The present invention relates to reducing oil carry-over in internal combustion engines. In particular, but not exclusively, the invention relates to a barrier device provided in the cylinder block of an internal combustion engine to reduce the amount of oil being carried over from the crankcase to the crankcase breather system.
Internal combustion engines suffer from a process called blow-by where combustion gasses leak past the piston rings into the crankcase. To prevent seal damage these gasses will have to be vented, which can be done by a closed circuit breather system (CCB) or an open circuit breather system (OCB). When using an OCB, the gasses flow from the crankcase to the cylinder head and are from there vented to atmosphere. With a CCB, the gasses flow from the crankcase to the cylinder head and are from there re-introduced into the induction system, where they are burned off and subsequently depart the engine via the conventional exhaust system.
A major problem associated with both OCB and CCB systems is that the blow-by gasses usually carry a substantial amount of oil particles caused by reciprocating and rotating elements in the engine. This process is called oil carry-over and can pose several problems:
It is known to provide a PCV (Positive Crankcase Ventilation) valve to limit oil carry over. An example of such an apparatus is disclosed in U.S. Pat. No. 5,024,203. However, this design has several undesired characteristics in that it is fitted external to the engine thus enlarging the engine envelope, it requires a controlled heating process of the vapours, and several additional flow paths must be added to the engine to control the flow of the fluids involved. This combination of factors make the design complex, expensive, and introduces significant design constraints for both the engine manufacturer and the customers who wish to incorporate the engine into their products.
The present invention is directed to solving one or more of the problems set forth above.
According to a first aspect of the present invention, there is provided an internal combustion engine with a cylinder block defining a first chamber, a second chamber and a passage connecting the first chamber and the second chamber. The passage allows gas flow between the first chamber and the second chamber. The internal combustion engine further has a barrier device positioned in the cylinder block with an impact surface located in the gas flow adjacent to a downstream end of the passage. The passage has a cross-sectional area and shape such that said gas flow has a velocity causing oil particles in the gas flow to impact on the impact surface. The impact surface extends over the cross-sectional area of the passage and substantially impedes oil particles in the gas flow whilst allowing gas to flow past the impact surface.
According to a second aspect of the present invention, an internal combustion engine has a first engine component with a passage therein, a second engine component and gasket sealing between the first and the second engine components The gasket has at least one perforation to allow gas flow from the passage in the first engine component to the second engine component. The gasket includes a barrier device positioned in the gas flow adjacent to a downstream end of the passage. The passage has a cross-sectional area and shape such that the gas flow has a velocity causing oil particles in the gas flow to impact on the impact surface. The impact surface extends over the cross-sectional area of the passage and substantially impedes oil particles in the gas flow whilst allowing gas to flow past the impact surface.
For clarity the following description refers to a single cylinder engine only, but the principle can of course as easily be applied to multiple cylinder engines.
With reference to
Four embodiments of this invention are described below in detail. Generally, each embodiment comprises an impact surface which is positioned adjacent to the downstream side of a passage connecting a first chamber and a second chamber. The impact surface extends over the passage in such a manner that substantially all gas flow is directed onto this impact surface. The passage has a both pre-determined cross-sectional area and shape such that the gas flow through the passage maintains or obtains a velocity within a pre-determined velocity range so it causes the oil particles carried by the gas flow to impact on the impact surface preferably with minimal atomisation of the particles on impact. The gas flow can continue, but the inertial impact of the oil particles on the impact surface cause the oil particles to coagulate and form oil droplets. As the droplets reach a certain size they depart from the impact surface and the droplets return to the first chamber.
Barrier device 26 is fitted in chamber 14 via aperture 32. After fitting barrier device 26 and carrying out any other desired operations, aperture 32 is closed off by for example press-fitting or threading plug 33 into aperture 32.
The gas flow carrying the oil particles travels at a velocity within a desired velocity range after leaving passage 16. The gas flow continues by flowing through apertures 35 between supporting members 31. The inertia of the oil particles causes the oil particles to impact on impact surface 30, and thus the oil particles coagulate to form oil droplets. As the droplets reach a certain size they depart from impact surface 30 and the droplets either fall back through passage 16 or run back via supporting members 31 into tappet chamber 12.
Barrier device 126 is fitted in chamber 114 via aperture 132. After fitting barrier device 118 and carrying out any other desired operations, aperture 132 is closed off by for example press-fitting or threading plug 133 into aperture 132.
Barrier device 126 is secured by engaging locating portions 138 in receiving portions such as recesses (not shown) formed by the walls that define chamber 114.
The gas flow carrying the oil particles travels at a velocity within a desired velocity range after leaving passage 116. The gas flow continues by flowing through perforations 140. The inertia of the oil particles causes the oil particles to impact on impact surface 130, and thus the oil particles coagulate to form oil droplets. As the droplets reach a certain size they depart from impact surface 130 and the droplets fall back through passage 116.
If barrier device 226 is fitted after casting of cylinder block 220, barrier device 226 is fitted in chamber 214 via aperture 132. After fitting barrier device 226 and carrying out any other desired operations, aperture 232 is closed off by for example press-fitting or threading plug 233 into aperture 232.
The gas flow carrying the oil particles travels at a velocity within a desired velocity range after leaving passage 216. The gas flow continues by flowing around impact member 226. The inertia of the oil particles causes the oil particles to impact on impact surface 230, and thus the oil particles coagulate to form oil droplets. As the droplets reach a certain size they depart from impact surface 230 and the droplets fall back through passage 216.
An alternative shaped barrier device is shown in
In
The embodiment shown in
Impact portion 326 is positioned in such a manner that the gas flow carrying the oil particles leaving throat area 358 of chamber 314 are obstructed by impact portion 326. Throat area 358 has a both pre-determined cross-sectional area and shape such that the gas flow through the throat area maintains or obtains a velocity within a pre-determined velocity range so it causes the oil particles carried by the gas flow to impact on the impact surface 330 preferably with minimal atomisation of the particles on impact. Therefore throat area 358 functions similarly to passages 16, 116 and 216 as described above. Consequently, throat area 358 can be considered a passage for purposes of this invention.
The gas flow carrying the oil particles travels at a velocity within a desired velocity range after leaving throat area 358. The gas flow continues by flowing around impact portion 326. The inertia of the oil particles causes them to impact on impact surface 330, and thus the oil particles coagulate to form oil droplets. As the droplets reach a certain size they depart from impact surface 330 and the droplets fall and run back through vent chamber 314 into passage 316 and then into tappet chamber 312.
In use, this invention provides a simple and robust solution to reduce the amount of liquid oil particles carried over to a crankcase ventilation oil filter or to the induction system of an engine. Gas flow from the crankcase 24 passes through a passage 16, 116, 216, 358 formed in the cylinder block 20, 120, 220, 320. This ensures that oil particles carried by the gas flow have sufficient inertia that they impact against an impact surface 30, 130, 230, 330 positioned adjacent to the downstream end of the passage. However, the gas flow may continue past the impact surface 30, 130, 230, 330. As a result, oil particles are removed from the gas flow, and the oil particles can coagulate to form droplets that then return to the crankcase and engine sump.
This invention can be readily fitted to existing engine designs without requiring substantial modification to the engine design. Moreover, because the invention is generally contained within the engine, the benefits of the invention can be obtained without increasing the space claim of the engine. In some cases, this invention may also be fitting to existing engines.
This invention is particularly useful in engine application that are likely to generate high levels of oil particles carried by the crankcase gases. One example of such an application is an engine for a hydraulic excavator. In a hydraulic excavator, the repeated slewing of the excavator during digging operations can cause increased splashing of oil within the engine, thereby increasing the likelihood that small oil particles will travel with the gas flow. For applications that present particularly high levels of oil particles in the gas flow, those skilled in the art will recognize that one of more of the embodiments of
Although the preferred embodiments of this invention have been described, improvements and modifications may be incorporated without departing from the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
03252618.8 | Apr 2003 | EP | regional |