The present invention relates to a method for controlling valve lift shifting in an internal combustion engine having a variable valve lift system whereby the engine can operate selectively in either of at least two valve lift modes, and a variable valve timing system, and more particularly, to minimizing torque changes when shifting lift modes.
In an internal combustion engine with variable valve lift system, for example a cam profile shifting (CPS) system as described in U.S. Pat. No. 5,287,830A, switching valve lift mode can introduce a step in the output torque of the engine, which can cause discomfort to persons in a vehicle in which the engine is operating.
In that regard, the inventors herein have recognized that the engine output torque is related to engine volumetric efficiency and load. In particular, at an operating condition where the torque is the same for more than one valve lift mode, volumetric efficiency and load are also the same for the same valve lift modes, under the condition that the air fuel ratio, engine friction and combustion efficiency remain the same in the valve lift modes. The volumetric efficiency is dependent mainly on the engine speed, the VVT position, the valve lift mode, and the pressure ratio across the cylinders, i.e. the intake/exhaust relative pressure. Therefore, the inventors herein determined that it is in principle possible to find, for any given engine speed and any given intake/exhaust relative pressure, a VVT position value that gives the same volumetric efficiency, and therefore the same torque, in both valve lift modes. In other words, by finding this balance value of the VVT position, it is possible to obtain the same volumetric efficiency in more than one valve lift mode, and thereby to obtain the same output torque in more than one valve lift mode. Still differently worded, it is desirable to find a VVT position where the torque curves for two valve lift modes intersect. Thus, torque steps can be minimised when shifting modes in a variable valve lift system of an internal combustion engine.
Accordingly, the present invention is directed to minimizing torque steps when shifting modes in a variable valve lift system of an internal combustion engine by controlling the variable valve timing system so as to reduce a difference between two of the valve lift modes regarding the output torque of the engine.
In one embodiment of the present invention, the variable valve timing system is controlled based at least partially on the engine speed and a pressure parameter of the engine. Regarding the pressure parameter, as explained further below, the pressure ratio across the cylinders gives an accurate result, but can be approximated by a number of alternative parameters. More specifically, as explained closer below, in one alternative the pressure parameter is at least partly based on the pressure in an intake manifold of the engine, and in another alternative, the pressure parameter is at least partly based on the air flow in the intake manifold. In yet another alternative the variable valve timing system is controlled based at least partially on the engine speed and the position of a throttle valve of the engine.
It will be appreciated that features of the invention are susceptible to being combined in any combination without departing from the scope of the invention as defined by the accompanying claims.
By way of example only, embodiments of the present invention will now be described with reference to the accompanying drawings wherein:
a-4d are diagrams of variable valve timing values and load; and
In operation each of the camlobes 6a, 6b acts on valve actuators 4a, 4b, located between the camlobes and the valve. The valve actuators are connectable by connecting means (not shown), in turn controllable by a CPS hydraulic control system 4c. In turn the CPS hydraulic control system 4c in controllable by an engine control unit (ECU) 7. The ECU 7 has computational capabilities and storage capabilities, and can be formed by one or more physically separate, but logically connected devices. The current CPS system 4 setting is known to the ECU 7. In a low lift mode, shown in
As can be seen in
Alternatively, still within the scope of the present invention, the CPS system can be provided in a variety of manners known in the art, for example as described in U.S. Pat. No. 5,950,583A. In particular, the CPS actuator can be provided in alternative manners, and the CPS system can be adapted to assume more than two valve lift modes, or cam profile modes.
The engine also comprises a variable valve timing (VVT) system 8, which is adapted to set the camshaft 1 at desired angular positions in relation to the camshaft wheel 3b. The VVT system comprises a timing actuator 8a, for example of the type described in U.S. Pat. No. 6,135,077A, at the camshaft wheel 3b. The timing actuator 8a is controllable by a VVT hydraulic control system 8b. In turn the VVT hydraulic control system 8b in controllable by the ECU 7. Also, by means of a connection 8c to a cam phase detector and a connection 8d to a crankshaft position detector, the ECU can determine a current value of the VVT position.
Also provided is a capability (not shown) to establish the engine speed, in any manner known in the art.
Besides the engine speed, the method according to this embodiment of the invention uses a pressure parameter, regarding which the following should be noted: The pressure ratio across the cylinder(s), i.e. the intake/exhaust relative pressure, is an accurate parameter for the method, but the exhaust pressure is difficult to measure in practice.
In the embodiment presented here, the intake manifold relative pressure is used as an approximation of the intake/exhaust relative pressure. In a naturally aspirating engine, the intake manifold relative pressure, i.e. intake/atmospheric pressure ratio, is a good parameter to use, since it is a good approximation of said intake/exhaust relative pressure, and since it is easy to establish in practice. As an alternative approximation for a naturally aspirating engine, the air flow, detected by means of a suitable sensor in the intake manifold, could be used instead of, or in combination with, the manifold relative pressure. As a further alternative for a naturally aspirated engine, the position of the throttle valve 10 can be used to obtain an approximate value of the intake/exhaust relative pressure.
For a turbo charged engine, and for the intake/exhaust relative pressure, the exhaust pressure can be approximated as a function of the air flow added to the atmospheric pressure. Alternatively, in a turbo charged engine, the exhaust pressure can be approximated as a function of the turbo charge pressure.
As can be seen in
The invention is based on the realisation that the volumetric efficiency and the load, on which the output torque (brake torque) is partly dependent, are in turn dependent mainly on the engine speed, the intake/exhaust relative pressure, the value of the VVT system 8, and the setting of the CPS system 4. Based on said realisation, it is in principle possible to find, for any given engine speed and any given intake/exhaust relative pressure, a VVT system setting value that gives the same volumetric efficiency, and therefore the same torque, in both valve lift modes, herein also referred to as CPS modes. Here, the VVT system setting value that gives the same volumetric efficiency in both CPS modes is referred to as the VVT balance value BVVVT.
As can be seen in
Referring to
Similarly, as shown in
Referring to
A special case is shown in
As can be seen in
The ECU 7 is also adapted to determine a requested CPS mode REQCPS 311 and a current CPS mode CURRCPS 312, and determine if the requested CPS mode REQCPS and the current CPS mode CURRCPS are identical 313. If they are identical, no CPS mode change is carried out 314. If the requested CPS mode REQCPS and the current CPS mode CURRCPS are not identical, and the current VVT position value is within the range MINVVT-MAXVVT 309, the CPS mode is changed to the requested CPS mode REQCPS 315. Also, the CPS mode is changed to the requested CPS mode REQCPS 315 if the current VVT position has been adjusted to fall within this range MINVVT-MAXVVT 310.
Alternatively, if it is determined 309 that the current VVT value is outside the range delimited by the minimum limit MINVVT and the maximum limit MAXVVT for the VVT position, simply no change of the CPS system mode is carried out. Also, if it is determined 309 that the current VVT value is outside said range, a CPS mode shift could be based on other criterias.
As mentioned, in the determination of the VVT balance value BVVVT, alternative parameters can be used instead of the load. For example, the volumetric efficiency can be used since it is in a way similar to the load dependent upon the CPS modes, engine speed, the intake/exhaust relative pressure and the VVT position. Also, instead of the load, the CPS modes, engine speed, the intake/exhaust relative pressure and the VVT position can be mapped against the output torque (brake torque). In the latter case, the air/fuel ratio, the combustion efficiency, and the friction loss (partly dependent on engine oil temperature) can be, for the method described here, assumed to be independent of the CPS modes. Alternatively, one or more of the air/fuel ratio, the combustion efficiency, and the friction loss can be determined for the respective CPS modes, so that consideration is given to such a parameter as well. For example, when determining whether to change the CPS mode, consideration can be given to a determined combustion efficiency in the required CPS mode. If it is determined, based on the calculated combustion efficiency that there is no risk of knocking within the VVT range MINVVT-MAXVVT in the required CPS mode, the CPS mode can be changed. However, if it is determined that there is a risk of knocking in said range in the required CPS mode, the VVT position, or the range, can be offset to counteract this effect.
As an alternative to the embodiment described with reference to
It should be noted that the invention is equally applicable to engines with variable valve lift systems providing more than two valve lift modes. It should also be noted that the method according to the invention is equally applicable to engines with spark ignition and engines with compression ignition.
Number | Date | Country | Kind |
---|---|---|---|
05110939.5 | Nov 2005 | EP | regional |