The present invention relates to an internal antenna device for use in a door handle for a smart entry system and an electronic key among other possibilities.
Many of the current motor vehicles are equipped with a smart entry system that allows a vehicle operator to unlock the door and start the engine simply by carrying a smart key (electronic key) for enhanced convenience and security. For instance, upon detecting that a vehicle operator has held a door handle by using a capacitive sensor or the like, the main body (onboard unit) of a smart entry system communicates with a smart key carried by the vehicle operator via an antenna incorporated in the door handle, and unlocks the door by comparing an ID code transmitted from the smart key to an ID code stored in ROM of the main body. Typically, a smart entry system includes an antenna incorporated in a door handle or a trunk lid so that the onboard unit may communicate with an electronic key via such an antenna.
A motor vehicle incorporated with a smart entry system typically uses a hollow door handle including a handle main body and an outer cover to receive a capacitive sensor and an antenna therein. The handle main body and outer cover are typically made by injection molding plastics for the efficiency in mass production and reduction in weight and cost. The texture of a door handle has a large impact on the aesthetic appearance thereof, and a door handle having a metallic appearance on its surface is preferred. Normally, when a metallic film is formed on the surface of a door handle by plating so as to produce a metallic appearance, it is necessary that the metallic film has a thickness in the range of 50 μm and 75 μm. However, when such a thick metallic film is formed, it means that the antenna is covered by a conductor and a significant reduction in the output of radio-magnetic radiation is inevitable. To overcome this problem, it was proposed to coat the outer cover with a paint containing metallic particles (gloss material) so as to produce the appearance of a metal-plated surface (see Japanese patent laid open publication No. 2005-113475). According to this method, because there are gaps (discontinuous parts) between the metallic particles, the loss in the antenna output can be controlled at will in substantially the same manner as when pure plastic material is used or tinted in the same color as the vehicle body.
According to the door handle disclosed in Japanese patent laid open publication No. 2005-113475, as it is difficult to rigorously control the thickness of the coating and metallic particles tend to be distributed unevenly in the coating, an uneven distribution of discontinuous parts is inevitable. As a result, the range of communication with the electronic key varies depending on the position of the electronic key relative to the door handle, and this prevents a stable communication. As the coating on the door handle of Japanese patent laid open publication No. 2005-113475 is no more than a coat of paint containing metallic particles, it is unable to produce a metallic appearance similar to that of a metallic plating.
In view of such problems of the prior art, a primary object of the present invention is to provide an internal antenna device that can provide a metallic appearance similar to that of a metallic plating while avoiding a loss in the antenna output and ensuring a stable communication.
According to the present invention, such an object can be accomplished by providing an internal antenna device comprising an antenna for communication with an external device and an outer shell member receiving the antenna, characterized by that: a metallic thin film having a thickness of 0.05 μm and 0.20 μm is deposited on a surface of the outer shell member. The metallic film may comprise chromium.
Thereby, the internal antenna device is given with a desirable outer appearance and a high communication performance at the same time. Such a thin film can be formed by sputtering, CVD or PVD as a thin and uniform film, but most favorably formed by sputtering. The present invention is particularly useful when the outer shell member is an outer shell member of a vehicle door handle and when the outer shell member is a casing of an electronic vehicle key.
Now the present invention is described in the following with reference to the appended drawings, in which:
As shown in FIGS. 1 to 5, the door handle device 1 comprises a handle base 3 fixedly secured to an outer face of an outer panel 2 of a door of an automobile, a door handle 5 (internal antenna device) pivotally supported by the handle base 3 via a vertically extending pin 4 and a key cylinder 6 fitted in the handle base 3.
As shown in
In the illustrated embodiment, as shown in
Alternatively, as shown in
<<Comparison Tests for Antenna Performance>>
The Inventors conducted comparison tests for antenna performance by using a first sample consisting solely of an antenna, a second sample consisting of a door handle receiving an antenna therein and having a metallic film (75 μm) formed on the outer cover thereof by plating and a third sample consisting of a door handle receiving an antenna therein and having a metallic film (0.05 μm) formed on the outer cover thereof by sputtering.
In the case of the sample consisting solely of an antenna, the peak of the antenna frequency was 135 kHz and the resonance current was 2.04 A. In the case of the sample having a metallic film (film thickness: 75 μm) formed by plating, the peak of the antenna frequency was 148 kHz and the resonance current was 1.84 A. In this sample, as there was a shift of 13 kHz as compared with the antenna itself, there was a reduction in the antenna efficiency, and the reduction in the resonance current by 0.2 A means a corresponding reduction in the antenna output and reduction in the communication range.
On the other hand, in the case of the sample having a metallic film (film thickness: 0.05 μm) formed by sputtering, the peak of the antenna frequency was 135 kHz and the resonance current was 2.04 A. Therefore, this sample demonstrated the same performance as the antenna alone, and did not involve substantially any reduction in the antenna efficiency, and the virtual absence of any reduction in the antenna output ensures a stable and adequate communication range. Thus, when the thickness of the metallic film is great, not only the antenna efficiency drops owing to a shift in the antenna resonance frequency but also the antennal output is reduced owing to the shielding effect of the metallic film. These two factors contribute to the reduction in the communication range.
As shown in
This concludes the description of the embodiments of the present invention, but the present invention is by no means limited by these embodiments. The metallic film was formed by sputtering in the illustrated embodiments, but may also be formed by CVD, PVD or other film forming methods as long as an adequately thin and uniform metallic film may be formed. The thickness of the metallic film may not be limited to the range mentioned above. According to the actual tests conducted by the inventors, it was determined that the metallic film may appear somewhat transparent and not be commercially acceptable if the thickness of the metallic film is less that 0.05 μm, and it becomes difficult to ensure an adequately uniform texture and prevent cracks if the thickness of the metallic film is greater that 0.20 μm. The thickness of the metallic film may be increased beyond the aforementioned range, for instance to 1 μm if the manufacturing process is controlled appropriately.
The illustrated embodiments were directed to a vehicle door handle for a smart entry system and an electronic vehicle key, but may also be applied to other internal antenna devices such as smart entry systems for buildings and non-contact identification/verification systems. In the illustrated embodiments, a protective layer was formed over the metallic film formed by sputtering, but the protective film may be omitted by using only the metallic film. A base film made of the polyester urethane resin may be formed on the base member before forming the metallic film even when the protective film is omitted.
In the door handle of the first embodiment, the metallic film was formed only on the outer cover that is important for aesthetic performance, but the metallic film may be formed also on both the handle main body and outer cover by sputtering. Thereby, a unified appearance can be achieved, and aesthetic appearance can be enhanced. In the electronic key device of the second embodiment, the metallic film was formed on the entire surface of the casing, but may also be formed only on one side or a part of the casing. In either case, it is preferable to form a protective film over the metallic film, but it may also be omitted.
Although the present invention has been described in terms of preferred embodiments thereof, it is obvious to a person skilled in the art that various alterations and modifications are possible without departing from the scope of the present invention which is set forth in the appended claims.
The contents of the original Japanese patent application on which the Paris Convention priority claim is made for the present application are incorporated in this application by reference.
Number | Date | Country | Kind |
---|---|---|---|
2005-333528 | Nov 2005 | JP | national |