Internal combustion engine coupled turbocharger with an infinitely variable transmission

Information

  • Patent Grant
  • 9644530
  • Patent Number
    9,644,530
  • Date Filed
    Wednesday, July 13, 2016
    8 years ago
  • Date Issued
    Tuesday, May 9, 2017
    7 years ago
Abstract
A turbocharger for use with an internal combustion engine is provided. The turbocharger comprises a differential device having a carrier portion, a compressor portion, and a turbine portion. The compressor portion is in driving engagement with a first portion of the differential device. The turbine portion is in driving engagement with a second portion of the differential device. The carrier portion of the differential device is in driving engagement with an infinitely variable transmission. The infinitely variable transmission is in driving engagement with the internal combustion engine. The turbocharger is simply controlled, reduces turbo lag, decreases a boost threshold of the turbocharger, and increases an efficiency of the internal combustion engine.
Description
FIELD OF THE INVENTION

The present invention relates to energy recovery systems and more specifically to waste heat recovery systems used with internal combustions engines.


BACKGROUND OF THE INVENTION

In conventional reciprocating piston engines, ambient air is typically pulled inside an engine cylinder during an intake (or induction) stroke of a piston. The volumetric efficiency, which is the amount of air inducted into the engine cylinder by the piston divided by the cylinder volume, is limited both by the atmospheric pressure and the change in pressure needed to bring air into the cylinder. Increasing the volumetric efficiency reduces relative engine losses, increases engine efficiency, and also increase the power output of the engine without increasing a displacement of the engine. A related common trend is engine downsizing, which means a size of the engine is reduced in order to decrease engine losses significantly, while maintaining about the same amount of power output from the engine.


In order to improve the volumetric efficiency of naturally aspirated engines, two forced induction devices may be typically used; a turbocharger or a supercharger. A supercharger typically comprises a compressor in driving engagement with an engine crankshaft to compress additional air before intake into the engine. Superchargers will not be discussed in detail herein as they do not recuperate the kinetic energy from an exhaust gas flow; instead superchargers increase the power of the engine by increasing the volumetric efficiency of the engine.



FIG. 1 shows a cut-through sketch of a turbocharger 100 known in the prior art. A turbine 102, which is a radial inflow turbine expander, is shown which has an intake port 104 where the exhaust gas flow enters the turbine 102 radially and leaves through an outlet port 106 axially. A plurality of blades 108 of the turbine 102 allow for a recuperation of kinetic energy from the exhaust gas flow, which is directed to a central rotor hub 110. The central rotor hub 110 is also drivingly engaged with a compressor 112, in which a flow of air enters an intake port 114 axially and is pushed radially to an outlet port 116 by a plurality of blades 118 of the compressor 112. Due to inherent limitations in the design, the turbocharger 100 is subject to several issues that may be solved by using a complex control methodology or through the addition of costly technologies to the turbocharger 100.


One issue associated with such a turbocharger is a maximum boost pressure that the engine can withstand without damage to components of the engine due to increased pressure. Further, knocking of the engine may damage the turbocharger. A boost pressure increases depending on am amount of exhaust gases, as the compressor is directly linked to the turbine. At a certain point, pressure has to be limited to avoid engine knocking and other potential damage related to the increased pressure at an intake manifold of the engine. This issue is commonly corrected through the use of a wastegate. The wastegate diverts a portion of the exhaust gas from the turbine, thus limiting the pressure and amount of energy that can be recuperated by the turbine. In a conventional configuration of a turbocharger, the excessive wasted exhaust and the complex control of the wastegate cannot be avoided.


Another issue associated with such a turbocharger issue is a dynamic known as turbo lag. Turbo lag is a time required to adjust a power output of the turbocharger in response to an adjustment in a throttle of the vehicle. Turbo lag is caused by an amount of time needed to generate a required pressure boost by an exhaust system and the turbine. Turbo lag significantly depends on the inertia of the components of the turbocharger, an amount of friction within the turbocharger, and an initial speed of the turbocharger, and an amount of exhaust gas passing through the turbine. A number of ways exist to decrease the turbo lag. For example, it is possible to decrease the rotational inertia, to change the aspect ratio of the turbine, to use variable geometry components, amongst other improvement, but all improvements significantly affect a cost and complexity of the turbocharger.


Another issue associated with such a turbocharger is a boost threshold. Turbochargers start producing boost only when enough energy can be recuperated by the turbine. Without the required amount of kinetic energy, the turbocharger will not be able to provide the required amount of boost. An engine speed at which this limitation disappears is called a boost threshold speed. The boost threshold speed is dependent on an engine size and an operating speed of the engine, a throttle opening, and a design of the turbocharger. As a result of the boot threshold, an operator of a vehicle including the turbocharger may notice an ineffectiveness of the turbocharger when the engine is operated under a certain speed.


A final issue associated with such a turbocharger is based on an energy recuperation capability of the turbocharger. The turbine of the turbocharger is only able to recuperate energy from the exhaust gas flow to compress intake gases. If the operator of the vehicle requests a low amount of power output from the engine, compression of the intake gases is not necessary, and all of the kinetic energy in the exhaust gas flow is directed around the turbine using the wastegate. Directing the exhaust gas flow around the turbine using the wastegate is an inefficient manner of operation for the turbocharger.


It would be advantageous to develop a turbocharger for an internal combustion engine that is simply controlled, reduces turbo lag, decreases a boost threshold of the turbocharger, and increases an efficiency of the internal combustion engine.


SUMMARY OF THE INVENTION

Presently provided by the invention, a turbocharger for an internal combustion engine that is simply controlled, reduces turbo lag, decreases a boost threshold of the turbocharger, and increases an efficiency of the internal combustion engine, has surprisingly been discovered.


In one embodiment, the present invention is directed to a turbocharger for an internal combustion engine. The turbocharger comprises a differential device having a carrier portion, a compressor portion, and a turbine portion. The compressor portion is in driving engagement with a first portion of the differential device. The turbine portion is in driving engagement with a second portion of the differential device. The carrier portion of the differential device is in driving engagement with an infinitely variable transmission. The infinitely variable transmission is in driving engagement with the internal combustion engine.


In another embodiment, the present invention is directed to a turbocharger for an internal combustion engine. The turbocharger comprises a differential device having a carrier portion, a compressor portion, a turbine portion, and an output shaft. The compressor portion is in driving engagement with a first portion of the differential device. The turbine portion is in driving engagement with a second portion of the differential device. The output shaft is in driving engagement with the carrier portion of the differential device and a ratio adjusting device. The ratio adjusting device is in further engagement with an infinitely variable transmission. The infinitely variable transmission is in driving engagement with the internal combustion engine.


In yet another embodiment, the present invention is directed to a turbocharger for an internal combustion engine. The turbocharger comprises a differential device having a carrier portion, a compressor portion, a turbine portion, a first ratio adjusting device, and an output shaft. The compressor portion is in driving engagement with a first portion of the differential device. The turbine portion is in driving engagement with a second portion of the differential device. A first ratio adjusting device is in driving engagement with at least one of the compressor portion and the first portion of the differential device and the turbine portion and the second portion of the differential device. The output shaft is in driving engagement with the carrier portion of the differential device and a second ratio adjusting device. The second ratio adjusting device is in further engagement with an infinitely variable transmission. The infinitely variable transmission is in driving engagement with the internal combustion engine.


Various aspects of this invention will become apparent to those skilled in the art from the following detailed description of the preferred embodiment, when read in light of the accompanying drawings.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIG. 1 is a schematic illustration of a cut away side view of a turbocharger known in the prior art;



FIG. 2 is a schematic illustration of a cut away side view of an embodiment of a turbocharger according to the present invention, the turbocharger in driving engagement with a ratio adjusting device, an infinitely variable transmission, and an internal combustion engine;



FIG. 3 is a schematic illustration of a cut away side view of an embodiment of a turbocharger according to another embodiment of the present invention, the turbocharger in driving engagement with a ratio adjusting device, an infinitely variable transmission, and an internal combustion engine;



FIG. 4 is a schematic illustration of a cut away side view of an embodiment of a turbocharger according to another embodiment of the present invention, the turbocharger in driving engagement with a ratio adjusting device, an infinitely variable transmission, and an internal combustion engine;



FIG. 5 is a schematic illustration of a cut away side view of an embodiment of a turbocharger according to another embodiment of the present invention, the turbocharger in driving engagement with a ratio adjusting device, an infinitely variable transmission, and an internal combustion engine;



FIG. 6 is a schematic illustration of a cut away side view of an embodiment of a turbocharger according to another embodiment of the present invention, the turbocharger in driving engagement with a ratio adjusting device, an infinitely variable transmission, and an internal combustion engine;



FIG. 7 is a schematic illustration of a cut away side view of an embodiment of a turbocharger according to another embodiment of the present invention, the turbocharger in driving engagement with a ratio adjusting device, an infinitely variable transmission, and an internal combustion engine;



FIG. 8 is a speed diagram of the turbocharger according to any one of the embodiments of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

It is to be understood that the invention may assume various alternative orientations and step sequences, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification are simply exemplary embodiments of the inventive concepts defined herein. Hence, specific dimensions, directions or other physical characteristics relating to the embodiments disclosed are not to be considered as limiting, unless expressly stated otherwise.



FIG. 2 schematically illustrates a turbocharger 200 for use with an internal combustion engine 202. The turbocharger 200 is in driving engagement and fluid communication with the internal combustion engine 202. The turbocharger 200 is in driving engagement with the internal combustion engine 202 through a differential device 204, a ratio adjusting device 206, and an infinitely variable transmission 208. Typically, the internal combustion engine 202 is used as a power source for a vehicle (not shown); however, it is understood that the internal combustion engine 202 may be used in other applications, such as in stationary power generation applications.


The turbocharger 200 includes a turbine portion 210, a compressor portion 212, the differential device 204, and an output shaft 214. The turbine portion 210, the compressor portion 212, the differential device 204, and the output shaft 214 are rotatably mounted within a housing 216 using a plurality of bearings (not shown). The turbine portion 210 and the compressor portion 212 are drivingly engaged with the output shaft 214 through the differential device 204. As is known in the art, the turbine portion 210 is driven by exhaust gases via an exhaust port 218 of the internal combustion engine 202. The turbine portion 210 is drivingly engaged with the compressor portion 212 through the differential device 204 to provide compressed air to an intake port 220 of the internal combustion engine 202. The output shaft 214 is also drivingly engaged with the internal combustion engine 202 through the ratio adjusting device 206 and the infinitely variable transmission 208; however, it is understood that the turbine portion 210 and the compressor portion 212 may be drivingly engaged internal combustion engine 202 in another manner that facilitates infinitely variable driving engagement therebetween. As shown in FIG. 2, the output shaft 214 passes through a central perforation 221 formed through the compressor portion 212; however, it is understood that the output shaft 214 may pass through the turbine portion 210 or that the output shaft 214 may be drivingly engaged with the internal combustion engine 202 in another manner.


The differential device 204 comprises a first side gear 222, a second side gear 224, a differential carrier 226, and a plurality of spider gears 228. The first side gear 222, the second side gear 224, the differential carrier 226, and the plurality of spider gears 228 are disposed within the housing 216, between the turbine portion 210 and the compressor portion 212. The first side gear 222 and the second side gear 224 are bevel gears respectively disposed on and spliningly engaged with the compressor portion 212 and the turbine portion 210. Alternately, it is understood that the first side gear 222 and the second side gear 224 may be integrally formed with the compressor portion 212 and the turbine portion 210, respectively. The differential carrier 226 is a member in driving engagement with the output shaft 214 on which the plurality of spider gears 228 are rotatingly disposed. The plurality of spider gears 228 are bevel gears each in driving engagement with the first side gear 222 and the second side gear 224 and facilitate a differential action therebetween. FIG. 2 illustrates the differential device 204 having two spider gears 228; however, it is understood that the differential device 204 may include three or more spider gears 228. It is also understood that it is within the scope of the invention for the turbocharger 200 to be adapted to include a planetary style differential, instead of the bevel gear style differential shown in FIG. 2.


The internal combustion engine 202 comprises at least an engine block (not shown) and an engine output 232; however, it is understood that the internal combustion engine 202 will typically include other components, such as a plurality of valves, a plurality of pistons, at least one crankshaft, a plurality of connecting rods, a clutching device, a fuel delivery system, an ignition system, and a cooling system. The internal combustion engine 202 is in fluid communication with the turbocharger 200 through the intake port 220 and the exhaust port 218. The internal combustion engine 202 is in driving engagement with the output shaft 214 through the infinitely variable transmission 208 and the ratio adjusting device 206. The internal combustion engine 202 may be any type of internal combustion engine which may be fitted with a turbocharger.


The ratio adjusting device 206 is a drive ratio adjusting device in driving engagement with the output shaft 214 and the infinitely variable transmission 208. The ratio adjusting device 206 is a fixed ratio device which adjusts a drive ratio between the output shaft 214 and the infinitely variable transmission 208. As a non-limiting example, the ratio adjusting device 206 may comprise a plurality of gears drivingly engaged with one another. FIG. 2 illustrates the ratio adjusting device 206 disposed about a portion of the output shaft 214; however, it is understood that the ratio adjusting device 206 may be arranged in another manner, such as through a gear, a belt, or a power take off, for example.


The infinitely variable transmission 208 is a drive ratio adjusting device that is in driving engagement with the ratio adjusting device 206 and the internal combustion engine 202. The infinitely variable transmission 208 may be placed in an infinite number of drive ratios to facilitate driving engagement between the ratio adjusting device 206 and the internal combustion engine 202. It is understood that the infinitely variable transmission 208 may be placed in a positive drive ratio, a negative drive ratio, and a zero drive ratio. The infinitely variable transmission 208 may include a clutching device (not shown) for drivingly disengaging the internal combustion engine 202 from the turbocharger 200. As a non-limiting example, the infinitely variable transmission 208 may be a tilting ball style infinitely variable transmission or another type of infinitely variable transmission. FIG. 2 illustrates the infinitely variable transmission 208 disposed about a portion of the output shaft 214; however, it is understood that the infinitely variable transmission 208 may be arranged in another manner, such as through a gear, a belt, or a power take off, for example. It is also understood that it is within the scope of the invention for the infinitely variable transmission 208 to be substituted with an electric motor (not shown), the electric motor in electrical communication with a control system (not shown) of a vehicle incorporating the turbocharger 200.



FIG. 3 schematically illustrates a turbocharger 300 for use with an internal combustion engine 302 according to another embodiment of the invention. The embodiment shown in FIG. 3 includes similar components to the turbocharger 200 for use with the internal combustion engine 202 illustrated in FIG. 2 Similar features of the embodiment shown in FIG. 3 are numbered similarly in series, with the exception of the features described below.



FIG. 3 schematically illustrates the turbocharger 300 for use with an internal combustion engine 302. The turbocharger 300 is in driving engagement and fluid communication with the internal combustion engine 302. The turbocharger 300 is in driving engagement with the internal combustion engine 302 through a differential device 340, a ratio adjusting device 306, and an infinitely variable transmission 308. Typically, the internal combustion engine 302 is used as a power source for a vehicle (not shown); however, it is understood that the internal combustion engine 302 may be used in other applications, such as in stationary power generation applications.


The differential device 340 comprises a first side gear 342, a second side gear 344, a differential carrier 346, and a plurality of spider gears 348. The first side gear 342, the second side gear 344, the differential carrier 346, and the plurality of spider gears 348 are disposed within the housing 316, between the turbine portion 310 and the compressor portion 312.


The first side gear 342 and the second side gear 344 are magnetic bevel gears respectively disposed on and spliningly engaged with the compressor portion 312 and the turbine portion 310. Each of the side gears 342, 344 comprise a plurality of magnets arranged in a circular pattern in a face of the side gears 342, 344. A polarity of alternating magnets is reversed for magnetically engaging each of the plurality of spider gears 348. Alternately, it is understood that the first side gear 342 and the second side gear 344 may be integrally formed with the compressor portion 312 and the turbine portion 310, respectively.


The differential carrier 346 is a member in driving engagement with the output shaft 314 on which the plurality of spider gears 348 are rotatingly disposed.


The plurality of spider gears 348 are magnetic bevel gears each in magnetic engagement with the first side gear 342 and the second side gear 344 and facilitate a differential action therebetween. Each of the spider gears 348 comprise a plurality of magnets arranged in a circular pattern in a face of the gears 348. A polarity of alternating magnets is reversed for magnetically engaging each of the side gears 342, 344. FIG. 3 illustrates the differential device 340 having two spider gears 328; however, it is understood that the differential device 340 may include three or more spider gears 348.



FIG. 4 schematically illustrates a turbocharger 400 for use with an internal combustion engine 402 according to another embodiment of the invention. The embodiment shown in FIG. 4 includes similar components to the turbocharger 200 for use with the internal combustion engine 202 illustrated in FIG. 2 Similar features of the embodiment shown in FIG. 4 are numbered similarly in series, with the exception of the features described below.



FIG. 4 schematically illustrates the turbocharger 400 for use with an internal combustion engine 402. The turbocharger 400 is in driving engagement and fluid communication with the internal combustion engine 402. The turbocharger 400 is in driving engagement with the internal combustion engine 402 through a differential device 450, a ratio adjusting device 406, and an infinitely variable transmission 408. Typically, the internal combustion engine 402 is used as a power source for a vehicle (not shown); however, it is understood that the internal combustion engine 402 may be used in other applications, such as in stationary power generation applications.


The differential device 450 comprises a first side gear 452, a second side gear 454, a first intermediate ferrite member 455, a second intermediate ferrite member 456, a differential carrier 457, and a plurality of spider gears 458. The first side gear 452, the second side gear 454, the first intermediate ferrite member 455, the second intermediate ferrite member 456, the differential carrier 457, and the plurality of spider gears 458 are disposed within the housing 416, between the turbine portion 410 and the compressor portion 412.


The first side gear 452 and the second side gear 454 are magnetic bevel gears respectively disposed on and spliningly engaged with the compressor portion 412 and the turbine portion 410. Each of the side gears 452, 454 comprise a plurality of magnets arranged in a circular pattern in a face of the side gears 452, 454. A polarity of alternating magnets is reversed for magnetically engaging each of the plurality of spider gears 458 through the intermediate ferrite members 455, 456. Alternately, it is understood that the first side gear 452 and the second side gear 454 may be integrally formed with the compressor portion 412 and the turbine portion 410, respectively.


The first intermediate ferrite member 455 is a member disposed between the first side gear 452 and the plurality of spider gears 458. The first intermediate ferrite member 455 is formed from a ferrous material and facilitates in a transfer of the magnetic field between the first side gear 452 and the plurality of spider gears 458.


The second intermediate ferrite member 456 is a member disposed between the second side gear 454 and the plurality of spider gears 458. The second intermediate ferrite member 456 is formed from a ferrous material and facilitates in a transfer of the magnetic field between the second side gear 454 and the plurality of spider gears 458.


The differential carrier 457 is a member in driving engagement with the output shaft 414 on which the plurality of spider gears 458 are rotatingly disposed.


The plurality of spider gears 458 are magnetic bevel gears each in magnetic engagement with the first side gear 452 and the second side gear 454 through the intermediate ferrite members 455, 456 and facilitate a differential action between the first side gear 452 and the second side gear 454. Each of the spider gears 458 comprise a plurality of magnets arranged in a circular pattern in a face of the gears 458. A polarity of alternating magnets is reversed for magnetically engaging each of the side gears 452, 454 through the intermediate ferrite members 455, 456. FIG. 4 illustrates the differential device 450 having two spider gears 458; however, it is understood that the differential device 450 may include three or more spider gears 458.



FIG. 5 schematically illustrates a turbocharger 500 for use with an internal combustion engine 502 according to another embodiment of the invention. The embodiment shown in FIG. 5 includes similar components to the turbocharger 200 for use with the internal combustion engine 202 illustrated in FIG. 2 Similar features of the embodiment shown in FIG. 5 are numbered similarly in series, with the exception of the features described below.



FIG. 5 schematically illustrates the turbocharger 500 for use with an internal combustion engine 502. The turbocharger 500 is in driving engagement and fluid communication with the internal combustion engine 502. The turbocharger 500 is in driving engagement with the internal combustion engine 502 through a differential device 560, a ratio adjusting device 506, and an infinitely variable transmission 508. Typically, the internal combustion engine 502 is used as a power source for a vehicle (not shown); however, it is understood that the internal combustion engine 502 may be used in other applications, such as in stationary power generation applications.


The differential device 560 comprises a first drive ring 562, a second drive ring 564, a ball carrier 566, and a plurality of balls 568. The first drive ring 562, the second drive ring 564, the ball carrier 566, and the plurality of balls 568 are disposed within the housing 516, between the turbine portion 510 and the compressor portion 512.


The first drive ring 562 is an annular member formed from a metal. The first drive ring 562 is disposed on and spliningly engaged with the compressor portion 512. A portion of an outer surface of the first drive ring 562 is configured to contact a portion of each of the plurality of balls 568. The portion of each of the plurality of balls 568 is in driving engagement with the first drive ring 562 through one of a boundary layer type friction and an elastohydrodynamic film. Such driving engagement affords a transfer of torque without slipping. At least a portion of the housing 516 is filled with a shear thickening fluid to facilitate the driving engagement with the first drive ring 562 and the plurality of balls 568.


The second drive ring 564 is an annular member formed from a metal. The second drive ring 564 is disposed on and spliningly engaged with the turbine portion 510. A portion of an outer surface of the second drive ring 564 is configured to contact a portion of each of the plurality of balls 568. The portion of each of the plurality of balls 568 is in driving engagement with the second drive ring 564 through one of a boundary layer type friction and an elastohydrodynamic film. As mentioned hereinabove, at least a portion of the housing 516 is filled with the shear thickening fluid to facilitate the driving engagement with the second drive ring 564 and the plurality of balls 568.


The ball carrier 566 is a member in driving engagement with the output shaft 514. The ball carrier includes a plurality of axes 569 in a radially arrangement onto which the plurality of balls 568 are rotatingly disposed.


The plurality of balls 568 are metal spheres in driving engagement with the first drive ring 562 and the second drive ring 564 through the shear thickening fluid. The plurality of balls 568 facilitates a differential action between the first drive ring 562 and the second drive ring 564, when the balls 568 rotate about the plurality of axes 569. The differential device 560 may include three or more balls 568.



FIG. 6 schematically illustrates a turbocharger 600 for use with an internal combustion engine 602 according to another embodiment of the invention. The embodiment shown in FIG. 6 includes similar components to the turbocharger 200 for use with the internal combustion engine 202 illustrated in FIG. 2 Similar features of the embodiment shown in FIG. 6 are numbered similarly in series, with the exception of the features described below.



FIG. 6 schematically illustrates the turbocharger 600 for use with an internal combustion engine 602. The turbocharger 600 is in driving engagement and fluid communication with the internal combustion engine 602. The turbocharger 600 is in driving engagement with the internal combustion engine 602 through a differential device 670, a ratio adjusting device 606, and an infinitely variable transmission 608. Typically, the internal combustion engine 602 is used as a power source for a vehicle (not shown); however, it is understood that the internal combustion engine 602 may be used in other applications, such as in stationary power generation applications.


The turbocharger 600 includes a turbine portion 610, a compressor portion 612, the differential device 670, an output gear 613, and an output shaft 615. The turbine portion 610, the compressor portion 612, the differential device 670, the output gear 613, and the output shaft 615 are rotatably mounted within a housing 616 using a plurality of bearings (not shown). The turbine portion 610 and the compressor portion 612 are drivingly engaged with the output shaft 615 through the differential device 670 and the output gear 613. As is known in the art, the turbine portion 610 is driven by exhaust gases via an exhaust port 618 of the internal combustion engine 602. The turbine portion 610 is drivingly engaged with the compressor portion 612 through the differential device 670 to provide compressed air to an intake port 620 of the internal combustion engine 602. The output shaft 615 is also drivingly engaged with the internal combustion engine 602 through the ratio adjusting device 606 and the infinitely variable transmission 608; however, it is understood that the turbine portion 610 and the compressor portion 612 may be drivingly engaged internal combustion engine 602 in another manner that facilitates infinitely variable driving engagement therebetween.


The differential device 670 comprises a first side gear 672, a second side gear 674, a differential carrier 676, a plurality of spider gears 677, and a differential housing 678. The first side gear 672, the second side gear 674, the differential carrier 676, and the plurality of spider gears 677 are disposed within the differential housing 678, which is rotatably disposed between the turbine portion 610 and the compressor portion 612. The first side gear 672 and the second side gear 674 are bevel gears respectively disposed on and spliningly engaged with the compressor portion 612 and the turbine portion 610. Alternately, it is understood that the first side gear 672 and the second side gear 674 may be integrally formed with the compressor portion 612 and the turbine portion 610, respectively. The differential carrier 676 is a member in driving engagement with the differential housing 678. The plurality of spider gears 677 is rotatingly disposed on the differential carrier 676. The plurality of spider gears 677 are bevel gears each in driving engagement with the first side gear 672 and the second side gear 674 and facilitate a differential action therebetween. FIG. 6 illustrates the differential device 670 having two spider gears 677; however, it is understood that the differential device 670 may include three or more spider gears 677.


The differential housing 678 is a hollow member into which the first side gear 672, the second side gear 674, the differential carrier 676, and the plurality of spider gears 677 are disposed. An outer surface of the differential housing 678 includes a ring gear 679 coupled thereto. Alternately, it is understood that the ring gear 679 may be integrally formed with the differential housing 678. The ring gear 679 is in driving engagement with the output gear 613.


The output gear 613 is drivingly engaged with the ring gear 679 and the output shaft 615. The output gear 613 is rotatably disposed in the housing 616 and supported by bearings (not shown).


The output shaft 615 is a member drivingly engaged with the internal combustion engine 602 and the output gear 613. The output shaft 615 is drivingly engaged with the internal combustion engine 602 through the ratio adjusting device 606 and the infinitely variable transmission 608.



FIG. 7 schematically illustrates a turbocharger 700 for use with an internal combustion engine 702 according to another embodiment of the invention. The embodiment shown in FIG. 7 includes similar components to the turbocharger 200 for use with an internal combustion engine 202 illustrated in FIG. 2 Similar features of the embodiment shown in FIG. 7 are numbered similarly in series, with the exception of the features described below.



FIG. 7 schematically illustrates the turbocharger 700 for use with an internal combustion engine 702. The turbocharger 700 is in driving engagement and fluid communication with the internal combustion engine 702. The turbocharger 700 is in driving engagement with the internal combustion engine 702 through a differential device 780, a ratio adjusting device 706, and an infinitely variable transmission 708. Typically, the internal combustion engine 702 is used as a power source for a vehicle (not shown); however, it is understood that the internal combustion engine 702 may be used in other applications, such as in stationary power generation applications.


The turbocharger 700 includes a turbine portion 782, a compressor portion 784, the differential device 780, an output gear 713, and an output shaft 715. The turbine portion 782, the compressor portion 784, the differential device 780, the output gear 713, and the output shaft 715 are rotatably mounted within a housing 716 using a plurality of bearings (not shown). The output shaft 715 is also drivingly engaged with the internal combustion engine 702 through the ratio adjusting device 706 and the infinitely variable transmission 708; however, it is understood that the turbine portion 782 and the compressor portion 784 may be drivingly engaged internal combustion engine 702 in another manner that facilitates infinitely variable driving engagement therebetween.


The turbine portion 782 and the compressor portion 784 are drivingly engaged with the output shaft 715 through the differential device 780 and the output gear 713. As is known in the art, the turbine portion 782 is driven by exhaust gases via an exhaust port 718 of the internal combustion engine 702. The turbine portion 782 is drivingly engaged with the compressor portion 784 through the differential device 780 to provide compressed air to an intake port 720 of the internal combustion engine 702. The turbine portion 782 includes a first magnetic array 785 to facilitate driving engagement with the differential device 780. As shown in FIG. 7, the first magnetic array 785 is cylindrical in shape and is disposed within a portion of the differential device 780. The compressor portion 784 includes a second magnetic array 786 to facilitate driving engagement with the differential device 780. As shown in FIG. 7, the second magnetic array 786 is cylindrical in shape and is disposed within a portion of the differential device 780.


The differential device 780 comprises a first side gear 787, a second side gear 788, a differential carrier 789, a plurality of spider gears 790, a pair of intermediate ferrous members 791, and a differential housing 792. The first side gear 787, the second side gear 788, the differential carrier 789, and the plurality of spider gears 790 are disposed within the differential housing 792, which is rotatably disposed between the turbine portion 782 and the compressor portion 784. Each of intermediate ferrous members 791 is fixed with respect to the housing 716 and each is disposed between the first side gear 787 and the compressor portion 784 and the second side gear 788 and the turbine portion 782, respectively. The first side gear 787 and the second side gear 788 are bevel gears respectively disposed adjacent to and in magnetic driving engagement with the compressor portion 784 and the turbine portion 782. The first side gear 787 includes a third magnetic array 793 to facilitate driving engagement with the compressor portion 784. As shown in FIG. 7, the third magnetic array 793 is cylindrical in shape and is disposed about the second magnetic array 786 of the compressor portion 784. The second side gear 788 includes a fourth magnetic array 794 to facilitate driving engagement with the turbine portion 782. As shown in FIG. 7, the fourth magnetic array 794 is cylindrical in shape and is disposed about the first magnetic array 785 of the turbine portion 782.


The third magnetic array 793, one of the intermediate ferrous members 791, and the second magnetic array 786 form a magnetic drive ratio adjusting device, which is used to adjust a drive ratio between the compressor portion 784 and the first side gear 787. The magnetic drive ratio adjusting device is used to cause a speed reduction between the compressor portion 784 and the first side gear 787. It is understood that other magnetic arrangements may be used to cause a speed reduction between the compressor portion 784 and the first side gear 787.


The fourth magnetic array 794, one of the intermediate ferrous members 791, and the first magnetic array 785 form a magnetic drive ratio adjusting device, which is used to adjust a drive ratio between the turbine portion 782 and the second side gear 788. The magnetic drive ratio adjusting device is used to cause a speed reduction between the turbine portion 782 and the second side gear 788. It is understood that other magnetic arrangements may be used to cause a speed reduction between the turbine portion 782 and the second side gear 788. Further, it is understood that the principles of the magnetic drive ratio adjusting device may be applied to any of the embodiments of the invention described hereinabove.


The differential carrier 789 is a member in driving engagement with the differential housing 792. The plurality of spider gears 790 is rotatingly disposed on the differential carrier 789. The plurality of spider gears 790 are bevel gears each in driving engagement with the first side gear 787 and the second side gear 788 and facilitate a differential action therebetween. FIG. 7 illustrates the differential device 780 having two spider gears 790; however, it is understood that the differential device 780 may include three or more spider gears 790.


The differential housing 792 is a hollow member into which the first side gear 787, the second side gear 788, the differential carrier 789, and the plurality of spider gears 790 are disposed. An outer surface of the differential housing 792 includes a ring gear 795 coupled thereto. Alternately, it is understood that the ring gear 795 may be integrally formed with the differential housing 792. The ring gear 795 is in driving engagement with the output gear 713.


The output gear 713 is drivingly engaged with the ring gear 795 and the output shaft 715. The output gear 713 is rotatably disposed in the housing 716 and supported by bearings (not shown).


The output shaft 715 is a member drivingly engaged with the internal combustion engine 702 and the output gear 713. The output shaft 715 is drivingly engaged with the internal combustion engine 702 through the ratio adjusting device 706 and the infinitely variable transmission 708.


It is understood that the manner of providing driving engagement between the internal combustion engine 602, 702 and the differential device 670, 780 (through the use of the differential housing 678, 792, the ring gear 679, 795, and the output gear 613, 713) as described above and shown in FIGS. 6 and 7, may be adapted to provide driving engagement between the internal combustion engine 202, 302, 402, 502 and the differential device 204, 340, 450, 560.


In use, the turbocharger 200, 300, 400, 500, 600, 700 is drivingly engaged with the internal combustion engine 202, 302, 402, 502, 602, 702 through the infinitely variable transmission 208, 308, 408, 508, 608, 708 for at least two purposes: a first purpose is to allow the compressor portion 212, 312, 412, 512, 612, 784 to be at least partially driven by the internal combustion engine 202, 302, 402, 502, 602, 702; a second purpose is to allow the turbine portion 210, 310, 410, 510, 610, 782 to be drivingly engaged with the internal combustion engine 202, 302, 402, 502, 602, 702, or an output (not shown) thereof, through the infinitely variable transmission 208, 308, 408, 508, 608, 708. Further, the differential device 204, 340, 450, 560, 670, 780 allow for the turbine portion 210, 310, 410, 510, 610, 782 and the compressor portion 212, 312, 412, 512, 612, 784 to rotate at different speeds, which increases a performance of the turbocharger 200, 300, 400, 500, 600, 700.



FIG. 8 illustrates an exemplary speed diagram of the compressor portion 212, 312, 412, 512, 612, 784, the carrier 226, 346, 457, 566, 676, 789, and the turbine portion 210, 310, 410, 510, 610, 782 of the differential device 204, 340, 450, 560, 670, 780 during three different modes of operation of the turbocharger 200, 300, 400, 500, 600, 700. A control system (not shown) in communication with the infinitely variable transmission 208, 308, 408, 508, 608, 708 is used to control a rotational speed of the carrier 226, 346, 457, 566, 676, 789 (and thus a rotational speed of the compressor portion 212, 312, 412, 512, 612, 784. The control system may adjust the infinitely variable transmission 208, 308, 408, 508, 608, 708 based on at least one of a driver action, a speed of a vehicle the turbocharger 200, 300, 400, 500, 600, 700 is incorporated in, a rotational speed of the compressor portion 212, 312, 412, 512, 612, 784, and a rotational speed of the turbine portion 210, 310, 410, 510, 610, 782. As a non-limiting example, the driver action may a throttle adjustment.


The three horizontal axes of FIG. 8 represent respectively, from top to bottom, a rotation speed of the compressor portion 212, 312, 412, 512, 612, 784 (and the side gear 222, 342, 452, 672, 787 or the drive ring 562), a rotation speed of the carrier 226, 346, 457, 566, 676, 789, and a rotation speed of the turbine portion 210, 310, 410, 510, 610, 782 (and the side gear 224, 344, 454, 674, 788 or the drive ring 564). The rotation speed of the turbine portion 210, 310, 410, 510, 610, 782, represented on the speed diagram as WE, is determined by the exhaust gases flowing through the turbine portion 210, 310, 410, 510, 610, 782. Through the differential device 204, 340, 450, 560, 670, 780, the rotational speed of the compressor portion 212, 312, 412, 512, 612, 784 may be varied while keeping the rotational speed of the turbine portion 210, 310, 410, 510, 610, 782 substantially constant.


A first mode of operation of the turbocharger 200, 300, 400, 500, 600, 700 is represented on the speed diagram at point A. In the first mode of operation, the rotational speed of the carrier 226, 346, 457, 566, 676, 789 is substantially equal to zero, which is indicative that a ratio of the infinitely variable transmission 208, 308, 408, 508, 608, 708 is substantially equal to zero. In the first mode of operation, the compressor portion 212, 312, 412, 512, 612, 784 is rotating at the same speed as the turbine portion 210, 310, 410, 510, 610, 782, but in an opposite direction. In the first mode of operation, energy coming from the turbine portion 210, 310, 410, 510, 610, 782 is entirely applied to the compressor portion 212, 312, 412, 512, 612, 784, only with an opposite direction of rotation.


A second mode of operation of the turbocharger 200, 300, 400, 500, 600, 700 is represented on the speed diagram by a range of speeds at B. In the second mode of operation, the rotational speed of the carrier 226, 346, 457, 566, 676, 789 is a negative value (with respect to the turbine portion 210, 310, 410, 510, 610, 782). In the second mode of operation, energy is applied from the internal combustion engine 202, 302, 402, 502, 602, 702 to accelerate the compressor portion 212, 312, 412, 512, 612, 784 and to provide additional boost. Energy applied from the internal combustion engine 202, 302, 402, 502, 602, 702 reduces a turbo lag of the turbocharger 200, 300, 400, 500, 600, 700. Energy applied from the internal combustion engine 202, 302, 402, 502, 602, 702 is in addition to energy applied by the turbine portion 210, 310, 410, 510, 610, 782. The rotational speed of the carrier 226, 346, 457, 566, 676, 789 is the product of the speed of the internal combustion engine 202, 302, 402, 502, 602, 702, a ratio employed by the infinitely variable transmission 208, 308, 408, 508, 608, 708, and a ratio employed by the ratio adjusting device 206, 306, 406, 506, 606, 706. It is understood that each of the aforementioned ratios may be determined in order to increase an effectiveness of the turbocharger 200, 300, 400, 500, 600, 700.


A third mode of operation of the turbocharger 200, 300, 400, 500, 600, 700 is represented on the speed diagram by a range of speeds at C. In the third mode of operation, the rotational speed of the carrier 226, 346, 457, 566, 676, 789 is a positive value (with respect to the turbine portion 210, 310, 410, 510, 610, 782). In the third mode of operation, energy is applied from the turbine portion 210, 310, 410, 510, 610, 782 to the internal combustion engine 202, 302, 402, 502, 602, 702. The amount of energy applied from the turbine portion 210, 310, 410, 510, 610, 782 is a surplus amount of energy not required by the compressor portion 212, 312, 412, 512, 612, 784. In one example during the third mode of operation, substantially all or a very large percentage of energy from the turbine portion 210, 310, 410, 510, 610, 782 is applied to the carrier 226, 346, 457, 566, 676, 789, the ratio adjusting device 206, 306, 406, 506, 606, 706, the infinitely variable transmission 208, 308, 408, 508, 608, 708, and the internal combustion engine 202, 302, 402, 502, 602, 702. The third mode of operation allows energy to be recuperated and to be applied to the internal combustion engine 202, 302, 402, 502, 602, 702, or the output thereof, 232, 332, 432, 532, 632, 732. The rotational speed of the carrier 226, 346, 457, 566, 676, 789 is the product of the speed of the internal combustion engine 202, 302, 402, 502, 602, 702, a ratio employed by the infinitely variable transmission 208, 308, 408, 508, 608, 708, and a ratio employed by the ratio adjusting device 206, 306, 406, 506, 606, 706. It is understood that each of the aforementioned ratios may be determined in order to increase an effectiveness of the turbocharger 200, 300, 400, 500, 600, 700.


The turbocharger 200, 300, 400, 500, 600, 700 for use with the internal combustion engine 202, 302, 402, 502, 602, 702 offer many advantages over a conventional turbocharger. One advantage of the turbocharger 200, 300, 400, 500, 600, 700 is being able to direct the kinetic energy from the turbine portion 210, 310, 410, 510, 610, 782 to the internal combustion engine 202, 302, 402, 502, 602, 702 and an associated driveline (not shown). As a result of being able to recuperate energy, the internal combustion engine 202, 302, 402, 502, 602, 702 has an improved fuel economy. The turbocharger 200, 300, 400, 500, 600, 700 also minimizes a turbo lag by being able to apply energy from the internal combustion engine 202, 302, 402, 502, 602, 702 to the compressor portion 212, 312, 412, 512, 612, 784. The turbocharger 200, 300, 400, 500, 600, 700 also reduces a boost threshold by being able to provide energy from the internal combustion engine 202, 302, 402, 502, 602, 702 to the compressor portion 212, 312, 412, 512, 612, 784. The turbocharger 200, 300, 400, 500, 600, 700 also prevents a maximum boost pressure from being exceeded by being able to direct at least a portion of the energy recuperated in the turbine portion 210, 310, 410, 510, 610, 782 to the internal combustion engine 202, 302, 402, 502, 602, 702. Further, the turbocharger 200, 300, 400, 500, 600, 700 is able to adapt a speed of the compressor portion 212, 312, 412, 512, 612, 784 to achieve a required compression by adjusting a ratio of the infinitely variable transmission 208, 308, 408, 508, 608, 708.


In accordance with the provisions of the patent statutes, the present invention has been described in what is considered to represent its preferred embodiments. However, it should be noted that the invention can be practiced otherwise than as specifically illustrated and described without departing from its spirit or scope.


While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A turbocharger for use with the internal combustion engine, the turbocharger comprising: a compressor;a turbine;a differential device disposed within a housing between the compressor and the turbine, in driving engagement with the internal combustion engine, an infinitely variable transmission, the infinitely variable transmission in driving engagement with the internal combustion engine, and having;a first drive ring and a second drive ring;a ball carrier comprising a plurality of balls, each ball rotatingly disposed about an axis, the plurality of balls in driving engagement with the first drive ring and the second drive ring of the differential device,wherein the first drive ring is disposed on and coupled to the compressor, andthe second drive ring is disposed on and coupled to the turbine.
  • 2. The turbocharger of claim 1, wherein at least a portion of the housing is filled with a shear thickening or elastohydrodynamic fluid to facilitate the driving engagement with the first drive ring and the plurality of balls and the second drive ring and plurality of balls.
  • 3. The turbocharger of claim 2, wherein the plurality of balls facilitate a differential action between the first drive ring and the second drive ring when the balls rotate about their axes.
  • 4. A method for operating a turbocharger with an internal combustion engine, the method comprising: providing a turbocharger comprising: a compressor;a turbine;a differential device disposed within a housing between the compressor and the turbine, in driving engagement with the internal combustion engine, an infinitely variable transmission, the infinitely variable transmission in driving engagement with the internal combustion engine, and having;a first drive ring and a second drive ring; anda ball carrier comprising a plurality of balls, each ball rotatingly disposed about an axis, the plurality of balls in driving engagement with the first drive ring and the second drive ring of the differential device;wherein the first drive ring is disposed on and coupled to the compressor, andthe second drive ring is disposed on and coupled to the turbine; andadjusting a ratio of the infinitely variable transmission to thereby control the operating speed of the compressor.
  • 5. A turbocharger for use with the internal combustion engine, the turbocharger comprising: a compressor;a turbine;a differential device disposed within a housing between the compressor and the turbine, in driving engagement with the internal combustion engine, the differential device comprising; a hollow differential housing;a first side gear;a second side gear;a differential carrier; anda plurality of spider gears;a ring gear;an output gear; andan output shaft in driving engagement with the output gear; wherein the turbine and the compressor are drivingly engaged to the output shaft through the differential and the output gear, andwherein the ring gear is disposed on an outer surface of the hollow differential housing and is in driving engagement with the output gear.
  • 6. The turbocharger of claim 5, wherein the plurality of spider gears are bevel gears.
  • 7. The turbocharger of claim 6, wherein the output gear is rotatably disposed in the differential housing.
  • 8. The turbocharger of claim 7, wherein the output shaft is drivingly engaged through a ratio adjusting device and an infinitely variable transmission to an internal combustion engine.
CROSS-REFERENCE

This application is a continuation of U.S. patent application Ser. No. 14/175,584 filed on Feb. 7, 2014, which claims the benefit of priority to U.S. Provisional Application No. 61/762,379 filed on Feb. 8, 2013, both of which are incorporated herein by reference in their entireties.

US Referenced Citations (257)
Number Name Date Kind
1063244 Dieterich Jun 1913 A
1215969 Murray Feb 1917 A
1526140 Gruver Feb 1925 A
2019006 Ferrarl Oct 1935 A
2060884 Madle Nov 1936 A
2148759 Le Grand Feb 1939 A
2405201 Franck Aug 1946 A
2660897 Neidhart et al. Dec 1953 A
2729118 Emslie Jan 1956 A
2931235 Hayward Apr 1960 A
3203278 General Aug 1965 A
3376633 Wesley Apr 1968 A
3407687 Hayashi Oct 1968 A
3470720 Eklund et al. Oct 1969 A
3505718 Carlstrom Apr 1970 A
3583060 Sigmans Jun 1971 A
3688600 Leonard Sep 1972 A
3765270 Lemieux Oct 1973 A
3774280 Eklund et al. Nov 1973 A
3831245 Amos Aug 1974 A
3894559 DePuy Jul 1975 A
4046988 Okuda et al. Sep 1977 A
4187709 Legate et al. Feb 1980 A
4226140 Gaasenbeek Oct 1980 A
4333358 Grattapaglia Jun 1982 A
4344336 Carriere Aug 1982 A
4360090 Wonn Nov 1982 A
4368572 Kanazawa et al. Jan 1983 A
4464952 Stubbs Aug 1984 A
4693134 Kraus Sep 1987 A
4731044 Mott Mar 1988 A
4756211 Fellows Jul 1988 A
4784017 Johnshoy Nov 1988 A
4856371 Kemper Aug 1989 A
4856374 Kreuzer Aug 1989 A
4950208 Tomlinson Aug 1990 A
4963122 Ryan Oct 1990 A
4963124 Takahashi et al. Oct 1990 A
5109962 Sato May 1992 A
5168778 Todd et al. Dec 1992 A
5217412 Indlekofer et al. Jun 1993 A
5230670 Hibi Jul 1993 A
5238460 Esaki et al. Aug 1993 A
5318486 Lutz Jun 1994 A
5390759 Gollner Feb 1995 A
5401221 Fellows et al. Mar 1995 A
5520588 Hall, III May 1996 A
5527231 Seidel et al. Jun 1996 A
5577423 Mimura Nov 1996 A
5599251 Beim et al. Feb 1997 A
5659956 Braginsky et al. Aug 1997 A
5683322 Meyerle Nov 1997 A
5726353 Matsuda et al. Mar 1998 A
5730678 Larkin Mar 1998 A
5766105 Fellows et al. Jun 1998 A
5776028 Matsuda et al. Jul 1998 A
5800303 Benford Sep 1998 A
5860888 Lee Jan 1999 A
5915801 Taga et al. Jun 1999 A
5961415 Justice et al. Oct 1999 A
5971883 Klemen Oct 1999 A
5996226 Gibbs Dec 1999 A
6009365 Takahara et al. Dec 1999 A
6036616 McCarrick et al. Mar 2000 A
6045477 Schmidt Apr 2000 A
6053839 Baldwin et al. Apr 2000 A
6059685 Hoge et al. May 2000 A
6071208 Koivunen Jun 2000 A
6080080 Bolz et al. Jun 2000 A
6083135 Baldwin et al. Jul 2000 A
6086504 Illerhaus Jul 2000 A
6089287 Welsh et al. Jul 2000 A
6095942 Yamaguchi et al. Aug 2000 A
6155951 Kuhn et al. Dec 2000 A
6217474 Ross et al. Apr 2001 B1
6251038 Ishikawa et al. Jun 2001 B1
6273838 Park Aug 2001 B1
6342026 Takagi et al. Jan 2002 B1
6358178 Wittkopp Mar 2002 B1
6371880 Kam Apr 2002 B1
6481258 Belinky Nov 2002 B1
6554735 Kanazawa Apr 2003 B2
6558285 Sieber May 2003 B1
6585619 Henzler Jul 2003 B2
6609994 Muramoto Aug 2003 B2
6632157 Gierling et al. Oct 2003 B1
6641497 Deschamps et al. Nov 2003 B2
6645106 Goo et al. Nov 2003 B2
6689012 Miller et al. Feb 2004 B2
6705964 Nagai et al. Mar 2004 B2
6719659 Geiberger et al. Apr 2004 B2
6723016 Sumi Apr 2004 B2
6726590 Henzler et al. Apr 2004 B2
6733412 Kumagai et al. May 2004 B2
6752696 Murai et al. Jun 2004 B2
6793603 Teraoka et al. Sep 2004 B2
6849020 Sumi Feb 2005 B2
6866606 Ooyama Mar 2005 B2
6949045 Wafzig et al. Sep 2005 B2
6979275 Hiraku et al. Dec 2005 B2
6986725 Morscheck Jan 2006 B2
7033298 Usoro et al. Apr 2006 B2
7074154 Miller Jul 2006 B2
7086981 Ali et al. Aug 2006 B2
7104917 Klemen et al. Sep 2006 B2
7128681 Sugino et al. Oct 2006 B2
7160220 Shinojima et al. Jan 2007 B2
7186199 Baxter, Jr. Mar 2007 B1
7217214 Morscheck et al. May 2007 B2
7234543 Schaaf Jun 2007 B2
7288044 Gumpoltsberger Oct 2007 B2
7311634 Shim et al. Dec 2007 B2
7335126 Tsuchiya et al. Feb 2008 B2
7347801 Guenter et al. Mar 2008 B2
7396309 Heitz et al. Jul 2008 B2
7431677 Miller et al. Oct 2008 B2
7470210 Miller et al. Dec 2008 B2
7473202 Morscheck et al. Jan 2009 B2
7485069 Jang et al. Feb 2009 B2
7497798 Kim Mar 2009 B2
7588514 McKenzie et al. Sep 2009 B2
7637838 Gumpoltsberger Dec 2009 B2
7672770 Inoue et al. Mar 2010 B2
7686729 Miller et al. Mar 2010 B2
7717815 Tenberge May 2010 B2
7727107 Miller Jun 2010 B2
7780566 Seo Aug 2010 B2
7874153 Behm Jan 2011 B2
7878935 Lahr Feb 2011 B2
7951035 Platt May 2011 B2
7980972 Starkey et al. Jul 2011 B1
8029401 Johnson Oct 2011 B2
8052569 Tabata et al. Nov 2011 B2
8062175 Krueger et al. Nov 2011 B2
8066614 Miller et al. Nov 2011 B2
8142323 Tsuchiya et al. Mar 2012 B2
8226518 Parraga Gimeno Jul 2012 B2
8257216 Hoffman Sep 2012 B2
8257217 Hoffman Sep 2012 B2
8287414 Weber et al. Oct 2012 B2
8313404 Carter et al. Nov 2012 B2
8376903 Pohl et al. Feb 2013 B2
8382636 Shiina et al. Feb 2013 B2
8447480 Usukura May 2013 B2
8469856 Thomassy Jun 2013 B2
8545368 Davis et al. Oct 2013 B1
8594867 Heap et al. Nov 2013 B2
8622871 Hoff Jan 2014 B2
8639419 Roli et al. Jan 2014 B2
8668614 Sherrill et al. Mar 2014 B2
8678975 Koike Mar 2014 B2
8870711 Pohl et al. Oct 2014 B2
8888643 Lohr et al. Nov 2014 B2
8926468 Versteyhe et al. Jan 2015 B2
8986150 Versteyhe et al. Mar 2015 B2
9052000 Cooper Jun 2015 B2
9114799 Tsukamoto et al. Aug 2015 B2
9156463 Legner et al. Oct 2015 B2
9194472 Versteyhe et al. Nov 2015 B2
9347532 Versteyhe et al. May 2016 B2
9353842 Versteyhe et al. May 2016 B2
9404414 Versteyhe et al. Aug 2016 B2
20020004438 Toukura et al. Jan 2002 A1
20020094911 Haka Jul 2002 A1
20030181280 Elser et al. Sep 2003 A1
20030200783 Shai Oct 2003 A1
20030213125 Chiuchang Nov 2003 A1
20030216121 Yarkosky Nov 2003 A1
20030228952 Joe et al. Dec 2003 A1
20040058769 Larkin Mar 2004 A1
20040061639 Voigtlaender et al. Apr 2004 A1
20040166984 Inoue Aug 2004 A1
20040167391 Solar et al. Aug 2004 A1
20040171452 Miller et al. Sep 2004 A1
20050102082 Shinichiro et al. May 2005 A1
20050137046 Miller et al. Jun 2005 A1
20050153810 Miller et al. Jul 2005 A1
20060094515 Szuba et al. May 2006 A1
20060276294 Coffey et al. Dec 2006 A1
20070032327 Raghavan et al. Feb 2007 A1
20070042856 Greenwood et al. Feb 2007 A1
20070072732 Klemen Mar 2007 A1
20070096556 Kokubo et al. May 2007 A1
20070275808 Iwanaka et al. Nov 2007 A1
20080039273 Smithson et al. Feb 2008 A1
20080103002 Holmes May 2008 A1
20080185201 Bishop Aug 2008 A1
20090017959 Triller Jan 2009 A1
20090062064 Kamada et al. Mar 2009 A1
20090132135 Quinn, Jr. et al. May 2009 A1
20090221391 Bazyn et al. Sep 2009 A1
20090221393 Kassler Sep 2009 A1
20090286651 Tanaka et al. Nov 2009 A1
20090312137 Rohs et al. Dec 2009 A1
20100093479 Carter et al. Apr 2010 A1
20100106386 Krasznai et al. Apr 2010 A1
20100113211 Schneider et al. May 2010 A1
20100137094 Pohl Jun 2010 A1
20100141193 Rotondo et al. Jun 2010 A1
20100244755 Kinugasa et al. Sep 2010 A1
20100267510 Nichols et al. Oct 2010 A1
20100282020 Greenwood et al. Nov 2010 A1
20100304915 Lahr Dec 2010 A1
20100310815 Mendonca Alves et al. Dec 2010 A1
20110015021 Maguire et al. Jan 2011 A1
20110034284 Pohl et al. Feb 2011 A1
20110152031 Schoolcraft Jun 2011 A1
20110165982 Hoffman et al. Jul 2011 A1
20110165985 Hoffman et al. Jul 2011 A1
20110165986 Hoffman et al. Jul 2011 A1
20110230297 Shiina et al. Sep 2011 A1
20110300954 Szuba et al. Dec 2011 A1
20110319222 Ogawa et al. Dec 2011 A1
20120024991 Pilch et al. Feb 2012 A1
20120035016 Miller et al. Feb 2012 A1
20120040794 Schoolcraft Feb 2012 A1
20120122624 Hawkins, Jr. et al. May 2012 A1
20120142477 Winter Jun 2012 A1
20120165154 Wittkopp et al. Jun 2012 A1
20120186248 VanDyne Jul 2012 A1
20120244990 Ogawa et al. Sep 2012 A1
20120266595 Buschur Oct 2012 A1
20120309579 Miller et al. Dec 2012 A1
20130130859 Lundberg et al. May 2013 A1
20130133965 Books May 2013 A1
20130174544 Valetutti Jul 2013 A1
20130184115 Urabe et al. Jul 2013 A1
20130190131 Versteyhe et al. Jul 2013 A1
20130219882 Jensen Aug 2013 A1
20130226416 Seipold et al. Aug 2013 A1
20130303325 Carey et al. Nov 2013 A1
20130304344 Abe Nov 2013 A1
20130338888 Long et al. Dec 2013 A1
20140274540 Schoolcraft Sep 2014 A1
20140274552 Frink et al. Sep 2014 A1
20140329637 Thomassy et al. Nov 2014 A1
20150024899 Phillips Jan 2015 A1
20150051801 Quinn, Jr. et al. Feb 2015 A1
20150142281 Versteyhe et al. May 2015 A1
20150159741 Versteyhe et al. Jun 2015 A1
20150204429 Versteyhe et al. Jul 2015 A1
20150226294 Ziech et al. Aug 2015 A1
20150226298 Versteyhe et al. Aug 2015 A1
20150226299 Cooper et al. Aug 2015 A1
20150252881 Versteyhe Sep 2015 A1
20150354676 Versteyhe et al. Dec 2015 A1
20160033021 Cooper et al. Feb 2016 A1
20160047448 Versteyhe et al. Feb 2016 A1
20160069442 Versteyhe et al. Mar 2016 A1
20160109001 Schoolcraft Apr 2016 A1
20160123438 Ziech et al. May 2016 A1
20160131235 Phillips May 2016 A1
20160185353 Honma et al. Jun 2016 A1
20160195173 Versteyhe et al. Jul 2016 A1
20160195177 Versteyhe et al. Jul 2016 A1
20160281828 Haka Sep 2016 A1
20160290458 Taskiran et al. Oct 2016 A1
Foreign Referenced Citations (61)
Number Date Country
2011224083 Oct 2011 AU
101392825 Mar 2009 CN
101617146 Dec 2009 CN
202165536 Mar 2012 CN
1237380 Mar 1967 DE
3245045 Jun 1984 DE
102005010751 Sep 2006 DE
0156936 Oct 1985 EP
0210053 Jan 1987 EP
1061288 Dec 2000 EP
2113056 Jul 2012 EP
796188 Mar 1936 FR
1030702 Jun 1953 FR
1472282 Mar 1967 FR
2185076 Dec 1973 FR
2280451 Feb 1976 FR
2918433 Jan 2009 FR
1127825 Sep 1968 GB
2196892 May 1988 GB
2248895 Apr 1992 GB
H09119506 May 1997 JP
2008180214 Aug 2008 JP
2009058085 Mar 2009 JP
2011153583 Aug 2011 JP
WO-2006002457 Jan 2006 WO
WO-2006041718 Apr 2006 WO
WO-2007046722 Apr 2007 WO
WO-2007051827 May 2007 WO
WO-2008103543 Aug 2008 WO
WO-2011011991 Feb 2011 WO
WO-2012008884 Jan 2012 WO
WO-2012177187 Dec 2012 WO
WO-2013109723 Jul 2013 WO
WO-2013123117 Aug 2013 WO
WO-2014039438 Mar 2014 WO
WO-2014039439 Mar 2014 WO
WO-2014039440 Mar 2014 WO
WO-2014039447 Mar 2014 WO
WO-2014039448 Mar 2014 WO
WO-2014039708 Mar 2014 WO
WO-2014039713 Mar 2014 WO
WO-2014039846 Mar 2014 WO
WO-2014039900 Mar 2014 WO
WO-2014039901 Mar 2014 WO
WO-2014078583 May 2014 WO
WO-2014124291 Aug 2014 WO
WO-2014151889 Sep 2014 WO
WO-2014159755 Oct 2014 WO
WO-2014159756 Oct 2014 WO
WO-2014165259 Oct 2014 WO
WO-2014179717 Nov 2014 WO
WO-2014179719 Nov 2014 WO
WO-2014186732 Nov 2014 WO
WO-2014197711 Dec 2014 WO
WO-2015059601 Apr 2015 WO
WO-2015073883 May 2015 WO
WO-2015073887 May 2015 WO
WO-2015073948 May 2015 WO
WO-2015195759 Dec 2015 WO
WO-2015200769 Dec 2015 WO
WO-2016094254 Jun 2016 WO
Non-Patent Literature Citations (87)
Entry
Co-pending U.S. Appl. No. 15/215,179, filed Jul. 20, 2016.
Fallbrook Technologies. ‘NuVinci® Technology’, Feb. 26, 2013; [retrieved on Jun. 5, 2014]. Retrieved from internet: <URL: https://web.archive.org/web/20130226233109/http://www.fallbrooktech.com/nuvinci-technology.
Moore et al. A Three Revolute Cobot Using CVTs in Parallel. Proceedings of IMECE (1999) (6 pgs.).
PCT/US2013/021890 International Preliminary Report on Patentability dated Jul. 31, 2014.
PCT/US2013/021890 International Search Report dated Apr. 10, 2013.
PCT/US2013/026037 International Preliminary Report on Patentability dated Aug. 28, 2014.
PCT/US2013/026037 International Search Report dated Jul. 15, 2013.
PCT/US2013/057837 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/057837 International Search Report and Written Opinion dated Mar. 31, 2014.
PCT/US2013/057838 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/057838 International Search Report and Written Opinion dated Jan. 17, 2014.
PCT/US2013/057839 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/057839 International Search Report and Written Opinion dated Feb. 6, 2014.
PCT/US2013/057866 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/057866 International Search Report dated Feb. 11, 2014.
PCT/US2013/057868 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/057868 International Search Report and Written Opinion dated Apr. 9, 2014.
PCT/US2013/058309 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/058309 International Search Report and Written Opinion dated Feb. 11, 2014.
PCT/US2013/058318 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/058318 International Search Report and Written Opinion dated Feb. 11, 2014.
PCT/US2013/058545 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/058545 International Search Report and Written Opinion dated Feb. 19, 2014.
PCT/US2013/058615 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/058615 International Search Report and Written Opinion dated Feb. 11, 2014.
PCT/US2013/058616 International Preliminary Report on Patentability dated Mar. 19, 2015.
PCT/US2013/058616 International Search Report and Written Opinion dated Feb. 11, 2014.
PCT/US2013/070177 International Preliminary Report on Patentability dated May 28, 2015.
PCT/US2013/070177 International Search Report and Written Opinion dated Apr. 14, 2014.
PCT/US2014/015352 International Search Report and Written Opinion dated May 27, 2014.
PCT/US2014/025001 International Preliminary Report on Patent ability dated Sep. 24, 2015.
PCT/US2014/025001 International Search Report and Written Opinion dated Jul. 14, 2014.
PCT/US2014/025004 International Preliminary Report on Patentability dated Oct. 1, 2015.
PCT/US2014/025004 International Search Report and Written Opinion dated Jul. 14, 2014.
PCT/US2014/025005 International Preliminary Report on Patentability dated Oct. 1, 2015.
PCT/US2014/025005 International Search Report and Written Opinion dated Jul. 14, 2014.
PCT/US2014/026619 International Preliminary Report on Patentability dated Sep. 24, 2015.
PCT/US2014/026619 International Search Report and Written Opinion dated Sep. 9, 2014.
PCT/US2014/036621 International Preliminary Report on Patentability dated Nov. 12, 2015.
PCT/US2014/036621 International Search Report and Written Opinion dated Sep. 4, 2014.
PCT/US2014/036623 International Preliminary Report on Patentability dated Nov. 12, 2015.
PCT/US2014/036623 International Search Report and Written Opinion dated Sep. 4, 2014.
PCT/US2014/038439 International Preliminary Report on Patentability dated Nov. 26, 2015.
PCT/US2014/038439 International Search Report and Written Opinion dated Sep. 30, 2014.
PCT/US2014/041124 International Preliminary Report on Patentability dated Dec. 17, 2015.
PCT/US2014/041124 International Search Report and Written Opinion dated Oct. 15, 2014.
PCT/US2014/065792 International Preliminary Report on Patentability dated Jun. 2, 2016.
PCT/US2014/065792 International Search Report and Written Opinion dated Apr. 9, 2015.
PCT/US2014/065796 International Preliminary Report on Patentability dated Nov. 6, 2015.
PCT/US2014/065796 International Search Report and Written Opinion dated Apr. 9, 2015.
PCT/US2014/065909 International Search Report and Written Opinion dated Feb. 19, 2015.
PCT/US2014/065909 Written Opinion dated Dec. 11, 2015.
PCT/US2014/065909 Written Opinion dated Jun. 6, 2016.
PCT/US2015/36170 International Search Report and Written Opinion dated Dec. 17, 2015.
PCT/US2015/37916 International Search Report and Written Opinion dated Sep. 29, 2015.
PCT/US2015/64087 International Search Report and Written Opinion dated Feb. 11, 2016.
PCT/US2016/027496 International Search Report and Written Opinion dated Jul. 8, 2016.
U.S. Appl. No. 13/743,951 Office Action dated Aug. 19, 2015.
U.S. Appl. No. 13/743,951 Office Action dated Jan. 21, 2016.
U.S. Appl. No. 13/743,951 Office Action dated Mar. 18, 2015.
U.S. Appl. No. 14/017,054 Office Action dated Aug. 27, 2014.
U.S. Appl. No. 14/017,054 Office Action dated Dec. 12, 2014.
U.S. Appl. No. 14/175,584 Office Action dated Apr. 2, 2015.
U.S. Appl. No. 14/175,584 Office Action dated Dec. 3, 2015.
U.S. Appl. No. 14/210,130 Office Action dated Jun. 7, 2016.
U.S. Appl. No. 14/210,130 Office Action dated Nov. 20, 2015.
U.S. Appl. No. 14/334,538 Office Action dated Jul. 29, 2016.
U.S. Appl. No. 14/378,750 Office Action dated Apr. 8, 2016.
U.S. Appl. No. 14/425,598 Office Action dated Jun. 14, 2016.
U.S. Appl. No. 14/425,600 Office Action dated May 16, 2016.
U.S. Appl. No. 14/425,842 Office Action dated Jul. 1, 2016.
U.S. Appl. No. 14/426,139 Office Action dated Oct. 6, 2015.
U.S. Appl. No. 14/542,336 Office Action dated Nov. 25, 2015.
U.S. Appl. No. 15/067,752 Office Action dated Jun. 30, 2016.
U.S. Appl. No. 60/616,399, filed Oct. 5, 2004.
U.S. Appl. No. 61/819,414, filed May 3, 2013.
Wong. The Temple of VTEC Asia Special Focus on the Multimatic Transmission. Temple of VTEC Asia. (5 pgs.) (2000).
Co-pending U.S. Appl. No. 15/260,472, filed Sep. 9, 2016.
Co-pending U.S. Appl. No. 15/265,163, filed Sep. 14, 2016.
Co-pending U.S. Appl. No. 15/265,226, filed Sep. 14, 2016.
Co-pending U.S. Appl. No. 15/272,774, filed Sep. 22, 2016.
Co-pending U.S. Appl. No. 15/284,940, filed Oct. 4, 2016.
PCT/US2016/030930 International Search Report and Written Opinion dated Sep. 23, 2016.
PCT/US2016/038064 International Search Report and Written Opinion dated Sep. 7, 2016.
U.S. Appl. No. 14/425,600 Office Action dated Sep. 23, 2016.
U.S. Appl. No. 62/158,847, filed May 8, 2015.
PCT/US2016/29853 International Search Report and Written Opinion dated Aug. 8, 2016.
Related Publications (1)
Number Date Country
20160319731 A1 Nov 2016 US
Provisional Applications (1)
Number Date Country
61762379 Feb 2013 US
Continuations (1)
Number Date Country
Parent 14175584 Feb 2014 US
Child 15209487 US