This application is related in some aspects to commonly owned and co-pending Ser. No. 12/275,508, entitled “Mounted Cache Memory in a Multi-Core Processor (MCP),” filed Nov. 21, 2008, the entire contents of which are herein incorporated by reference. This application is also related in some aspects to commonly owned and co-pending Ser No. 12/275,552, entitled “Cache Memory Sharing in a Multi-Core Processor (MCP),” filed Nov. 21, 2008, the entire contents of which are herein incorporated by reference. This application is also related in some aspects to commonly owned and co-pending Ser. No. 12/276,069, entitled “Pseudo Cache Memory in a Multi-Core Processor (MCP),” filed Nov. 21, 2008, the entire contents of which are herein incorporated by reference. This application is also related in some aspects to commonly owned and co-pending Ser. No. 12/276,072, entitled “Cache Memory Bypass in a Multi-Core Processor (MCP),” filed Nov. 21, 2008, the entire contents of which are herein incorporated by reference.
The present invention generally relates to circuits. More specifically, the present invention relates to charge transfer for (e.g., digital) circuits.
Power conservation is a growing issue in circuitry as the recent trend towards more energy efficient data center design has become an important issue within Information Technology (IT) industry. One area of concern in power conservation has been the change of modes (e.g., from normal to sleep and vice versa) of circuits. Specifically, a subsystem level stand-by (sleep mode) design has been available, but the current circuit design method does not allow for circuit level control of the stand-by operation. Moreover, fast switching between the sleep and normal modes is essential to enable efficient power usage in digital systems. Current methods of sleeping and wake-up are conducted as a long-term static policy.
Among other things, the present invention enables fast transition between sleep and normal modes for circuits such as digital circuits. This invention utilizes chip internal charge transfer operations to put the circuit into fast sleep. The invention reduces external power involvement, and it expedites the sleep mode transition time by limiting charge transfers within the chip. The invention set forth herein uses high-level circuit block supports and therefore it is applicable to all circuits such as digital circuits. The fast sleep and fast wake-up enable a smarter power management of the system. This functionality also maximizes performance per power, and provides a more energy efficient computing architecture. Among other things, a circuit in accordance with the present invention can include a supply voltage node, a ground voltage node; a set of backgate voltage nodes; and a charge transfer mechanism coupled to the supply voltage node, the ground voltage node, and the set of backgate voltage nodes, the charge transfer mechanism being configured to transfer charge among the supply voltage node, the ground voltage node, and the set of backgate voltage nodes. This allows for rapid wake-up and/or sleep of the circuit and lower power consumption.
A first aspect of the present invention provides a circuit comprising: a supply voltage node; a ground voltage node; a set of backgate voltage nodes; and a charge transfer mechanism coupled to the supply voltage node, the ground voltage node, and the set of backgate voltage nodes, the charge transfer mechanism being configured to transfer charge among the supply voltage node, the ground voltage node, and the set of backgate voltage nodes.
A second aspect of the present invention provides a digital circuit comprising: a supply voltage node; a ground voltage node; a PFET backgate voltage node; a NFET backgate voltage node; and a set of switches coupled to the set of backgate voltage nodes, the supply voltage node, and the ground voltage node, the set of switches being configured to transfer charge: between the supply voltage node and the ground voltage node, between the PFET backgate voltage node and the supply voltage node, and between the NFET backgate voltage node and the ground voltage node.
A third aspect of the present invention provides a method for transferring charge in a circuit, comprising: transferring a supply voltage charge from a supply voltage node to a ground voltage node to put the circuit into a sleep mode; and transferring a backgate voltage charge from a set of backgate voltage nodes to the supply voltage node and the ground voltage node to bring the circuit out of the sleep mode.
A fourth aspect of the present invention provides a method for changing modes of a digital circuit, comprising: closing a first switch in the digital circuit; transferring a supply voltage charge from a supply voltage node to a ground voltage node using the first switch to put the digital circuit into a sleep mode; opening the first switch; closing a second switch and a third switch in the digital circuit; and transferring a backgate voltage charge from a set of backgate voltage nodes to the supply voltage node and the ground voltage node using the second switch and the third switch to bring the digital circuit out of the sleep mode.
These and other features of this invention will be more readily understood from the following detailed description of the various aspects of the invention taken in conjunction with the accompanying drawings in which:
The drawings are not necessarily to scale. The drawings are merely schematic representations, not intended to portray specific parameters of the invention. The drawings are intended to depict only typical embodiments of the invention, and therefore should not be considered as limiting the scope of the invention. In the drawings, like numbering represents like elements.
As indicated above (among other things) the present invention enables fast transition between sleep and normal modes for circuits such as digital circuits. This invention utilizes chip internal charge transfer operations to put the circuit into fast sleep. The invention reduces external power involvement, and it expedites the sleep mode transition time by limiting charge transfers within the chip. The invention set forth herein uses high-level circuit block supports and therefore it is applicable to all circuits such as digital circuits. The fast sleep and fast wake-up enable a smarter power management of the system. This functionality also maximizes performance per power, and provides a more energy efficient computing architecture. Among other things, a circuit in accordance with the present invention can include a supply voltage node, a ground voltage node; a set of backgate voltage nodes; and a charge transfer mechanism coupled to the supply voltage node, the ground voltage node, and the set of backgate voltage nodes, the charge transfer mechanism being configured to transfer charge among the supply voltage node, the ground voltage node, and the set of backgate voltage nodes. This allows for rapid wake-up and/or sleep of the circuit and lower power consumption.
Referring now to
The present invention addresses these issues by providing an internal charge transfer mechanism to so that voltage level controls are internally powered. Referring to
The function of set of switches 52A-C will be explained with specific reference to
The foregoing description of various aspects of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and obviously, many modifications and variations are possible. Such modifications and variations that may be apparent to a person skilled in the art are intended to be included within the scope of the invention as defined by the accompanying claims.
Number | Name | Date | Kind |
---|---|---|---|
5821769 | Douseki | Oct 1998 | A |
5838047 | Yamauchi et al. | Nov 1998 | A |
6404239 | Kawahara et al. | Jun 2002 | B1 |
6535433 | Ooishi | Mar 2003 | B2 |
7039818 | Deng et al. | May 2006 | B2 |
7436205 | Tada | Oct 2008 | B2 |
7521762 | Hidaka | Apr 2009 | B2 |
7531994 | Itoh | May 2009 | B2 |
20030080782 | Bailey et al. | May 2003 | A1 |
20060022742 | Parris et al. | Feb 2006 | A1 |
20080084775 | Hoberman et al. | Apr 2008 | A1 |
20080122479 | Hidaka | May 2008 | A1 |
Number | Date | Country |
---|---|---|
1863177 | Dec 2007 | EP |
Number | Date | Country | |
---|---|---|---|
20100127730 A1 | May 2010 | US |