This application is the U.S. National Phase of PCT Appln. No. PCT/DE2020/100519 filed Jun. 18, 2020, which claims priority to DE 10 2019 118 689.7 filed Jul. 10, 2019, the entire disclosures of which are incorporated by reference herein.
The present disclosure relates to a method of operating an electromechanical camshaft adjuster which comprises an actuating gearing, in particular a three-shaft gearing. Furthermore, the present disclosure relates to an internal combustion engine with an electromechanical camshaft adjuster.
Various operating methods of camshaft adjusters are described in DE 102 59 133 A1 and DE 102 42 659 A1. In particular, these publications deal with the interaction of an engine control unit with the camshaft adjuster. Wobble plate gears, which function as three-shaft gears, are used as actuating gears for the camshaft adjusters.
Another camshaft adjuster with a wobble plate gear is disclosed in DE 102 36 507 A1. In this case, mechanical means are arranged between the crankshaft of the internal combustion engine and the camshaft to be adjusted to limit the adjustment of the angle of rotation.
DE 10 2012 219 297 A1 describes a method for operating a motor vehicle which comprises an engine control unit and additionally a camshaft adjuster control unit. A CAN bus is provided for data transmission. The camshaft adjuster control unit can be started before the engine control unit start-up is completed.
WO 2006/122665 A1 describes a topology for generating an actuating signal for an electrically actuated camshaft adjuster. Here, a control unit is integrated into a regulating unit. Hall sensors are provided to detect states of the camshaft adjuster.
DE 10 2004 041 232 B4 describes a method for operating a camshaft adjuster, which may comprise an electric or a hydraulic actuating device. In any case, reference and/or base values relating to the state of the camshaft adjuster are obtained by averaging values from different points in time as part of the operating procedure.
An object of the present disclosure is achieving progress in the control of electromechanical camshaft adjusters, in particular with regard to the use of resources for data processing.
This object is achieved by a method for operating an electromechanical camshaft adjuster of the present disclosure and by an internal combustion engine of the present disclosure. The embodiments and advantages of the present disclosure explained below in connection with the internal combustion engine and its components also apply analogously to the operating method and vice versa.
The internal combustion engine is designed as a reciprocating piston engine and comprises a crankshaft and at least one electromechanically adjustable camshaft in a basic structure known per se. An actuating gearing is provided for adjusting the camshaft, which is for example a three-shaft gearing, in particular a harmonic drive. In this context, reference is made to DE 10 2017 114 175 B3 as an example.
The camshaft adjuster is operated as follows:
The camshaft adjuster can thus be operated without directly measuring the angular position of the camshaft to be adjusted. All that is required is the detection of the reference position of the camshaft, wherein the corresponding signal is usually made available to the engine control unit of the internal combustion engine anyway. The aforementioned signal is also referred to as the camshaft trigger edge.
The ring buffers, into which changes in the state of the crankshaft or the adjusting shaft are continuously written, are designed, for example, to record data during a working cycle, i.e. a 360° camshaft rotation, corresponding to a 720° crankshaft rotation. Likewise, it is also possible to record data over several work cycles.
The angular changes of the crankshaft are detected with a finer resolution than the angular changes of the rotor of the electric motor, which is coupled to the adjusting shaft of the actuating gearing in a non-rotatable manner. Due to the given positive or negative reduction ratio of the actuating gearing, which is for example 1:30, 1:60, 1:90 or 1:200 or even more extreme, a very fine resolution of the angular position of the camshaft is nevertheless possible. Preferably, the calculation of the angular position of the camshaft, which takes into account the transmission ratio of the actuating gearing, is carried out with an accuracy that is at least a factor of 5 higher than the detection of the angular position of the crankshaft, in particular with at least 10 times the accuracy.
In a preferred method, the angular positions of both the crankshaft and the rotor of the electric motor, which lie between two positions that can be discretely distinguished from one another with the aid of sensor signals, are determined approximately by calculation through temporal extrapolation. It is assumed that the shaft in question, i.e. the motor shaft of the electric motor or the crankshaft, rotates at a practically constant speed during the period to which the interpolation refers.
The internal combustion engine according to the present disclosure comprises a crankshaft, at least one camshaft which is adjustable electromechanically by means of an actuating gearing, in particular a harmonic drive, an engine control unit, and a camshaft control unit which is provided for controlling an actuating motor, namely an electric motor, which operates the actuating gearing, wherein the engine control unit is linked to a device for detecting the angular position of the crankshaft, and the camshaft control unit is linked to the engine control unit, and wherein a device for detecting a reference position of the camshaft to be adjusted and a device for detecting the angular position of the shaft of the actuating motor are provided as sole means for detecting the angular position of the camshaft, and the camshaft control unit is designed to determine the phase angle of the camshaft in relation to the crankshaft on the basis of the information items provided by said devices in combination with the detected angular position of the crankshaft and the transmission ratio of the actuating gearing.
The electric actuating motor of the camshaft adjuster is designed, for example, as a permanent-magnet synchronous motor. The electric motor has, for example, four or six pairs of poles. Changes in the angular position of the rotor of the electric motor can be detected, for example, with the aid of Hall sensors.
According to one possible embodiment, the engine control unit comprises a ring buffer with two memory areas, which are provided for recording various edges of a crankshaft trigger wheel detected during the rotation of the crankshaft. By detecting rising edges as well as falling edges, not only can a higher resolution be achieved compared to a detection of only similar edges, but also a checking mechanism regarding the freedom of the recorded data from logical contradictions can be implemented. This type of signal processing can also be implemented in the camshaft control unit.
According to a possible embodiment, the camshaft control unit comprises a ring buffer with two memory areas, wherein a first memory area is provided for recording the amount of angular changes of the shaft of the actuating motor, i.e. the rotor of the electric motor, and a second memory area is provided for recording changes in the direction of rotation. A change in the direction of rotation is understood here to mean a change between a leading of the rotor in relation to the camshaft and a reduced speed of the rotor of the electric motor in comparison to the speed of the camshaft. A rotating system is therefore chosen as the reference system to which the change in direction of rotation refers. The rotating system typically includes a chain wheel or belt wheel that is fixed to the housing of the actuating gearing. A change in the direction of rotation of the type described is equivalent to a change in the adjustment direction of the camshaft adjuster.
In the following, an exemplary embodiment of the present disclosure is explained in more detail by means of a drawing. The figures show the following in an, in parts, roughly schematized manner:
An internal combustion engine constructed as an in-line engine and identified overall with the reference sign 1 comprises a crankshaft 2 and two camshafts 3, 4, namely an intake camshaft 3 and an exhaust camshaft 4. Deviating from the exemplary embodiment shown, the internal combustion engine could also be a reciprocating piston engine of a different design, for example a V-engine, which has two intake and two exhaust camshafts.
The camshafts 3, 4 are driven by the crankshaft 2 via chain gears 5, 6. Each camshaft 3, 4 is adjustable by means of an electromechanical camshaft adjuster 7, 8. The camshaft adjusters 7, 8 each have as actuating gearing 9, 10 a three-shaft gearing constructed as a harmonic drive. A shaft on the input side of the actuating gearing 9, 10 is driven by the chain gears 5, 6. The shaft of the actuating gearing 9, 10 on the output side is connected to the camshaft 3, 4 to be adjusted in a non-rotatable manner. A third shaft of each actuating gearing 9, 10 can be driven by an electric motor 11, 12 associated with the respective camshaft adjuster 7, 8. Here, the motor shaft of the electric motor 11, 12, marked 29, on which a rotor 28 is mounted, is coupled to the third shaft of the actuating gearing 9, 10 in a non-rotatable manner, optionally via a compensating coupling. In the exemplary embodiment, the so-called third shaft is an inner ring of a wave generator of the actuating gearing 9, 10 designed as a harmonic drive.
The electric motors 11, 12 are connected to a camshaft control unit 17 via connection lines 13 and signal lines 14. Plug connections of the electric motor 11, 12 for the connection lines 13 are marked with 15, and plug connections for the signal lines 14 with 16. The aforementioned lines 13, 14 are connected to a plug connection 18 of the camshaft control unit 17. Hall signals HSA, HSB, HSC, which are obtained with the aid of Hall sensors, are transmitted via the signal lines 14 and provide information items on changes in the angular position of the rotor 28. The Hall sensors are attributable to a rotor position detection device marked as a whole with 44.
The camshaft control unit 17 is connected to the engine control unit, marked with 21, of the internal combustion engine 1 via a data bus 19, namely a CAN bus, and a signal line 20. A crankshaft sensor 23 is connected to the engine control unit 21 via a line 22. The crankshaft sensor 23 scans a crankshaft trigger wheel 27 which is fixed to the crankshaft 2. Further, sensors 24, 25 are connected to the engine control unit 21, each of which interacts with a trigger disk 26 connected to a camshaft 3, 4.
The crankshaft trigger wheel 27 has teeth 35 which, together with an adjacent gap located between two teeth 35, each cover an angle of 6°. A recess 36 is formed by omitting two teeth, wherein the first tooth 35 adjacent to the recess 36 is a reference mark 34. The signal detected by means of the reference mark 34 is also referred to as the TD signal. A copy of this TD signal, to which a further mark can be added, is sent from the engine control unit 21 to the camshaft control unit 17 via the signal line 20. Within the camshaft control unit 17, the TD signal indicating a reference angular position of the crankshaft is logically linked to features of the electric motor 11, 12.
A rising edge Fs and a falling edge Ff are given by each tooth 35. The angular distance between two adjacent rising edges Fs is 6°, as already explained. The time difference required for the crankshaft 2 to rotate by 6°, i.e. to continue rotating by one tooth 35, is denoted by tdK. With a good approximation, it can be assumed that the crankshaft speed does not change during further rotation by one tooth 35. Thus, a time interval denoted by tpK, which indicates a partial period of time when the crankshaft 2 continues to rotate from one tooth 35 to the next tooth 35, can be used to calculate any angular position of the crankshaft 2 lying between two teeth 35. In this way, as illustrated in
In a comparable manner, the bit patterns BM generated during operation of the electric motor 11, 12 and the pattern counter MC are used to extrapolate angular positions of the camshaft 3, 4. In the case of the camshaft 3, 4, tdN denotes the time period within which one and the same bit pattern BM is present, corresponding to an angle of rotation of the camshaft 3, 4 by 10°. Smaller time intervals tpN, which are measured during the application of one and the same bit pattern BM, are used to calculate the further rotation of the camshaft 3, 4 within the aforementioned angular range of 10°. This calculation also assumes that the motor shaft 29 rotates within the relevant angular range, here the 10° range, at an approximately constant angular velocity.
With regard to the interaction of measurements on the crankshaft 2 and the camshaft adjuster 7, 8, reference is made below to
Compared to the crankshaft trigger wheel 27, the trigger disk 26 supplies the camshaft 3, 4 with data with a much lower frequency. The detection of the edge 33 on the trigger disk 26 is related in time to the angular position of the crankshaft 2, as illustrated in
The camshaft control unit 17 comprises an evaluation unit 37, marked with XOR in
The data stored in the various memory areas 39, 40 are used, based on the known relation between the reference positions Crr, Cmr, as well as on the transmission ratio of the actuating gearing 9, 10, which is also known, to calculate the phase value designated AP, i.e. the phase relation between camshaft 3, 4 and crankshaft 2. The complete, precise calculation of the phase value AP is thus performed without any measurement on the camshaft 3, 4, apart from the detection of the camshaft reference position Cmr by detecting the edge 33 of the trigger disk 26. Deviating from the exemplary embodiment, the trigger disk 26 can also be located elsewhere on the internal combustion engine 1, wherein a trigger signal is generated, for example, once per camshaft revolution or once per crankshaft revolution.
Number | Date | Country | Kind |
---|---|---|---|
10 2019 118 689.7 | Jul 2019 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/DE2020/100519 | 6/18/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/004574 | 1/14/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4481912 | Stwiorok | Nov 1984 | A |
20050183681 | Axmacher et al. | Aug 2005 | A1 |
20050211208 | Axmacher et al. | Sep 2005 | A1 |
20050216177 | Kassner | Sep 2005 | A1 |
20050252469 | Neubauer et al. | Nov 2005 | A1 |
20060042074 | Stork | Mar 2006 | A1 |
20070261670 | Nguyen et al. | Nov 2007 | A1 |
20080245329 | Stork et al. | Oct 2008 | A1 |
20090183701 | Nguyen | Jul 2009 | A1 |
20110162445 | Shimizu | Jul 2011 | A1 |
20150260140 | Wang | Sep 2015 | A1 |
20200116246 | Weber et al. | Apr 2020 | A1 |
Number | Date | Country |
---|---|---|
101035967 | Sep 2007 | CN |
101052785 | Oct 2007 | CN |
19737999 | Mar 1999 | DE |
10236507 | Feb 2004 | DE |
10242659 | Mar 2004 | DE |
10315317 | Mar 2004 | DE |
10259133 | Jul 2004 | DE |
102004015037 | Oct 2005 | DE |
202005012163 | Oct 2005 | DE |
102012219297 | May 2013 | DE |
102004041232 | Jul 2017 | DE |
102017114175 | Sep 2018 | DE |
1630363 | Mar 2006 | EP |
3014139 | Jun 2015 | FR |
2328752 | Mar 1999 | GB |
2010127192 | Jun 2010 | JP |
2015004325 | Jan 2015 | JP |
WO2006122665 | Nov 2006 | WO |
Entry |
---|
See Corresponding Search Report for International Application PCT/DE2020/100519. |
Number | Date | Country | |
---|---|---|---|
20220259991 A1 | Aug 2022 | US |