The present invention relates generally to internal combustion engines, and more particularly to an internal combustion engine with a novel design in which a plurality pistons reciprocate within a spinning rotor to drive rotation of an output shaft or pump or compress a fluid.
Modern internal combustion engines use a four stage cycle to obtain power for rotational motion from the ignition of a combustible fuel, such as gasoline. The first stage is intake wherein a mixture of air and fuel is introduced into a combustion chamber. The second stage is the compression of this mixture within the combustion chamber in preparation for the next stage, the power stage. In the power, or combustion stage, the compressed air and fuel mixture is ignited and the combustion rapidly increased the pressure within the combustion chamber. This pressure is exerted on a movable mechanical part, for example a linearly displaceable piston or a rotatable rotor, to harness power by capturing motion of this movable part. The final fourth stage is the exhausting of gases remaining in the combustion chamber.
Reciprocating type or piston-based engines involve the reciprocation of one or more pistons within a respective cylinder. The pistons are pivotally connected to a crankshaft to convert their linear motion into typically more useful rotational motion. A full rotation of the crankshaft corresponds to two complete strokes of a piston within its cylinder. In a four-stroke engine, a piston completes one combustion cycle for every two rotations of the crankshaft. A two-stroke engine completes its combustion cycle once every crankshaft rotation, but such engines are generally considered to be less efficient and create more pollution.
Rotary combustion engines involve rotational motion of a rotor within a stator instead of reciprocating motion of a piston within a cylinder. Such engines may benefit from a higher power to weight ratio, lower mechanical complexity and vibration reduction when compared to reciprocating engines.
A Wankel engine is a rotary combustion engine featuring a three-sided rotor arranged for planetary motion within an epitrochoid housing. The corners and faces of the rotor seal against the housing to divide its interior into three combustion chambers, each of which carries out four stages of the combustion cycle per rotor rotation for a total of twelve stages. However, the rotor rotates once for every three rotations of an output driveshaft, resulting in four completed stages of the combustion cycle per output rotation, the same as a two-stoke reciprocating engine piston and more than the four-stroke engine pistons typically used in automobiles.
A quasiturbine engine (U.S. Pat. No. 6,164,263) is a rotary combustion engine featuring a four-sided rhomboid rotor with its sides hinged at the corners. Similar to the Wankel engine, the corners and faces of the rotor seal against an oval-like housing like, but four chambers are created instead of three due to the four-sided rotor. However, the rotor turns at the same rate as the output driveshaft and therefore carries out sixteen completed stages of the combustion cycle per output rotation.
Due in part to current concerns regarding depletion of the world's finite supply of fossil fuels and detrimental effects to the environment associated with use of these fuels, there is a large desire to develop more fuel efficient and environmentally friendly alternatives to conventional internal combustion engines.
With this in mind, Applicant has designed a new internal combustion engine with a unique combination of elements not before seen by the Applicant.
According to a first aspect of the invention there is provided an internal combustion engine comprising:
a stationary stator defining a cylindrical interior of circular cross section;
a cylindrical rotor of circular cross section supported within the stator interior for rotation with a drive shaft projecting from the stator along a central axis, the rotor having a plurality of cylindrical bores extending thereinto from a periphery thereof at angularly spaced positions about the driveshaft, the cylindrical bores being oriented and positioned with respect to radii of the rotor to dispose an inner end of each bore forward of an outer end thereof in the predetermined direction of rotor and driveshaft rotation;
a respective seal disposed about each cylindrical bore at the periphery of the rotor to seal around the cylindrical bore between the rotor and the stator;
a respective piston slidably disposed within each cylindrical bore;
a spark plug supported on the stator and operable to provide sparks within combustion chambers passing by the spark plug under rotation of the rotor in the predetermined direction, each combustion chamber formed at a respective one of the cylindrical bores by cooperation of the stator, the respective seal and the respective piston to enclose space between the respective piston and the stator along said cylindrical bore;
an air and fuel intake extending from an exterior of the stator to an interior thereof at a position circumferentially spaced about the central axis from the spark plug to feed fuel and air into the combustion chambers passing by the air and fuel intake under rotation of the rotor in the predetermined direction; and
an exhaust outtake extending from the interior of the stator to the exterior thereof to discharge exhaust gases from each combustion chambers passing by the exhaust outtake after combustion under rotation of the rotor in the predetermined direction, the exhaust outtake being circumferentially spaced about the central axis from the air and fuel intake and spark plug;
whereby combustion of the fuel introduced to the combustion chamber of each cylindrical bore by the air and fuel intake due to ignition in said combustion chamber by the spark plug forces sliding of the respective piston to the inner end of said cylindrical bore to drive continued rotation of the rotor, under which said piston slides outwardly along said cylindrical bore under centrifugal force back toward the stator to compress the fuel and air in the combustion chamber for ignition of the fuel and air when said combustion chamber reaches the spark plug, the exhaust gases being discharged when said combustion chamber subsequently reaches the exhaust outtake before return of said combustion chamber to the air and fuel and intake under the continued rotation of the rotor.
The air and fuel intake may comprise a fuel injector communicable with a fuel source via a fuel pump.
Preferably there is provided a starter operable to initiate the rotation of the rotor.
There may be provided a breaker arm actuable to break contact points of the breaker arm by features carried for rotation with the rotor and spaced apart about the central axis by angular spacing corresponding to spacing of the angularly spaced positions of the cylindrical bores in the rotor about the driveshaft, the contact points of the breaker arm being wired between a battery and primary windings of an ignition coil and secondary windings of the ignition coil being wired to the spark plug.
Preferably opening and closing of the contact points of the breaker arm also control operation of the air and fuel intake.
There may be provided an air compressor coupled to the air and fuel intake to pressurize the air delivered thereto.
Preferably the air compressor is coupled to the driveshaft for driving of the air compressor by rotation of the driveshaft.
Preferably there is provided a compressed air storage tank coupled between the air compressor and the air and fuel intake to store pressurized air from the air compressor.
Preferably there is provided an air pressure regulator coupled to the air and fuel intake to regulate pressure of air communicated thereto.
Preferably there is provided a valve associated with the air and fuel intake to control passage of air therethrough.
Preferably there is provided a water separator on an air intake line that is coupled to the air and fuel intake to remove water droplets from air approaching the air and fuel intake through the air intake line.
Preferably each cylindrical bore is oriented at a forty-five degree angle to a respective radius of the rotor.
Preferably a face of each piston facing outward toward the stator curves about the central axis.
Preferably each cylindrical bore and the respective piston are arranged to maintain a predetermined rotational orientation of said piston about a longitudinal axis of said cylindrical bore during rotation of the rotor in the predetermined direction to situate the face of said piston in an orientation following an inner surface of the stator against which the seals engage.
The cylindrical bores and pistons may be circular in cross-section with one side of each piston having a greater weight than an opposing side of said piston so that said one side will trail said opposing side under rotation of the rotor in the predetermined direction. In this case, each piston may comprise a weight fixed to a body of the piston on said one side thereof. This weight preferably comprises a body of material of greater density than said piston received in a cavity within said piston. Preferably the body of material is a threaded insert and said cavity is a correspondingly threaded bore extending into said piston for threaded receipt of the insert therein.
The engine may include a fluid inlet passage extending from outside the stator into the rotor and communicable with each cylindrical bore through the inner end thereof via a fluid inlet port equipped with a one way inlet valve; a fluid outlet passage closed off from the fluid inlet passage, extending from outside the stator into the rotor and communicable with each cylindrical bore through the inner end thereof via a fluid outlet port equipped with a one way outlet valve; and a fluid outlet conduit coupled with the fluid outlet passage; whereby fluid is drawn into each cylindrical bore under movement of the respective piston toward the stator and forced out of said cylindrical bore to the fluid outlet conduit under subsequent movement of said respective piston toward the inner end of said cylindrical bore when the air and fuel in the combustion chamber of said cylindrical bore is ignited, thereby performing a fluid pumping compressing function for use of the engine as a pump or compressor. In this case, a fluid inlet conduit may be coupled with the fluid inlet passage and a pneumatic or hydraulic apparatus is coupled between the fluid inlet and outlet conduits for driven operation of the apparatus under operation of the internal combustion engine.
According to a second aspect of the invention there is provided a pump or compressor comprising:
a stationary stator defining a cylindrical interior of circular cross section;
a cylindrical rotor of circular cross section supported within the stator for rotation about a central axis, the rotor having a plurality of cylindrical bores extending thereinto from a periphery thereof at angularly spaced positions about the central axis, the cylindrical bores being oriented and positioned with respect to radii of the rotor to dispose an inner end of each bore forward of an outer end thereof in the predetermined direction of rotor rotation;
a respective seal disposed about each cylindrical bore at the periphery of the rotor to seal around the cylindrical bore between the rotor and the stator;
a respective piston slidably disposed within each cylindrical bore and sealed against the rotor around a full periphery of said cylindrical bore;
a spark plug supported on the stator and operable to provide sparks within combustion chambers passing by the spark plug under rotation of the rotor in the predetermined direction, each combustion chamber formed at a respective one of the cylindrical bores by cooperation of the stator, the respective seal and the respective piston to enclose space between the respective piston and the stator along said combustion chamber;
an air and fuel intake extending from an exterior of the stator to an interior thereof at a position circumferentially spaced about the central axis from the spark plug to feed fuel and air into the combustion chambers passing by the air and fuel intake under rotation of the rotor in the predetermined direction;
an exhaust outtake extending from the interior of the stator to the exterior thereof to discharge exhaust gases from each combustion chambers passing by the exhaust outtake after combustion under rotation of the rotor in the predetermined direction, the exhaust outtake being circumferentially spaced about the central axis from the air and fuel intake and spark plug;
a fluid inlet passage extending from outside the stator into the rotor and communicable with each cylindrical bore through the inner end thereof via a fluid inlet port equipped with a one way inlet valve;
a fluid outlet passage closed off from the fluid inlet passage, extending from outside the stator into the rotor and communicable with each cylindrical bore through the inner end thereof via a fluid outlet port equipped with a one way outlet valve; and
a fluid outlet conduit coupled with the fluid outlet passage;
whereby combustion of the fuel introduced to the combustion chamber of each cylindrical bore by the air and fuel intake due to ignition in said combustion chamber by the spark plug forces sliding of the respective piston toward the inner end of said cylindrical bore to drive continued rotation of the rotor and force fluid out of said cylindrical bore to the fluid outlet conduit, said piston then sliding outwardly under centrifugal force toward the stator along said cylindrical bore under said continued rotation of the rotor to draw fluid into said cylindrical bore and compress the fuel and air in the combustion chamber for ignition of the fuel and air when said combustion chamber reaches the spark plug, and exhaust gases being discharged when said combustion chamber subsequently reaches the exhaust outtake before return of said combustion chamber to the air and fuel and intake under the rotation of the rotor.
Preferably lengths of shaft project from the rotor to outside the stator on opposite sides thereof and the fluid passages pass axially through said lengths of shaft into the rotor.
There may be provided bearings on opposite sides of the stator which support the lengths of shaft for rotation, with the lengths of shaft fixed to the rotor for rotation therewith.
According to a third aspect of the invention there is provided an engine comprising:
a stationary stator defining a cylindrical interior of circular cross section;
a cylindrical rotor of circular cross section supported within the stator interior for rotation with a drive shaft projecting from the stator along a central axis, the rotor having a plurality of cylindrical bores extending thereinto from a periphery thereof at angularly spaced positions about the driveshaft, the cylindrical bores being oriented and positioned with respect to radii of the rotor to dispose an inner end of each bore forward of an outer end thereof in the predetermined direction of rotor and driveshaft rotation;
a respective seal disposed about each cylindrical bore at the periphery of the rotor to seal around the cylindrical bore between the rotor and the stator;
a respective piston disposed within each cylindrical bore and freely slidable therealong;
a combustion system connected to the stator and operable to combust an oxygen and fuel mixture to exert a force from combustion of said oxygen and fuel mixture against the respective pistons in the cylindrical bores passing by the combustion system under rotation of the rotor in the predetermined direction; and
an exhaust outtake extending from the interior of the stator to the exterior thereof to discharge exhaust gases from each cylindrical bore passing by the exhaust outtake under rotation of the rotor in the predetermined direction after the exertion of the force from the combustion against the respective piston in said cylindrical bore, the exhaust outtake being circumferentially spaced about the central axis from the combustion system.
The combustion system may comprise a pulse detonation combustor having an outlet thereof opening into the interior of the stator to direct a shockwave into each cylindrical bore during passage thereof past the outlet of the combustor.
Preferably an axis of the outlet of the combustor extends into the interior of the stator at an oblique angle relative to a radius of the interior of the stator at the location of the outlet around the central axis and relative to a longitudinal axis of each cylindrical bore when said bore is situated at the location of the outlet around the central axis, the axis of the outlet sloping toward the predetermined direction of the rotor and driveshaft rotation relative to the central and longitudinal axes as the axis extends into the interior of the stator.
According to a fourth aspect of the invention there is provided a pump or compressor comprising:
a stationary stator defining a cylindrical interior of circular cross section;
a cylindrical rotor of circular cross section supported within the stator interior for rotation with a drive shaft projecting from the stator along a central axis, the rotor having a plurality of cylindrical bores extending thereinto from a periphery thereof at angularly spaced positions about the driveshaft, the cylindrical bores being oriented and positioned with respect to radii of the rotor to dispose an inner end of each bore forward of an outer end thereof in the predetermined direction of rotor and driveshaft rotation;
a respective seal disposed about each cylindrical bore at the periphery of the rotor to seal around the cylindrical bore between the rotor and the stator;
a respective piston disposed within each cylindrical bore and freely slidable therealong;
a combustion system connected to the stator and operable to combust an oxygen and fuel mixture to exert a force from combustion of said oxygen and fuel mixture against the respective pistons in the cylindrical bores passing by the combustion system under rotation of the rotor in the predetermined direction; and
an exhaust outtake extending from the interior of the stator to the exterior thereof to discharge exhaust gases from each cylindrical bore passing by the exhaust outtake under rotation of the rotor in the predetermined direction after the exertion of the force from the combustion against the respective piston in said cylindrical bore, the exhaust outtake being circumferentially spaced about the central axis from the combustion system;
a fluid inlet passage extending from outside the stator into the rotor through a first face thereof and communicable with each cylindrical bore through the inner end thereof via a fluid inlet port equipped with a one way inlet valve;
a fluid outlet passage closed off from the fluid inlet passage, extending from outside the stator into the rotor through a second face thereof opposite the first face and communicable with each cylindrical bore through the inner end thereof via a fluid outlet port equipped with a one way outlet valve; and
a fluid outlet conduit coupled with the fluid outlet passage;
whereby the force exerted on the respective piston in each cylindrical bore forces sliding of the respective piston toward the inner end of said cylindrical bore to drive continued rotation of the rotor and force fluid out of said cylindrical bore to the fluid outlet conduit, after which exhaust gases from the combustion are discharged when said combustion chamber reaches the exhaust outtake before return of said cylindrical bore to the combustion system under the rotation of the rotor and said piston slides outwardly under centrifugal force toward the stator along said cylindrical bore under said rotation of the rotor to draw fluid into said cylindrical bore.
The pump or compressor may be provided in combination with:
an electrical generator having a rotatable input shaft for production of electricity by the electrical generator under rotation of the input shaft about a rotational axis thereof;
a turbine coupled to the input shaft of the electrical generator and comprising a series of vanes arranged circumferentially around a turbine axis about which the turbine is rotatable; and
a nozzle fed from the fluid outlet conduit of the pump or compressor and having an outlet oriented in a direction acting on the vanes of the turbine to drive rotation of the turbine and the input shaft of the electrical generator.
Preferably the nozzle comprises a slit in a tubular member coupled to and fed by the fluid outlet conduit.
Preferably the tubular member comprises an open end coupled to the fluid outlet conduit in fluid communication therewith and a closed end opposite the open end.
Preferably the turbine comprises vane pockets respectively defined between pairs of adjacent vanes, each vane pocket having an open end located between radially outer ends of the pair of adjacent vanes and an opposing closed end nearer the turbine axis.
According to a fifth aspect of the invention there is provided a pneumatically driven electrical generator comprising:
a source of compressed air;
an electrical generator having a rotatable input shaft for production of electricity by the electrical generator under rotation of the input shaft about a rotational axis thereof;
a turbine coupled to the input shaft of the electrical generator and comprising a series of vanes arranged circumferentially around a turbine axis about which the turbine is rotatable; and
a tubular member comprising an open end coupled to the source of compressed air for receipt of compressed air flow therefrom and a closed end opposite the open end, and a slit in the tubular member between the open and closed ends on a side of the tubular member facing a periphery of the turbine to form a nozzle oriented in a direction acting on the vanes of the turbine to drive rotation of the turbine and the input shaft of the electrical generator.
In the accompanying drawings, which illustrate exemplary embodiments of the present invention:
Four cylindrical bores 26 extend into the rotor 22 at the periphery thereof adjacent the inner surface of the stator periphery wall 14 at equally spaced apart positions ninety degrees from one another about the cylindrical periphery of the rotor. Each cylindrical bore 26 has its longitudinal axis oriented at forty-five degrees to a radius of the rotor at the respective angular position about the central axis 20. This oblique angling of the cylindrical bores relative to respective radii of the rotor is in the same direction for each bore, such that an inner end 26a of each bore 26 nearest the shaft 24 and furthest from the rotor periphery leads the outer end of the same bore 26 at the rotor periphery in a direction D in which the rotor 22 and driveshaft 24 are to rotate about the central axis under operation of the engine. Each cylindrical bore 26 is fitted with a respective cylinder liner.
A seal closes around the longitudinal axis of each cylindrical bore at the outer end thereof and biases in sealed engagement against the inner surface of the stator periphery wall 14. Although not illustrated in detail, the seal may be provided in the form of a spring energized seal featuring a wave spring at the top or outer end of the cylinder sleeve that applies pressure to a seal that is contoured to match and mate its outer end flush with the inner surface of the stator periphery wall 14.
Within each cylinder defined by a respective cylindrical bore, or bore and cylinder liner combination, is a piston 28 having a circular cross section, a flat bottom or inner end face 28a and a contoured top or outer end face 28b curving arcuately about the central axis 20 at a radius generally equal to the inner radius of the stator periphery wall 14 so that this contoured outer face 28b matches the curve of the inner side of the stator periphery wall 14 to mate flush thereagainst when the piston is displaced to the outer end of the respective cylinder during operation of the engine. A set of three piston rings 30 proximate the bottom or inner end of each piston provide sealing of the piston around the periphery thereof to the cylinder liner.
As shown in
A spark plug port 36, exhaust port 38 and intake port 40 each extend through the peripheral wall 14 of the stator from the inner to outer surface of the wall to fluidly communicate the interior space of the stator 12 with the surrounding external environment.
A spark plug 42 seated on the peripheral wall 14 of the stator seals against the outer surface thereof around the spark plug port 36 to project inwardly along the spark plug port in the peripheral wall 14 toward the stator interior. The exhaust port 38 is left open to allow discharge of exhaust gases from the interior space of the stator 12.
The intake port 40 is in sealed fluid communication with fuel and air delivery systems in order to introduce a mixture of fuel and air into the interior of the stator 12. A fuel pump 44 is operable in a known manner to draw fuel inside a fuel tank 46 and pump it onward from this fuel source through a fuel line 48 to a fuel injector 50 proximate the intake port 40. In a conventional manner, the fuel injector 50 is operable to atomize the pressurized fuel from the fuel pump to spray a dose of fuel into a stream of delivered to the intake port 40. In the first embodiment, a rotary compressor 52 is driven to compress ambient air drawn thereinto and pump this air into a compressed air storage tank 54. A solenoid valve 56 is controlled to open and close an air intake line connecting the storage tank 54 to the intake port to control intake of air into the stator 12 through the intake port. An air pressure regulator 58 and a water separator 60 are installed on the air intake line between solenoid valve 56 and the storage tank 54 to regulate the pressure of the intake air and separate water droplets therefrom.
In the first embodiment, the intake port 40 and the spark plug port 36 are spaced ninety degrees apart about the central axis 20, with the exhaust port 38 centered between them at forty-five degrees from each about the central axis 20. The opening of the solenoid valve 36 and the actuation of the fuel injector 50 are timed to inject the fuel and air mixture through the intake port 40 as each cylinder passes thereby during rotation of the rotor 22. At each cylinder, a combustion chamber is enclosed in the space bound by the cylinder liner and the seal between the outer face 28b of the respective piston and the peripheral wall of the stator.
As the cylinder passes by the intake port 40 when the rotor is spinning, the mixture of compressed air and atomized fuel enters this combustion chamber. When the rotor rotates within the stator (housing), centrifugal force moves the respective piston outward away from the inner end of the cylinder toward the peripheral wall 14 of the stator 12, which further compresses the air and fuel mixture in the combustion chamber as the rotor rotates the 270 degrees from the intake port 40 to the spark plug port 36. Having the air and fuel mixture in between the piston top or outer end and the stator's peripheral wall will act as a glide for the piston to move around the stator. As the cylinder reaches the spark plug, a spark provided thereby ignites the mixture and the resulting explosion exerts a force on the outer face of the piston, sending the piston linearly inward along the cylinder toward the inner end thereof nearest the center of rotation, where the flat inner face 28a of the piston impacts against the rotor 20. The force exerted on the inner end of the cylinder by this impact acts perpendicularly to a moment arm from the central axis, thereby forcing the rotor to continue turning in the same rotational direction D.
This movement of the piston to the bottom or inner end of the cylinder as a result of the ignition of the air/fuel mixture and resulting explosion occurs as the cylinder moves forty-five degrees from the spark plug port 36 to the exhaust port 38, where the exhaust gases from the explosion are allowed to escape the interior of the stator 12. The cylinder moves another forty-five degrees to arrive back at the intake port 40, where another air fuel mixture is introduced into the space between the stator peripheral wall and the piston, which has yet to move fully back outward to the outer end of the cylinder after being driven to the inner end by the combustion of the previous dose of air/fuel mixture in that cylinder. With four equally spaced cylinders and the ninety degree spacing of the spark plug and intake, the injection of air/fuel mixture into one cylinder occurs at substantially the same time as the ignition of a compressed air/fuel mixture in the next adjacent cylinder.
In the illustrated embodiments, where the spark plug and the intake are spaced apart by the same angle spacing apart adjacent cylinders, the fuel injector and solenoid valve of the air/fuel intake system are wired for actuation by the same separation of the breaker arm contact points that provides the ignition spark, as when one cylinder is passing the spark plug during rotation of the rotor 20, the leading adjacent cylinder is passing the intake.
Each cylinder in the rotor is connected to the first and second chambers 74, 76 by air inlet and outlet ports 86, 88, respectively, passing through the inner end 26a of cylindrical bore 26 on a opposite sides of the barrier 78 at the rotor's central plane. One way air inlet and outlet valves 90, 92 are seated at the air inlet and outlet ports 86, 88 respectively for opening and closing thereof to control flow of air into and out of the inner or bottom end of the cylinder on the side of the piston opposite where the combustion of the air/fuel mixture occurs during engine operation. An inlet bore 94 in the first shaft 80 extends therethrough along the central axis 20 from outside the stator into the first chamber 74 therein, just as an outlet bore 96 in the second shaft 82 extends therethrough along the central axis 20 from outside the stator into the second chamber 74 therein. The stator and rotor are sealed about the rotating shafts so that the inlet bore 94, first chamber 74 and inlet port 86 form an air inlet passage extending into the stator and rotor for selective fluid communication with each cylinder through the respective air inlet valve 86. The outlet bore 96, second chamber 76 and outlet port 88 form an air outlet passage extending into the stator and rotor for selective fluid communication with each cylinder through the respective air outlet valve 88.
During operation of the engine as described above, movement of each cylinder outward under the centrifugal force of the spinning rotor during the compression stage of the combustion cycle will reduce pressure behind the piston (i.e. between the piston and the inner end of the cylinder), which draws air into the cylinder behind the piston via the air inlet passage and one-way air inlet valve. Then during the combustion or power stage of the combustion cycle where the piston is driven back toward the inner end of the cylinder by the combustion of the air/fuel mixture, the air behind the piston is compressed and ultimately forced out of the cylinder through the one-way air outlet valve and air outlet passage. The engine thus acts as an air compressor. An air hose 98 may be coupled with the external end of the second shaft 96 outside the stator via known pneumatic couplings to provide an air outlet or discharge conduit for delivery of the pressurized air from the engine/compressor to pneumatically driven tools or equipment for driving thereof by operation of the engine. The engine/compressor may be used in an open or closed loop pneumatic system, drawing either ambient air from the surrounding environment or return air sent back to the engine/compressor from the pneumatic tools or equipment through an air inlet conduit provided by a return hose 100.
Although described above as compressing and moving air, it will be appreciated that the second embodiment engine can alternatively be used as a pump for conveying liquid instead of air or other gasses. The rotation of the shafts in the second embodiment may also be used for taking off rotational power directly from the engine, allowing use of the engine as a direct rotational drive source, a pneumatic or hydraulic compressor or pump, or a combination of the two. Where the engine is to be used only as a compressor or pump, and thus requiring no externally accessible driveshaft for direct rotational mechanical drive, the rotor may be rotatably carried by bearings on stationary shafts entirely internal to the engine (i.e. not projecting outward from the stator). In a further alternative, the two-shaft arrangement may be replaced by a single shaft embodiment where the single shaft passes through the barrier between the chambers in the rotor in a sealed manner and has two separate internal passages extending along the shaft from opposite ends and passing radially outward through the shaft periphery within the respective chambers.
The Applicant has proposed the following dimensions, materials and other specifications of one embodiment as examples only, and it will be appreciated that the dimensions and materials used may be altered without departure from the scope of the present invention. An aluminum rotor 9 cm wide and 15 cm in diameter may feature cylinders with 3 cm inside diameters, with aluminum pistons 2.9 cm in diameter and 4.5 cm long and copper seals with 3 cm inside diameters and 2.85 cm long. A 1.9 cm diameter stud 3 cm long may be used as the piston weight. The stator may have a 15.2 cm inside diameter and be made of metal. The air and fuel mixture is compressed into the cylinder with the intake air at 120 psi and the fuel injected at 90 psi. The inlet and outlet ports at the inner or bottom end of the cylinder may be 5 mm diameter and 1 cm deep parallel to the cylinder's longitudinal axis, then turn toward the central axis and continue with 5 mm diameter for 3 cm long towards the center. The center of the rotor can have a 3.6 cm diameter hole, 4 cm deep on each side (front, and back) to form the chambers, with 1 cm of aluminum left in the center of rotor to act as the separating barrier wall. The shafts on the bearings holding the rotor may have 5 mm diameter holes or bores allowing the fluid or air to move in and out of the shafts.
Applicant conceives that the igniting and injecting of fuel at the same time causing a faster rotation, with more pressure, and that when the motor is rotating at a comfortable speed, the fuel injector can be shut off, and the collection of used air in the air tank from the compressor, will keep the rotor rotating at the same rpm's. Able to pump gas or liquid fluids and provide direct rotational output, the second embodiment engine would be operable to run or turn multiple turbines, gen-heads, rotors, and other equipment. It will be appreciated that the number of cylinders in the rotor may be increased or decreased, and the angular spacing and oblique angling of the cylinders may also be varied without change to the principles under which the rotation of the rotor is driven.
The third embodiment differs from the preceding embodiments in that the stator's intake port and separate spark plug port have been replaced with a single opening 202 through the cylindrical peripheral wall of the stator, which receives the outlet end 204 of a pulse detonation combustor 206 supported at the exterior of the stator. While only schematically illustrated in this embodiment, the pulse detonation combustor is configured in a known manner, coupled to an air inlet 208 and a source of fuel 210, for example propane, and uses an igniter 212, such as a spark plug, to ignite the mixture of air and fuel, but is configured to effect detonation of the mixture as opposed to just deflagrating the mixture. As a result, the combustor 206 emits a shockwave from the outlet of the combustor into each cylindrical bore as it passes by the position of the combustor outlet at the peripheral wall of the rotor.
The outlet of the combustor is oriented to tilt an axis thereof out of alignment with the radius of the cylindrical stator where the outlet opens to the stator interior so that the end of the combustor outlet leads the rest of the combustor in the rotor's direction of rotation around the central axis of the engine. That is, moving inward toward the interior space of the rotor through the outlet of the combustor and the opening in the stator periphery through which the combustor outlet communicates with the stator interior, the axis of the combustor obliquely intersects the stator radius at the opening 202 in the stator periphery and passes through the stator radius in the predetermined rotation direction of the rotor. The angular difference between the stator radius and the combustor outlet axis exceeds the angular difference between the longitudinal axis of each bore in the rotor and the respective radius of the rotor where the bore extends into the rotor from the periphery thereof. Accordingly, with the combustor outlet axis oriented obliquely relative to the bore axis when one of the cylindrical bores is positioned with the combustor opening 202 opening into it (as shown), for example with a difference of thirty between them, the shockwave emitted from the combustor into the cylindrical bore is directed toward a leading side of the bore in the predetermined direction of rotor rotation. As a result, the force of the shockwave is exerted against both the outer end face of the piston and this leading side of the cylinder wall.
This directionality of the output force from the pulse detonation combustion system is thus intended to better contribute to rotation of the rotor in the predetermined direction of rotation than the non-detonating combustion system of the first two embodiments. The third embodiment may employ valved openings or ports in the bottom of each cylinder to function in the manner described in the second embodiment so that the downstroke of each piston toward the inner/bottom end of the respective cylinder acts to compress air introduced into the bottom of the cylinder beneath the piston by one of the valves and then exhaust this compressed air through the other one-way valve. The outlet conduit receiving the compressed air from the cylinders may be coupled to the pulse detonation combustor to provide the source of air required thereby for the combustion/detonation process.
Additionally or alternatively, compressed air from the cylinders may be directed back into the cylinders on the opposite side of the piston through a compressed air port 214 extending through the stator periphery at a location disposed ahead of the exhaust port relative to the combustor outlet in the rotor's rotational direction. Situated at a position past which each cylinder passes after the piston has been driven down and after the exhaust gases have been allowed to leave the cylinder, the compressed air inlet exerts another force against the outer face of the piston to further contribute to rotation of the rotor. As illustrated, this compressed air port may be angled relative to the bore axes to exert force against the leading side of the cylinder wall.
As also shown in the Figure, pure oxygen may also be fed into the combustor in addition to the air and fuel. In an alternate embodiment, the pure oxygen inlet may be used instead of, rather than in addition to, an air inlet 208.
Above the illustrated pipe 302, a turbine 304 is fixed on an input shaft 306 of a conventional electrical generator 308 so that rotation of the turbine 304 will drive rotation of the generator's input shaft 306 about the rotational axis shared by the shaft and turbine in order to generate electricity. The turbine 304 features vanes or blades 310 extending outwardly away from the shaft axis at circumferentially spaced positions therearound to the outer periphery of the turbine. In one embodiment, closed pockets 312 are defined repectively between pairs of adjacent vanes. Each such pocket has an open end defined at the periphery of the turbine between the radially outermost extents of the respective two adjacent vanes, but is closed off at an opposing inner end closer to the rotational axis of the turbine and shaft. In the illustrated embodiment, the vanes are backward-swept so as to curve in a direction opposite the direction of turbine rotation moving outward from the rotational axis, and each vane pocket is closed off at its opposing walls by annular end plates of the turbine in respective planes normal to the rotational axis.
The pipe 302 lies outside the periphery of the turbine to reside between the parallel vertical planes of the turbine's end plates and is positioned to pass in close proximity to the turbine's circular periphery, for example in a direction tangential thereto. In a side of the pipe 302 facing toward the turbine is a transverse slit 314 in the pipe wall that forms a nozzle directing the compressed air fed into the pipe 302 from the air hose 98 against the sides of the vanes facing opposite the turbine's direction of rotation. To accomplish this, the slit 314 lies in a radial plane of the pipe 302 at a position between the capped off closed end 302b and the point at which the pipe 302 is tangential to the radius of the turbine. To position the slit 314 close to the turbine, the pipe 302 has been coped, notched or cut on the side thereof facing the turbine, and then re-closed in a sealed manner at this cut-away portion, to form a curved recess or saddle 316 into which the turbine periphery extends. The slit 304 is positioned between the deepest part of the recess at the center of the recess's along the pipe axis (i.e. the point at which the pipe is tangential to the turbine radius) and the end of the recess nearest the closed end 302b of the pipe.
During operation of the engine/compressor, pressurized air is fed into the pipe 302, and discharged therefrom at the slit-type nozzle 314 to act against the vanes in a direction pushing against the trailing faces of the vanes inside the vane pockets to drive rotation of the turbine, in a counterclockwise direction in the illustrated embodiment. Fixed on the input shaft of the electrical generator 308, the turbine 304 thus rotates the input shaft 306 in the same direction, causing electricity to be produced by the generator in a conventional manner. Through use of this pneumatically driven generator coupled to the engine/compressor, direct mechanical energy can be captured from the engine's rotation for one purpose, with additional pneumatic energy from the engine/compressor then being simultaneously employed for the purpose of producing electrical energy.
Although the electrical generator is described as relying on the engine/compressor disclosed herein for a source of compressed air, it will be appreciate that a similar configuration of a pipe-fed turbine on an electrical generator may alternatively be fed compressed air or pressurized fluid from other sources.
Turning to
As shown in
With reference to
Tubular pipe 417 connects to the air outlet passage through which compressed air from the engine cylinders is discharged, and runs radially outward from the shaft axis of the engine 402 along the rear face of the stator between the stator and the electrical generation unit 418 of the pneumatically driven electrical generator 404. The pipe 417 is slit to form a nozzle at an intermediate location between the shaft of the engine and the outer periphery of the engine stator, and the turbine 420 of the generator 404 is disposed adjacent the nozzle of the pipe 417 in a position where the pressurized air exiting the pipe 417 through the slit drives rotation of the turbine 420. A portion of the compressed air from the engine/compressor 402 passes the slit in the pipe 417, continuing on to a carbon dioxide splitter 422 coupled to the pipe 417 inside the housing 400, where the carbon of the carbon dioxide in the compressed air is split from the oxygen and captured in the splitter, and the freed oxygen continues on to an outlet 424 disposed outside the housing 400, where an air hose can be connected via a coupler to capture the compressed air, including the oxygen from the splitter, for any of a variety of purposes. Carbon dioxide splitting apparatuses using membranes or porous substrates are disclosed in U.S. Patent Application Publication 2006/0213782 assigned to World Hydrogen, Inc. and U.S. Patent Application Publication 2007/0149392 assigned to General Electric Company, each of which is incorporated herein in its entirety. Where the carbon dioxide splitter requires it, for example as proposed in 2006/0213782, an electrical potential may be provided from the output of the electrical generation unit 418 of the pneumatically driven generator 404.
Referring to
In the embodiment of
Turning to
Near the end of the cylinder 602 opposite the perforated end plate 604, a butterfly valve assembly 618 features a butterfly valve plate 620 disposed inside the cylinder 602 for pivoting therein on a diametrical support shaft 622 fixed to the circular valve plate to project through diametrically opposite holes in the cylinder 602 to the exterior thereof. At opposite ends of this support shaft 622, a pair of parallel legs 624 project radially from the shaft in a common direction. At the distal end of each leg 624, a pin or stub 626 lies parallel to the support shaft 622 and projects from the leg 624 on the side thereof opposite the support shaft 622. The two pins 626 are coaxial with one another.
Outside the cylinder 602, each pin 626 is connected to a respective end of the cross-bar 614 of the flashback arrestor by a respective connecting rod 628. Each pin 626 is pivotally joined to the respective connecting rod 628 to allow relative pivoting therebetween about the pin axis, and each connecting rod 628 is likewise pivotally coupled to the cross bar 614 of the flashback arrestor to allow relative rotation between the connecting rod and cross bar about the axis of the cross bar. Accordingly, movement of the flashback arrestor in the axial direction of the cylinder causes the legs of the butterfly valve assembly 18 to pivot about their axes, thereby swiveling the butterfly valve plate inside the cylinder.
A spark plug 630 is mounted in a radial port in the cylinder wall at a position near the butterfly valve on the same side thereof as the cover plate of the flashback arrestor. The sparkplug is near enough to the butterfly valve so as to always reside between the butterfly valve and the cover plate of the flashback arrestor through the full stroke length of the flashback arrestor's axial movement in the cylinder.
The openings in the perforated end plate are hooked up to the air and propane lines feeding into the cylinder. The length of the plunger is notably less than the axial length of the cylinder, and the cover plate 616 of the flashback arrestor is large enough to cover all the openings in the perforated end plate 604 when in a closed position abutted up against the end plate, but is smaller than the inner diameter of the cylinder so as to allow air and propane from the openings in the perforated end plate to flow past the cover plate when the cover plate 616 is situated in an open position at a distance from the end plate, as shown in
As a cylinder of the engine rotor approaches or reaches the position around the stator at which the outlet of the detonation tube of the combustor resides, the spark plug is fired, causing the air and propane to ignite. The expansion of the ignited mixture forces the cover plate 616 of the flashback arrestor back against the end plate of the cylinder, thereby closing off the openings in the end plate to prevent flashback of the ignited mixture through these openings. The shockwave from the detonation is directed into the cylinder of the engine rotor through the outlet of the detonation tube of the combustor. The process is then repeated, starting again by opening of the cover plate of the flashback assembly to admit a new charge of air and propane, for example when flow of air and propane is again initiated by opening of valves on the air and propane lines based on the monitored timing of the engine rotation.
The embodiment of
The apparatus illustrated in
The combustion force knocks the piston down and rotates the rotor at the same time, the remaining pressure created is directed up towards the Ram Air Turbine to spin it and compress air into the combustor again. The combustion force knocks down the piston, the air and carbon under the piston is being compressed and closes the front side of valve and opening the back side of valve which consists of a carbon steel spring valve (Reed Valve) the air and carbon is compressed out of the cylinder and exits out the back of the engine through the shaft. The compressed air and carbon passes and rotates the Rovak air turbine connected to a generator the remaining air is being passed through a carbon splitting process that will split the carbon from the oxygen molecules holding the carbon molecules in a tube and releasing the oxygen back into the atmosphere again. The remains oxygen being released will have enough force to rotate more Rovak Air Turbines connected to the air coupling exiting the RPG generator.
Since various modifications can be made in my invention as herein above described, and many apparently widely different embodiments of same made within the spirit and scope of the claims without department from such spirit and scope, it is intended that all matter contained in the accompanying specification shall be interpreted as illustrative only and not in a limiting sense.
Number | Name | Date | Kind |
---|---|---|---|
2775493 | Cheney | Dec 1956 | A |
5375564 | Gail | Dec 1994 | A |
5544484 | Voss et al. | Aug 1996 | A |
6164263 | Saint-Hilaire et al. | Dec 2000 | A |
6725646 | Callas et al. | Apr 2004 | B2 |
8511060 | Watts | Aug 2013 | B1 |
Number | Date | Country |
---|---|---|
0394763 | Oct 1990 | EP |
2229274 | Dec 1974 | FR |
2413550 | Oct 1980 | FR |
100680558 | Feb 2007 | KR |
WO 8301091 | Mar 1983 | WO |
WO 9402725 | Feb 1994 | WO |
WO 2008037352 | Apr 2008 | WO |
Entry |
---|
Machine generated translation of KR 100680558 B1 attached, published on Feb. 2, 2007. |
Machine generated translation of WO 2008037352 A1 attached, published on Apr. 3, 2008. |
Number | Date | Country | |
---|---|---|---|
20130186084 A1 | Jul 2013 | US |
Number | Date | Country | |
---|---|---|---|
61589971 | Jan 2012 | US |