1. Field of the Invention
The invention relates to a working machine, in particular a tamper for ground-compaction purposes which is driven by means of an internal combustion engine, according to the preamble of claim 1.
2. Description of the Related Art
Tampers of this type are conventionally constructed in such a manner that an upper mass which accommodates a motor and a crank drive is connected by way of a spring set to a working mass which substantially forms a tamping plate. The crank drive converts the rotational movement, which is generated by the motor, into an oscillating linear movement, for which reason a guide piston is guided in such a manner as to be able to move longitudinally in a guide tube. The system which is located between the motor outlet and the tamping plate is defined hereinunder as the tamping system. In the case of modem tampers, the tamping system is provided with oil lubrication. In order to prevent oil from issuing out of the tamping system but also to prevent the penetration of dirt into the tamping system, the tamping system in the case of known tampers is surrounded by an enclosure which can consist, for example, of a combination of rigid housing parts and expansion bellows. To date, the enclosure has been designed in such a manner that it effects a complete seal of the tamping system which means that it is not possible to achieve pressure equalisation between the sealed interior and the atmosphere.
In the case of working machines of this type, for the purpose of lubricating the drive motor, i.e. the cylinder, the piston and the piston rings, as well as the bearings and the shaft sealing rings, it is conventional to provide a petroil lubrication, i.e. the operation with a fuel-oil mixture which is stored in liquid form in the tank. In order to configure the operation of these machines in the most convenient manner possible and with the lowest possible maintenance, the development is moving towards providing a separate lubrication, wherein the oil required to lubricate the motor is taken from the oil supply contained in the closed tamping system. Tests have shown that it is possible at this site to accommodate a sufficiently large quantity of oil without impairing the performance of the tamper. The desired switch to separate lubrication has hitherto been delayed because it has been assumed that to accomplish this it would be necessary to implement relatively large structural modifications on the machines introduced at that time, such as delivery devices for transporting the oil from the tamping system to the motor.
Therefore, it is the object of the invention to provide a separate lubrication for the drive motor of tampers which can be accomplished with a small amount of outlay and in particular without substantially affecting the existing design and can be adapted in a convenient manner to suit the lubricant requirement of the motor.
In accordance with the invention the object is achieved according to the characterising feature of claim 1 in that the enclosure which encompasses the tamping system is provided with a small opening which opens out downstream of the air filter into the air induction channel of the internal combustion engine and whose cross-section is precisely dimensioned so as to enable the equalisation of pressure between the tamping system and the surrounding area and to allow oil to travel from the tamping/percussion system into the air induction channel of the motor.
This also solves a further problem of modern tampers which is caused by the lack of pressure equalisation between the sealed interior of the enclosure and the atmosphere. Pressure equalisation has hitherto not been provided so as not to impair the protective function of the enclosure. However, it has been shown that this does not give rise to negligible disadvantages. The tamping system is conventionally mounted in such a manner that the crank assumes the upper dead centre position, i.e. that the machine assumes its minimum structural height, in which the upper mass is maximally approximated to the working mass, or the upper mass assumes its lowest position relative to the working mass. By rotating the crank drive, the tamper is extended, i.e. the upper mass is raised relatively to the working mass until finally in the lower dead centre position of the crank drive, the tamper has reached its maximum structural height. For example, the tamper stroke amounts to 60 mm. In order to be able to accommodate this relative movement between the upper mass and the working mass, the aforementioned expansion bellows are provided. During the movement between the upper and the lower dead centre position of the crank drive, the volume (enclosed volume) which is encompassed by the enclosure increases and consequently negative pressure is generated in the encompassed region.
This negative pressure not only makes it more difficult to start the machine running during start-up, which can cause the motor to die and, for example, can cause increased clutch wear, but the seals and the expansion bellows are also loaded by the negative pressure which occurs.
Various factors which cannot be influenced significantly without substantial outlay cause the temperature of the working machine to increase considerably, namely as a result of exposure to sunlight, frictional heat on the longitudinal guide arrangement of the tamper, internal friction of the springs of the tamping system, friction of the bearings and shaft seals, and radiation heat from the motor flange-mounting and heating caused by the heated cooling air of the motor which blows on to the crank casing. This significant increase in temperature is additionally intensified by the heat losses from the compaction work resulting from the continuously changing stroke volume. Pressure differences which occur in the closed system also have an effect, if there is a relatively large difference in amplitude between the site where the tamper is assembled and the site where it is used.
The accumulated heat and the resulting build-up in pressure are often the reason why the tamper—in particular in the case of pre-compacted ground surfaces—operates noisily and erratically.
This is also achieved by the inventive solution. The opening which serves as the pressure equalisation opening avoids the unnecessary compaction work and at the same time with each stroke of the tamping system an amount of oil which is swirled by this tamping system travels into the air induction channel and upon further swirling in the carburettor it then travels further to the motor. Since the pressure equalisation opening opens up downstream of the induction air filter into the air induction channel, i.e. on the clean side of the air filter, it is not possible for any particles of dirt to pass into the interior of the enclosure to the tamping system whilst air is inducted through the pressure equalisation opening for the purpose of obviating the negative pressure. On the other hand, when air is passed through the pressure equalisation opening in the opposite direction, which causes an oil mist to issue out into the air induction channel, the filter seal is not expected to be wetted with oil to any significant extent.
Since the tamping system is capable not only of accommodating the amount of oil required for lubrication thereof during a service interval but also of accommodating the amount of oil required to lubricate the motor to a maximum of between two services, it is possible without complicated structural modifications for the tamper to be operated in a completely maintenance-free manner between the prescribed services. In particular, there is no need to top up the mixture or to add to the oil supply during the service intervals. Finally, the pressure equalisation also eliminates the cause of the hitherto frequently observed phenomenon that after the work is finished and the tamper heats up as a result, the increased internal pressure in the closed tamper system means that the tamper is no longer able to return to its starting position, in which it assumes its lowest structural height.
Tests have shown that an opening diameter of 0.8 mm allows sufficient air to be supplied to and vented from the tamping system and moreover a discharge of oil can be established which should be sufficient to lubricate the motor. Should a greater amount of oil be required, the cross-section of the pressure equalisation opening can be adapted accordingly, as in accordance with one advantageous embodiment the pressure equalisation opening is formed in an interchangeable nozzle body. This can be, for example, a marketable carburettor nozzle.
Preferably, the pressure equalisation opening issues upstream of a Venturi-section of the carburettor, which is allocated to the motor, into the air induction channel, so that the oil mist is subjected at this site to further intimate swirling with the combustion air and the fuel.
In order to ensure that the motor is supplied with the best possible oil quality, in accordance with a further advantageous embodiment of the invention, components of the tamping or percussion system which are subjected to abrasive wear consist of materials having effective sliding properties and low abrasion.
The invention will be explained in detail with reference to the description hereinunder of an exemplified embodiment of the invention as illustrated in the drawing, in which
The upper mass, which is designated overall by the reference numeral 10 and is only partially illustrated, of a tamper for ground-compaction purposes which can be driven by a 2-cycle internal combustion engine [not illustrated] demonstrates a housing portion 12 which is part of an enclosure of the tamping system. This housing portion 12 is provided with a threaded bore which passes through a lug 14 and into which a nozzle body 16 is screwed. For this purpose, the nozzle body 16 is provided with a threaded end 18 which is adjoined by a collar 20 which covers the threaded bore. Integrally formed on the side of the collar 20 remote from the threaded end 18 is a hexagon 22 which is used for tightening the nozzle body 16 in the threaded bore. A threaded bore 24 which serves to attach an air filter 26 by means of an attachment pin 28 which passes centrally through the air filter 26 opens up at the end side of the hexagon 22. The induction air which passes through the air filter 26 and is intended for the internal combustion engine [not illustrated] flows into the internal combustion engine through an air induction channel 30 which is formed on the housing portion 12.
As shown in
Therefore, a connection exists continuously between the internal space of the enclosure 12 containing the tamping system and the atmosphere surrounding the tamper, so that pressure can be equalised at any time. If the cross-section of the pressure equalisation opening 36 is to be changed, the air filter 26 is first removed so that the nozzle body 16 can be readily exchanged for a different nozzle body, of which the bore 36 comprises a different cross-section.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP02/02257 | 3/1/2002 | WO | 00 | 8/27/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/070868 | 9/12/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3286790 | Kestel | Nov 1966 | A |
3642077 | Bayard | Feb 1972 | A |
4726330 | Shiga | Feb 1988 | A |
6161510 | Ishikawa et al. | Dec 2000 | A |
Number | Date | Country |
---|---|---|
1 031 738 | Jun 1958 | DE |
1 208 234 | Dec 1965 | DE |
2 121 064 | Nov 1972 | DE |
2 332 107 | Nov 1976 | FR |
Number | Date | Country | |
---|---|---|---|
20040079305 A1 | Apr 2004 | US |