining of the first and second materials may rely on a mechanical connection among elements (e.g., fibers) of each of the materials. Additionally, it is contemplated that other bonding techniques may be used to join the first material and the second material (e.g., welding, adhesive). Once the first material and the second material are joined, the resulting combined material may be incorporated into a product. For example, the resulting product may be formed using a number of machines and techniques, such as a loom for a woven article, a knitting machine for a knit article, a braiding machine for a braided article, and the like.


The present invention has been described in relation to particular examples, which are intended in all respects to be illustrative rather than restrictive. Alternative embodiments will become apparent to those of ordinary skill in the art to which the present invention pertains without departing from its scope. Certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations and are contemplated within the scope of the claims.

Claims
  • 1. An intermittent weaving splicer, the intermittent weaving splicer comprising: a first material input;a second material input;a first material terminator;a combining unit; anda combined material output; anda dynamic tensioner that applies variable amounts of tension to the combined material while the combined material is being woven, wherein the variable amounts of tension depend on a property of the combined material.
  • 2. The intermittent weaving splicer of claim 1, further comprising: a measuring component that measures lengths of at least the first material input or the second material input.
  • 3. The intermittent weaving splicer of claim 2, further comprising: a logic unit controlling the first material terminator, the measuring component, and the combining unit, wherein the logic unit is configured to produce an arrangement of segments comprising at least a segment of the first material and at least a segment of the second material, wherein the arrangement of segments is determined by a pattern program to produce a woven product conforming to a pattern.
  • 4. The intermittent weaving splicer of claim 1, further comprising: an expelling component that expels the combined material output from the intermittent weaving splicer.
  • 5. The intermittent weaving splicer of claim 1, further comprising: a maintainer that maintains at least the first material input, the second material input, or the combined material output in a desired position.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application, claims the benefit of priority to U.S. Provisional Application No. 61/590,177, filed Jan. 24, 2012 and entitled “Intermittent Weaving Splicer.” The entirety of the aforementioned application is incorporated by reference herein.

US Referenced Citations (112)
Number Name Date Kind
1227716 Wenzel May 1917 A
2294368 Harter Sep 1942 A
2362801 Charnock Nov 1944 A
2673577 Mills Mar 1954 A
2835277 Groat May 1958 A
3143149 Stoudenmire Aug 1964 A
3161941 John Dec 1964 A
3313323 Calemard Apr 1967 A
3486957 Fish et al. Dec 1969 A
3610292 Wasyleviez Oct 1971 A
3621885 Egloff et al. Nov 1971 A
3626991 Backenecker Dec 1971 A
3751981 Jernigan Aug 1973 A
3779289 Bulcock et al. Dec 1973 A
3796032 Clontz Mar 1974 A
3814140 Serturini Jun 1974 A
3879824 Mizuno Apr 1975 A
3916956 Harris et al. Nov 1975 A
4031925 Santucci Jun 1977 A
4046172 Russell Sep 1977 A
4077438 Tanaka et al. Mar 1978 A
4352380 Owen et al. Oct 1982 A
4448223 Deborde et al. May 1984 A
4453994 Van Dort Jun 1984 A
4520849 Suzuki et al. Jun 1985 A
4526211 Suso Jul 1985 A
4546802 Best Oct 1985 A
4589361 Starnes et al. May 1986 A
4600039 Corain Jul 1986 A
4607482 Otoshima Aug 1986 A
4688606 Tamatani Aug 1987 A
4693771 Payet et al. Sep 1987 A
4738093 Zumfeld Apr 1988 A
4756343 Angebault et al. Jul 1988 A
4781221 Onishi et al. Nov 1988 A
4805276 Plaschy Feb 1989 A
4815498 Gryson et al. Mar 1989 A
4834145 Lewyllie et al. May 1989 A
4834147 Eberle et al. May 1989 A
4909283 Verclyte Mar 1990 A
4917153 Mori et al. Apr 1990 A
4957144 Watanabe et al. Sep 1990 A
4964442 Tacq et al. Oct 1990 A
5050647 Baeck et al. Sep 1991 A
5070912 Ludwig Dec 1991 A
5075151 Kufner et al. Dec 1991 A
5079908 Stahlecker Jan 1992 A
5090456 Kasahara et al. Feb 1992 A
5105855 Stacher Apr 1992 A
5105856 Wahhoud Apr 1992 A
5155987 Vogel Oct 1992 A
5158119 Pezzoli Oct 1992 A
5323324 Fredriksson Jun 1994 A
5332007 Wahhoud et al. Jul 1994 A
5335699 Beyaert et al. Aug 1994 A
5375627 Iida et al. Dec 1994 A
5568827 Debaes et al. Oct 1996 A
5575314 Capitanio et al. Nov 1996 A
5588470 Shiraki et al. Dec 1996 A
5649570 Wahhoud et al. Jul 1997 A
5669424 Schiller et al. Sep 1997 A
5680751 Premi Oct 1997 A
5735316 Hehle Apr 1998 A
5862660 Haasen et al. Jan 1999 A
5996647 Krumm Dec 1999 A
6026865 Krumm et al. Feb 2000 A
6039086 Dornier et al. Mar 2000 A
6050302 Guse et al. Apr 2000 A
6058980 Scari et al. May 2000 A
6155306 Katsukura et al. Dec 2000 A
6199360 Premi Mar 2001 B1
6223779 Speich May 2001 B1
6260586 Fratus Jul 2001 B1
6311737 Wahhoud et al. Nov 2001 B2
6321796 Sawada Nov 2001 B1
6339921 Lassmann Jan 2002 B1
6418974 King Jul 2002 B1
6470917 Yamamoto Oct 2002 B1
6575201 Buesgen Jun 2003 B2
6868660 Premi Mar 2005 B2
6892766 Bryn et al. May 2005 B2
7117900 Lam et al. Oct 2006 B2
7992596 Khokar et al. Aug 2011 B2
8091589 Yokokawa Jan 2012 B2
8182550 Hayes May 2012 B1
8192824 Rock et al. Jun 2012 B2
20010013377 Wahhoud et al. Aug 2001 A1
20020009590 Matsui et al. Jan 2002 A1
20020020457 Yamamoto Feb 2002 A1
20030051295 Soane et al. Mar 2003 A1
20030167747 Schatton Sep 2003 A1
20030187140 Lintecum et al. Oct 2003 A1
20040011912 t' Sas Jan 2004 A1
20040016093 Lueneburger et al. Jan 2004 A1
20040020548 Yamamoto Feb 2004 A1
20040021255 Bilanin et al. Feb 2004 A1
20040154679 Yamamoto Aug 2004 A1
20040182465 Ward Sep 2004 A1
20050066866 Pederzini Mar 2005 A1
20050166989 Debaes et al. Aug 2005 A1
20050208857 Baron et al. Sep 2005 A1
20050208860 Baron et al. Sep 2005 A1
20060144458 Wahhoud et al. Jul 2006 A1
20070087162 Mandawewala Apr 2007 A1
20070243783 Kotani et al. Oct 2007 A1
20080085648 Hirosue et al. Apr 2008 A1
20090007981 Khokar Jan 2009 A1
20090056900 O'Connor et al. Mar 2009 A1
20100077634 Bell Apr 2010 A1
20100206507 Quigley Aug 2010 A1
20110052861 Rock Mar 2011 A1
20110132488 Teng et al. Jun 2011 A1
Foreign Referenced Citations (30)
Number Date Country
1003689 May 1992 BE
1087146 May 1994 CN
1544737 Nov 2004 CN
3438265 Jun 1985 DE
3629735 Mar 1988 DE
3915085 Nov 1990 DE
19705986 Aug 1998 DE
10040652 Feb 2002 DE
0144119 Jun 1985 EP
0292044 Nov 1988 EP
0534429 Mar 1993 EP
0643161 Mar 1995 EP
1593765 Nov 2005 EP
2175057 Apr 2010 EP
2330238 Jun 2011 EP
190917435 Jan 1910 GB
733042 Jul 1955 GB
2187766 Sep 1987 GB
S6088145 May 1985 JP
S64-006142 Jan 1989 JP
H11246454 Sep 1999 JP
2003073954 Mar 2003 JP
2004149968 May 2004 JP
2009155742 Jul 2009 JP
0047805 Aug 2000 WO
0228760 Apr 2002 WO
02079554 Oct 2002 WO
03029542 Apr 2003 WO
2008113692 Sep 2008 WO
2009106785 Sep 2009 WO
Non-Patent Literature Citations (20)
Entry
Extended European Search Report dated Jun. 12, 2015 in Application No. 13741132.8, 7 pages.
International Search Report with Written Opinion dated Mar. 25, 2013 in Application No. PCT/US2013/022889, 8 pages.
International Search Report with Written Opinion dated Apr. 9, 2013 in Application No. PCT/US2013/022890, 7 pages.
International Search Report with Written Opinion dated Mar. 22, 2013 in Application No. PCT/US13/22936, 7 pages.
International Search Report with Written Opinion dated Mar. 29, 2013 in Application No. PCT/US13/22946, 8 pages.
Naskar et al. “Studies on Tyre Chords: Degradation of Polyester Due to Fatigue” Polymer Degradation and Stability. vol. 83, Issue 1, pp. 179-180. Especially Table 2, p. 178 (Jan. 2004).
Non-Final Office Action dated Mar. 21, 2014 in U.S. Appl. No. 13/748,762, 9 pages.
Notice of Allowance dated Apr. 8, 2014 in U.S. Appl. No. 13/748,758, 14 pages.
Notice of Allowance dated Jul. 16, 2014 in U.S. Appl. No. 13/748,762, 8 pages.
Non-Final Office Action dated May 19, 2015 in U.S. Appl. No. 13/748,774, 7 pages.
Non-Final Office Action dated Sep. 11, 2015 in U.S. Appl. No. 13/748,767, 11 pages.
European Search Report dated Sep. 2, 2015 in Application No. 13740573.4, 6 pages.
Final Office Action dated Oct. 7, 2015 in U.S. Appl. No. 13/748,774, 10 pages.
European Extended Search Report dated Nov. 3, 2015 in Application No. 13740548.6, 7 pages.
European Extended Search Report dated Nov. 3, 2015 in Application No. 13741097.3, 7 pages.
European Extended Search Report dated Nov. 10, 2015 in Application No. 13741014.8, 10 pages.
European Search Report dated Jan. 21, 2016 in Application No. 13740573.4, 14 pages.
Non-Final Office Action dated Feb. 12, 2016 in U.S. Appl. No. 13/748,774, 10 pages.
Notice of Allowance dated Mar. 28, 2016 in U.S. Appl. No. 13/748,767, 5 pages.
Notice of Allowance dated Jun. 29, 2016 in U.S. Appl. No. 13/748,767, 5 pages.
Related Publications (1)
Number Date Country
20130186054 A1 Jul 2013 US
Provisional Applications (1)
Number Date Country
61590177 Jan 2012 US