The present invention relates generally to integrated circuit memory devices and, more particularly, to a method and apparatus for internal bypassing of memory array devices.
As will be appreciated by those skilled in the art, in a domino Static Random Access Memory (SRAM), the individual cells do not employ sense amplifiers to sense the differential voltage on the bit line pairs coupled to the cross-coupled inverters that store the data. Rather, for a domino SRAM, the local bit line is precharged, discharged, and the discharge is detected. The local bit line, the means to precharge the local bit line, and the detector define a dynamic node of the domino SRAM.
In a high-speed domino memory array, the array access time may vary widely, depending upon the strength of the cell device that discharges the bit line. As the wafer dimensions of these narrow devices continue to decrease, the process induced variations in fabrication continue to increase. In addition, when the array is written, the access time associated with the data driver switching the bit line can produce an even earlier effective read output of the array. Thus, an enable signal is used to control access timing to the array.
The ability to present the data being written into a memory such as an SRAM (or some logical function of the data) to the output of the memory is a feature that continues to be an issue for many applications. One approach to this problem is to write through the local bitline structure. However, as indicated above, a drawback to this write through solution is that it has become unreliable for fast, domino read style memories due to the so called “fast read before write” effect. Attempts to extend the write through solution add complexity and require additional trade offs. For example, externally bypassing the entire memory requires the addition or expansion of a series multiplexer (and possibly the addition of staging latches), which in general increases the latency and area of the memory. Since the timing of an external bypass scheme is independent of the memory, this also adds to the timing complexities of the downstream logic.
In an exemplary embodiment, an output control circuit for a memory array includes a latched output node that is precharged to a first logic state prior to a read operation and prior to a write operation; first logic configured to selectively couple memory cell data from a memory read path to the output node during the read operation, the first logic controlled by a timing signal; second logic configured to internally bypass the memory read path during the write operation by decoupling the memory read path from the output node, such that a logical derivative of write data written to the memory array is also coupled to the output node through the second logic, the second logic also controlled by the timing signal; and wherein a transition of the output node from the first logic state to a second logic state during the write operation occurs within a time range as that of a transition of the output node from the first logic state to a second logic state during the read operation.
In another embodiment, an output control circuit for a memory array having an upper portion and a lower portion includes a latched output node that is precharged to a first logic state prior to a read operation and prior to a write operation; first logic in each of the upper and lower portions configured to selectively couple memory cell data from a memory read path to the output node during the read operation, the first logic controlled by a corresponding one of an upper and a lower timing signal; second logic configured to internally bypass the memory read path during the write operation by decoupling the memory read path from the output node, such that a logical derivative of write data written to the memory array is also coupled to the output node through the second logic, the second logic controlled by both the upper and lower timing signals; and wherein a transition of the output node from the first logic state to a second logic state during the write operation occurs within a time range as that of a transition of the output node from the first logic state to a second logic state during the read operation.
In another embodiment, a method of controlling an output of a memory array, includes precharging and latching an output node to a first logic state prior to a read operation and prior to a write operation; selectively coupling, with first logic, memory cell data from a memory read path to the output node during the read operation, the first logic controlled by a timing signal; internally bypassing, with second logic, the memory read path during the write operation by decoupling the memory read path from the output node, such that a logical derivative of write data written to the memory array is also coupled to the output node through the second logic, the second logic also controlled by the timing signal; and wherein a transition of the output node from the first logic state to a second logic state during the write operation occurs within a time range as that of a transition of the output node from the first logic state to a second logic state during the read operation.
Referring to the exemplary drawings wherein like elements are numbered alike:
Disclosed herein is a method and apparatus for internal bypassing of memory array devices. The embodiments herein address the “fast read before write” problem by internally bypassing the SRAM local bitline structure and writing the input data into an existing latch embedded internally in the memory. More specifically, the disclosed embodiments expand on an existing structure in many SRAMs that in turn allows somewhat arbitrary functions of the input data to be presented at the output of the SRAM, with similar timing as data that would normally be read from the SRAM. Since the data is presented at the output with similar timing to that of data that is read from the memory, the disclosed approach does not add to the timing complexities of the downstream logic. The embodiments herein eliminate the need for additional staging latches and downstream multiplexers.
Referring initially to
As is shown in
The signal gbl_mux_upper, representing the multiplexed memory read path output is coupled to a pull up PFET PU, which determines whether the latched output node “output” is charged up from a “reset 0” state. Also, for illustrative purposes, a corresponding pull up PFET PL (controlled by the signal gbl_mux_lower) is shown for the lower portion of the SRAM array. The signal gbl_mux_lower is generated in a similar manner with respect to signal gbl_mux_upper.
In a standby state of operation, the control signals “gating signal” and “timing signal” that are inputs to AND gate 102 are at logic low, or inactive. As a result, neither the nominal memory read data path (memory read path (n)), nor the redundant memory read data path, (memory read path (n+m)) affect the output node, which is at a previous state held by a full keeper latch 104.
The inputs DC_enable_b(n) and DC_enable_b(n+m) are configured to allow only one of the two transmission gates (TG0 or TG1) to be on at a given time, in accordance with a memory redundancy scheme. During a normal read access, the reset_before_evaluate signal will temporarily pulse high, causing the pull down NFET NR and set the full keeper latch 104 and the output signal to a low state. Subsequently, both the timing signal (upper or lower) and the gating signal (i.e., read enable) will go active high, allowing the state of the selected memory read path (n or n+m) to be coupled to the full keeper latch 104 and the output. In the case where the selected memory read path contains a logic low value, the associated pull up PFET (PU or PL) remains deactivated, and thus does not disturb the latched “0” state of the output. Conversely, where the selected path contains a logic high value, the associated pull up PFET (PU or PL) is activated, causing the state of the keeper latch 104 and output to change from “0” to “1.” The control signals “gating signal” and “timing signal” are such that only one of the pull up PFETs, PU or PL, is active for any given access of the memory array.
In this configuration, it will be noted that for the latter case that the time when the output changes state is determined by three separate signals, namely reset_before_evaluate, timing signal, and memory read path. The reset_before_evaluate signal determines when the output transitions to a preset low state. The timing signal has less timing variation than the memory read path signal and is designed to go active sooner than the slowest memory read path and later than the fastest memory read path.
Because the gating signal is also used for a write mode of operation, the port enable signal allows a multiplexed memory read path to be coupled to the output during a write. Thus, for the above described fast read before write scenario, if a “0” were to be written to the memory cell, but the memory cell contains a “1”, then this “1” could undesirably appear on the output prior to completion of the write.
Accordingly,
For purposes of simplicity, like components with respect to
As further shown in
In the case of a read operation, the write enable signal is held low, which thereby deactivates the port_enable_bypass signal and thus PB is held off. All of the remaining devices of the circuit 200 behave as described above. In the case of a write operation, the read_enable_upper signal and corresponding read_enable_lower signal (not shown) would remain low (inactive), thus preventing memory read paths from activating PU or PL. Instead, the write_enable signal goes high (active). As is the case with a read operation, the reset_before_evaluate signal still pulses high to set the keeper latch 104 and output node to a low state. Furthermore, during a write operation, instead of the state of a memory read path being transferred to the keeper latch 104 and output node, a logical derivative of the write data into the array is transferred. In the embodiment of
It should be appreciated that the NFET devices NDT, NDB, NET, and NEB may be replaced by any given pulldown structure and can implement many different functions. Moreover, while the exemplary embodiments depict a p-domino type circuit output node topology, the control circuit may also be implemented using an n-domino output node topology. So long as the control circuit 200 makes use of the reset_before_evaluate signal and makes use of the timing signal to generate the port_enable_bypass signal, output transitions within the same timeframe as read operations from the memory read path may be generated.
Finally,
Time t4 represents the earliest case where cell data is available for coupling to the output, pending the activation of the timing signal. Since variation of the arrival of the timing signal is between t5 and t6, it will be seen that the timing signal has less variation than that of the memory read path, where the latest case where cell data is available for coupling to the output is at t9 (and thus the variation of the memory read path is t9-t4).
For the read case, where the memory read path has a rising edge transition at the earliest time t4, this “1” state waits until the arrival of the timing signal before the output/keeper latch can transition from “0” to “1.” If the timing signal also arrives at the earliest point in time at t5, then the soonest the output/keeper latch transitions from “0” to “1” is at time t7, represented by a delay Δ2 after the rise of the timing signal. On the other hand, in the case where the memory read path transition from “0” to “1” is the slowest, at time t9, and given that the timing signal has already been activated (somewhere between t5 and t6), the output/keeper latch transitions from “0” to “1” at time t11, represented by a delay Δ3 after the rise of the memory read path. In sum, the earliest output rising edge for a read operation is determined by the timing signal, whereas the latest output rising edge is determined by the more variable memory read path.
In contrast, for the write case, it will be seen that both the earliest and latest rising output edges are determined solely by the timing signal (which again has less variability than the memory read path). That is, the memory read path is effectively taken out of the equation by the bypass circuitry, and as a result the rising output will be within the range as determined by the read case. For the earlier case of a rising timing signal at time t5, the output/keeper latch transitions from “0” to “1” at time t8, represented by a delay Δ4. For the later case of a rising timing signal at time t6, the output/keeper latch transitions from “0” to “1” at time t10, represented by a delay Δ5.
While the invention has been described with reference to a preferred embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4998221 | Correale, Jr. | Mar 1991 | A |
5146427 | Sasaki et al. | Sep 1992 | A |
5376849 | Dickol et al. | Dec 1994 | A |
5450357 | Coffman | Sep 1995 | A |
5612916 | Neduva | Mar 1997 | A |
5623217 | Britton et al. | Apr 1997 | A |
5726677 | Imamura | Mar 1998 | A |
5818409 | Furuhashi et al. | Oct 1998 | A |
5952859 | Kim et al. | Sep 1999 | A |
6061296 | Ternullo, Jr. et al. | May 2000 | A |
6084454 | Holst | Jul 2000 | A |
6356473 | Shimoyama | Mar 2002 | B1 |
6377098 | Rebeor | Apr 2002 | B1 |
6384754 | Park | May 2002 | B1 |
6510089 | Taura et al. | Jan 2003 | B2 |
7042262 | Tam et al. | May 2006 | B2 |
7075855 | Bunce et al. | Jul 2006 | B1 |
7233542 | Bunce et al. | Jun 2007 | B2 |
7246279 | Pendurkar | Jul 2007 | B2 |
7363526 | Chong et al. | Apr 2008 | B1 |
7425855 | Chen et al. | Sep 2008 | B2 |
7443223 | Bajkowski et al. | Oct 2008 | B2 |
7463545 | Kumala | Dec 2008 | B2 |
7515482 | Kim et al. | Apr 2009 | B2 |
7535776 | Behrends et al. | May 2009 | B1 |
7596053 | White et al. | Sep 2009 | B1 |
7668037 | Carpenter et al. | Feb 2010 | B2 |
7710796 | Cottier et al. | May 2010 | B2 |
20070002619 | Schoenauer et al. | Jan 2007 | A1 |
20080029839 | Hold et al. | Feb 2008 | A1 |
20080258790 | Branch et al. | Oct 2008 | A1 |
20090059653 | Luk et al. | Mar 2009 | A1 |
20090109766 | Terzioglu et al. | Apr 2009 | A1 |
20100039872 | Park et al. | Feb 2010 | A1 |
20110317496 | Bunce et al. | Dec 2011 | A1 |
20110317499 | Bunce et al. | Dec 2011 | A1 |
20110320851 | Bunce et al. | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
100298181 | May 2001 | KR |
0156084 | Aug 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20110317505 A1 | Dec 2011 | US |