This application claims the benefit of priority to Japanese Patent Application No. 2022-104891 filed on Jun. 29, 2022, the entire contents of which are hereby incorporated herein by reference.
The present invention relates to a dry-sump internal combustion engine and a straddled vehicle having the same.
A dry-sump internal combustion engine having an oil tank which is at least partially partitioned by a crankcase has been known in the art. For example, JP 2010-53852A discloses such an internal combustion engine.
The internal combustion engine disclosed in JP 2010-53852A has an oil tank arranged rearward of an oil pan and a feed pump arranged forward of the oil pan. An oil pan is arranged between the oil tank and the feed pump. An oil passageway connecting between the oil tank and the feed pump is formed downward of the oil pan (see FIG. 8 of JP 2010-53852A). The drive shaft of the oil pump extends in the left-right direction, and the oil passageway extends forward from the oil tank.
With the internal combustion engine described above, the feed pump includes an intake port that is open downward. The oil in the oil tank flows forward through the oil passageway arranged downward of the oil pan, then flows upward, and is sucked upward into the intake port of the feed pump. Now, if the feed pump can quickly suck in oil from the oil tank immediately after the start of the internal combustion engine, the pressure of the oil discharged from the feed pump can be quickly increased. Therefore, from immediately after the start of the internal combustion engine, oil can be supplied desirably to the sliding parts of the internal combustion engine.
The present invention has been made in view of the above, and an object thereof is to provide a dry-sump internal combustion engine and a straddled vehicle having the same, with which oil can be supplied desirably from immediately after the start of the internal combustion engine.
An internal combustion engine disclosed herein includes: a crankcase that supports a crankshaft; an oil tank that is at least partially partitioned by the crankcase; a scavenge pump including a first intake port and a first discharge port; a feed pump including a pump shaft, a second intake port and a second discharge port, and configured to discharge oil, which has been sucked in through the second intake port as the pump shaft rotates, through the second discharge port; a scavenge discharge passageway connecting together the first discharge port of the scavenge pump and the oil tank; and a feed intake passageway connecting together the oil tank and the second intake port of the feed pump. As viewed from an axial direction of the pump shaft, at least a portion of the feed pump and the oil tank overlap with each other.
With the internal combustion engine described above, as viewed from the axial direction of the pump shaft, the feed pump is arranged near the oil tank. Therefore, the feed intake passageway connecting together the oil tank and the feed pump can be shortened. Since the feed intake passageway is relatively short, the feed pump can quickly suck in oil from the oil tank from immediately after the start of the internal combustion engine. Since it is possible to quickly increase the pressure of the oil discharged from the feed pump, it is possible to desirably supply oil to the sliding parts from immediately after the start of the internal combustion engine.
As viewed from the axial direction of the pump shaft, the second intake port of the feed pump and the oil tank may overlap with each other.
Then, as viewed from the axial direction of the pump shaft, the second intake port of the feed pump is arranged near the oil tank. Therefore, the feed pump can quickly suck in oil from the oil tank from immediately after the start of the internal combustion engine. It is possible to desirably supply oil to the sliding parts from immediately after the start of the internal combustion engine.
As viewed from the axial direction of the pump shaft, the pump shaft and the oil tank may overlap with each other.
The feed intake passageway may extend straight.
Then, as compared with the case where the feed intake passageway is bent, the feed pump can quickly suck in oil from the oil tank from immediately after the start of the internal combustion engine. Therefore, it is possible to desirably supply oil to the sliding parts from immediately after the start of the internal combustion engine.
The feed intake passageway may be arranged parallel to the pump shaft.
Then, the feed intake passageway and the pump shaft can be arranged in a compact arrangement.
The internal combustion engine may include: a relief passageway configured to direct oil, which is discharged from the feed pump, to the oil tank; and a relief valve provided along the relief passageway. The relief passageway may include a parallel portion that is parallel to the feed intake passageway.
Then, excess oil discharged from the feed pump can be quickly returned to the oil tank. Therefore, it is possible to reduce the oil consumption of the oil tank. Unlike the inner relief mechanism that returns excess oil discharged from the feed pump to the feed intake passageway, it is possible to avoid the risk of hydraulic pressure pulsation. Moreover, since the relief passageway includes a parallel portion that is parallel to the feed intake passageway, the relief passageway and the feed intake passageway can be arranged in a compact arrangement.
The internal combustion engine may include: an oil pan provided in the crankcase; and a scavenge intake passageway connecting together the oil pan and the first intake port of the scavenge pump. The scavenge intake passageway may include a parallel portion that is parallel to the feed intake passageway.
Then, the scavenge intake passageway and the feed intake passageway can be arranged in a compact arrangement.
A straddled vehicle disclosed herein includes the internal combustion engine described above.
One of the feed pump and the oil tank may be arranged leftward of a vehicle center line and the other one of the feed pump and the oil tank may be arranged rightward of the vehicle center line.
The oil tank may be arranged forward relative to the crankshaft in a vehicle front-rear direction.
A dimension of the oil tank in a vehicle up-down direction may be greater than a dimension of the oil tank in a vehicle front-rear direction.
An upper end of the oil tank may be located upward relative to a center of the crankshaft.
According to the present invention, it is possible to provide a dry-sump internal combustion engine and a straddled vehicle having the same, with which oil can be supplied desirably from immediately after the start of the internal combustion engine.
An internal combustion engine and a straddled vehicle according to one embodiment will now be described with reference to the drawings.
The terms front, rear, left, right, up and down, as used in the description below, refer to these directions as viewed from a virtual rider seated on a seat 2 while the motorcycle 1 is standing upright on a horizontal surface with no rider and no load thereon, unless specified otherwise. The designations F, Re, L, R, U and D, as used in the figures, refer to front, rear, left, right, up and down, respectively.
The motorcycle 1 includes a vehicle body frame 3 with a head pipe 3A, a seat 2 on which the rider is seated, an internal combustion engine (hereinafter referred to as “engine”) 5, a front wheel 6 and a rear wheel 8. A steering shaft (not shown) is supported on the head pipe 3A so that the steering shaft can rotate left and right. A handlebar 4 is fixed to an upper portion of the steering shaft. The front fork 7 is fixed to a lower portion of the steering shaft. The front wheel 6 is supported on the front fork 7.
As shown in
As shown in
As shown in
As shown in
The strainer 19 and the intake port 14a of the scavenge pump 14 are connected together by a scavenge intake passageway 24. The intake port 14a of the scavenge pump 14 is connected to the oil pan 18 via the scavenge intake passageway 24 and the strainer 19. The scavenge intake passageway 24 includes a portion 24A that extends forward and upward. The scavenge intake passageway 24 also includes a portion 24B that extends rightward (see
As shown in
As shown in
As shown in
The engine 5 includes a relief passageway 23 that guides the oil discharged from the feed pump 16 to the oil tank 13. In
As described above, the feed pump 16 and the oil tank 13 are arranged in the front portion of the engine 5. As shown in
Next, the oil circulation in the engine 5 will be described. The oil in the oil pan 18 is purified by the strainer 19 and is sucked into the scavenge pump 14 through the scavenge intake passageway 24. The oil discharged from the scavenge pump 14 is supplied to the oil tank 13 through the scavenge discharge passageway 20. The oil from the oil tank 13 is sucked into the feed pump 16 through the feed intake passageway 22. The oil discharged from the feed pump 16 is supplied to the sliding parts through the feed discharge passageway 25. When the discharge pressure of the feed pump 16 becomes equal to or greater than the threshold value, the relief valve 27 opens and some of the oil discharged from the feed pump 16 returns to the oil tank 13 through the relief passageway 23. The oil supplied to the sliding parts is collected in the oil pan 18 after lubricating the sliding parts.
The engine 5 according to the present embodiment is configured as described above. With the engine 5 according to the present embodiment, at least a portion of the feed pump 16 and the oil tank 13 overlap with each other as viewed from the axial direction of the pump shaft 15 so that the feed pump 16 is arranged near the oil tank 13 as viewed from the axial direction of the pump shaft 15. Therefore, the feed intake passageway 22 connecting together the oil tank 13 and the feed pump 16 can be shortened. Because the feed intake passageway 22 is relatively short, the feed pump 16 can quickly suck in oil from the oil tank 13 from immediately after the start of the engine 5. The feed pump 16 can quickly increase the oil pressure. Therefore, with the engine 5 according to the present embodiment, it is possible to desirably supply oil to the sliding parts from immediately after the start.
According to the present embodiment, the intake port 16a of the feed pump 16 and the oil tank 13 overlap with each other as viewed from the axial direction of the pump shaft 15 (see
According to the present embodiment, the feed intake passageway 22 extends straight (see
According to the present embodiment, the feed intake passageway 22 is arranged parallel to the pump shaft 15. The feed intake passageway 22 and the pump shaft 15 can be arranged in a compact arrangement.
According to the present embodiment, the engine 5 includes the relief passageway 23 and the relief valve 27. With the relief passageway 23, excess oil discharged from the feed pump 16 can be quickly returned to the oil tank 13. Therefore, it is possible to reduce the oil consumption of the oil tank 13. Unlike the inner relief mechanism that returns excess oil discharged from the feed pump 16 to the feed intake passageway 22, it is possible to avoid the risk of hydraulic pressure pulsation. Moreover, according to the present embodiment, the relief passageway 23 includes a parallel portion 23A that is parallel to the feed intake passageway 22. The relief passageway 23 and the feed intake passageway 22 can be arranged in a compact arrangement.
According to the present embodiment, the scavenge intake passageway 24 includes a parallel portion 24B that is parallel to the feed intake passageway 22. Thus, the scavenge intake passageway 24 and the feed intake passageway 22 can be arranged in a compact arrangement.
While one embodiment has been described above, the above embodiment is merely an example, and various other embodiments are possible.
In the embodiment described above, a portion of the feed pump 16 overlaps with the oil tank 13 as viewed from the axial direction of the pump shaft 15, but the feed pump 16 may entirely overlap with the oil tank 13. As viewed from the axial direction of the pump shaft 15, the intake port 16a of the feed pump 16 does not need to overlap with the oil tank 13. As viewed from the axial direction of the pump shaft 15, the pump shaft 15 and the oil tank 13 does not need to overlap with each other.
The feed intake passageway 22 and the pump shaft 15 does not need to be parallel to each other.
The relief passageway 23 does not need to include a parallel portion 23A that is parallel to the feed intake passageway 22. The engine 5 does not need to include the relief passageway 23.
The scavenge intake passageway 24 does not need to include the parallel portion 24B that is parallel to the feed intake passageway 22.
At least a portion of the feed pump 16 and at least a portion of the oil tank 13 may both be arranged leftward of the vehicle center line CL or may both be arranged rightward of the vehicle center line CL.
At least a portion of the oil tank 13 may be arranged rearward of the crankshaft 11. The shape of the oil tank 13 does not need to be vertically elongate. The dimension 13H of the oil tank 13 in the up-down direction may be less than or equal to the dimension 13L of the oil tank 13 in the front-back direction. The upper end 13t of the oil tank 13 may be located downward relative to the center of the crankshaft 11.
A straddled vehicle refers to a vehicle that is straddled by the rider. The straddled vehicle is not limited to the motorcycle 1. The straddled vehicle may be an auto tricycle, an ATV (All Terrain Vehicle), or a snowmobile, for example.
The terms and expressions used herein are used for explanation purposes and should not be construed as being restrictive. It should be appreciated that the terms and expressions used herein do not eliminate any equivalents of features illustrated and mentioned herein, but include various modifications falling within the claimed scope of the present invention. The present invention may be embodied in many different forms. The present disclosure is to be considered as providing examples of the principles of the invention. These examples are described herein with the understanding that such examples are not intended to limit the present invention to preferred embodiments described herein and/or illustrated herein. Hence, the present invention is not limited to the preferred embodiments described herein. The present invention includes any and all preferred embodiments including equivalent elements, modifications, omissions, combinations, adaptations and/or alterations as would be appreciated by those skilled in the art on the basis of the present disclosure. The limitations in the claims are to be interpreted broadly based on the language included in the claims and not limited to examples described in the present specification or during the prosecution of the application.
Number | Date | Country | Kind |
---|---|---|---|
2022-104891 | Jun 2022 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
7017546 | Patel | Mar 2006 | B1 |
20070151787 | Ashida | Jul 2007 | A1 |
20080173274 | Inui | Jul 2008 | A1 |
20150136065 | Kong | May 2015 | A1 |
20180346052 | Uchida | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
2009243437 | Oct 2009 | JP |
2010-053852 | Mar 2010 | JP |
Number | Date | Country | |
---|---|---|---|
20240018887 A1 | Jan 2024 | US |