This disclosure relates to combustion chambers designed to enhance gas flow and combustion efficiency.
Internal combustion engine designers continue to confront an ever more demanding set of governmental mandated emissions standards and performance standards such as fuel efficiency. The desirability of improved fuel efficiency is especially high in the spark ignition engine market given its size.
This disclosure provides an internal combustion engine, comprising an engine block, a cylinder head mounted on the engine block, wherein the cylinder head includes a combustion face forming a portion of a combustion chamber, and the combustion face includes a pent-roof portion and a hemispherical shaped portion. A first intake valve port formed in the cylinder head includes a first intake valve port opening formed in the pent-roof portion while a second intake valve port formed in the cylinder head includes a second intake valve port opening formed in the pent-roof portion. An exhaust valve port formed in the cylinder head includes an exhaust valve port opening formed in the hemispherical shaped portion.
The engine may further include a first spark plug mounting bore formed in the cylinder head and including a bore opening positioned on one side of the combustion face adjacent the first intake valve port opening and adjacent the exhaust valve port opening. The first spark plug mounting bore may be positioned at least partially between the first intake valve port opening and the exhaust valve port opening. A second spark plug mounting bore may be formed in the cylinder head and include a bore opening positioned on an opposite side of the combustion face from the first spark plug mounting bore adjacent the second intake valve port opening and adjacent the exhaust valve port opening. The combustion face may further include a transition portion connecting the pent-roof portion and the hemispherical portion, wherein the transition portion extends across an entire diameter of the combustion face. The transition portion may occupy no more than 20% of the combustion face. The engine may further include two spark plug mounting bores having respective openings formed within at least one of the hemispherical portion and said transition portion. The two spark bore openings may each be positioned in both the hemispherical portion and the transition portion. At least 70% of each of the first intake valve port opening and the second intake valve port opening may be positioned in the pent-roof portion. At least 70% of the exhaust valve port opening may be positioned in the hemispherical portion.
The disclosure also provides an internal combustion engine, comprising an engine block, a cylinder head mounted on the engine block, wherein the cylinder head includes a combustion face forming a portion of a combustion chamber. The combustion face includes a pent-roof portion, a hemispherical shaped portion, and a transition portion connecting the pent-roof portion and the hemispherical portion. A first intake valve port formed in the cylinder head includes a first intake valve port opening formed in the pent-roof portion, while an exhaust valve port formed in the cylinder head includes an exhaust valve port opening formed in the hemispherical shaped portion. A spark plug mounting bore formed in the cylinder head includes a bore opening formed in at least one of the hemispherical shaped portion and the transition portion.
Advantages and features of the embodiments of this disclosure will become more apparent from the following detailed description of exemplary embodiments when viewed in conjunction with the accompanying drawings.
Embodiments of the present disclosure significantly improve the fuel efficiency of spark ignition engines by providing improved porting and enhanced spark ignition. Referring to the
One end of each cylinder cavity 4 is closed by an engine cylinder head 12 having a combustion face 13 of the present disclosure associated with each cavity 4 as discussed more fully hereinbelow. Engine 10 further includes a respective piston 21 mounted in a corresponding liner 19 associated with each combustion chamber. Although only a top portion of piston 21 is shown in
Engine 10 is a four-cycle spark ignition engine employing premixed fuel and air. A pair of intake ports or passages 25, 27 having respective intake port openings 29, 31 formed in combustion face 13 selectively direct intake air and fuel into combustion chamber 3 by means of a pair of intake valves 18, 20. Similarly, an exhaust port or passage 30 having an exhaust port opening 32 formed in combustion face 13 selectively directs exhaust gas from combustion chamber 3 by means of an exhaust valve 34. The opening and closing of valves 25, 27 and 34 may be achieved by a mechanical cam or hydraulic actuation system or other motive system in carefully controlled time sequence with the reciprocal movement of piston 21. The amount of charge air that is caused to enter the combustion chambers may be increased by providing a pressure boost in the engine's intake manifold. This pressure boost may be provided, for example, by a turbocharger, not illustrated, driven by a turbine powered by the engine's exhaust, or maybe driven by the engine's crankshaft.
Each combustion face 13 of cylinder head 12 is formed with a particular combination of shaped surfaces or portions, and intake and exhaust port openings sized and positioned on those portions of combustion face 13 in a particular location, resulting in improved flow and enhanced combustion efficiency. The combustion face 13 preferably also includes one or more spark plugs positioned in a predetermined location to optimize combustion. Specifically, combustion face 13 includes a pent-roof section or portion 14 and a hemispherical, i.e. semispherical, shaped section or portion 16 to optimize the function of the valves and the spark plug(s). In addition, in the exemplary embodiment, combustion face 13 further includes a blended or transition section or portion 17 connecting pent-roof portion 14 and hemispherical portion 16. Transition portion 17 is designed to occupy as little space/area, i.e. no more than 20%, of combustion face 13 as possible to smoothly blend the two geometries (pent-roof and hemispherical), while pent-roof portion 14 and hemispherical portion 16 may occupy approximately equal amounts of the remainder of the combustion face or hemispherical portion 16 may occupy slightly more combustion face area than pent-roof portion 14. A pressure transducer may be inserted into a central passage 23.
In the exemplary embodiment, the two intake port openings 29, 31 are located on the pent-roof portion 14 and thus are positioned at an acute angle relative to the lower planar surface of cylinder head 12 (i.e. angled relative to the upper surface of the engine block 2/liner 19 (
A goal of this cylinder head is to maximize the efficiency of the intake and exhaust ports. By angling the port openings and respective valves relative to the combustion face 13 (
The number, position, and arrangement of the valves, in combination with the shape of the combustion chamber portions, allows for efficient placement/positioning of one or more spark plugs in the remaining open space/area of the cylinder head forming the combustion chamber. In this manner, the system of the present disclosure packages the intakes valves, spark plug(s), and exhaust valves to optimize the area of the cylinder face 13 forming the combustion chamber.
Thus, embodiments described herein include the use of a blended pent-roof and hemispherical combustion chamber shape with two intake valves, a single exhaust valve located on the respective sides along with at least one, but preferably two, spark plugs. This combination yields significant improvement in flow and combustion efficiency relative to the industry standard flat face combustion deck.
While various embodiments of the disclosure have been shown and described, it is understood that these embodiments are not limited thereto. The embodiments may be changed, modified and further applied by those skilled in the art. Therefore, these embodiments are not limited to the detail shown and described previously, but also include all such changes and modifications.
Number | Date | Country | |
---|---|---|---|
61347187 | May 2010 | US |