1. Field of the Invention
The present invention relates to an igniting operation that ignites fuel during running of an internal combustion engine, and relates to an ignition controlling apparatus that determines whether this igniting operation is being implemented normally.
2. Description of the Related Art
In recent years, problems of environmental protection and fuel depletion have been raised, and responding thereto has also become a major task in the automotive industry. In response thereto, many techniques have been developed that attempt to raise internal combustion engine efficiency to a maximum. One of these is a stratified charge combustion control method in which flow is controlled such that fuel is distributed only in a vicinity of a spark ignition source (a spark plug), and combustion is generated using a quantity of fuel that is significantly reduced relative to volume of air that is charged inside an internal combustion engine combustion chamber.
A difficulty with stratified charge combustion control is stabilizing the concentration of the fuel in the vicinity of the spark plug. At present, this is difficult to stabilize, and in order to implement stratified charge combustion using existing techniques, it is necessary to adopt either a long electrical discharge method, in which spark discharge is continued until fuel in the vicinity of the spark plug reaches a combustible air-fuel ratio, or a multiple ignition method, in which sparks are repeatedly generated many times.
The above long electrical discharge method is a method in which the ignition coil becomes large and heavy, and there is a practical limit at a discharge time of approximately 2 msec. In contrast, a small, light ignition coil that has superior responsiveness is used in the multiple ignition method, and although single discharge time is short, by generating this repeatedly it is possible to lengthen the discharging zone significantly, and in recent years a tendency to adopt the multiple ignition method has become more pronounced.
However, in the case of multiple ignition systems, each discharging period is often set so as to be short, at approximately 100 to 200 μsec, and if conditions arise in which large capacity components combine on the ignition instruction pathway, ignition interrupting instructions may not be transmitted to the ignition coil as expected, and as a result multiple ignition may not be achieved, leading to deterioration in exhaust gases (emissions) that accompanies deterioration in combustibility, deterioration in fuel consumption that accompanies decline in output, etc., thereby giving rise to problems with regard to environmental protection.
Other techniques for raising engine efficiency include configurations that increase an engine compression/expansion ratio to a limit. A problem with these techniques is that internal portions of the combustion chamber reach extremely high temperatures during the compression cycle and the fuel ignites spontaneously. Combustion due to such spontaneous ignition is extremely fast, and it has been found experimentally that in most cases combustion is completed before the ignition instruction or during the spark discharge immediately after instruction.
As a means of detecting such spontaneous ignition, systems have been proposed that determine spontaneous ignition generating conditions from a state of ions that are formed together with combustion, but since this ion detection is not possible during spark discharge, detection of such spontaneous ignition combustion is enabled by applying multiple ignition to terminate the spark discharge forcibly. Here too, because it becomes impossible to detect spontaneous ignition if ignition interrupting instructions are not transmitted to the ignition coil as expected, as described above, it is consequently impossible to increase the compression ratio of the engine, leading to deterioration in fuel consumption, etc., due to deterioration in thermal efficiency, and compounding the problems with regard to environmental protection.
If intermittent interference from the power supply system wiring is generated in the ignition instruction supply line, then ignition due to passage and interruption of electric current to the ignition coil may be repeated at a timing that is different than the intended ignition timing regardless of the ignition instruction, and in such cases, there is also a possibility that this may lead to damage to the engine.
Consequently, it is necessary to diagnose whether ignition is being performed as intended.
The apparatus that is shown in the above patent literature diagnoses operation of an ignition coil by detecting an impulse signal that is generated together with operation of the ignition coil, and can determine when the ignition coil is not operating at all. However, it cannot determine whether or not the multiple ignition that has been described above has been implemented. Since the impulse signal that accompanies ignition is generated if the last spark is implemented even if multiple ignition has not been achieved, the apparatus that is shown in the patent literature is limited to determination of normal ignition, and cannot determine when multiple ignition is abnormal.
There are also cases in which the apparatus that is shown in the patent literature cannot correctly determine when the ignition coil is operating in an unintended manner. When the spark plug is in a clean state, even the apparatus that is shown in the patent literature can determine abnormal ignition if the igniting operation has not been performed within a set detection period. However, if a conducting pathway has formed between a center electrode and ground of the spark plug due to carbon, etc., there are cases in which leakage current flows during the detection period even if the igniting operation has not been implemented within the detection period, and another problem has been that the apparatus that is shown in the patent literature mistakes this leakage current for the signal that accompanies the igniting operation and cannot determine that the igniting operation is abnormal.
The present invention aims to solve such problems as those described above and provide an internal combustion engine ignition controlling apparatus that has an ignition diagnosing function that can detect whether satisfactory spark discharge is performed, and repair faults by notification of abnormality, and that can consequently contribute to environmental protection because target engine efficiency can be achieved.
In order to achieve the above object, according to one aspect of the present invention, there is provided an internal combustion engine ignition controlling apparatus having an ignition diagnosing function, the ignition controlling apparatus including: an ignition apparatus that generates a spark discharge for igniting fuel that has been supplied into an internal combustion engine combustion chamber; an ignition coil that generates and applies to the ignition apparatus a high voltage for generating the spark discharge; a controlling apparatus that issues an ignition signal to the ignition coil a plurality of times in a single stroke; a bias device that is disposed on the ignition coil and that generates and applies to the ignition apparatus a bias voltage that has a reverse polarity to a polarity of the high voltage; a signal extracting device that is disposed on the controlling apparatus and that extracts a signal that is generated as a result of application of the bias voltage; and a signal diagnosing device for diagnosing a state of the spark discharge based on output from the signal extracting device, the ignition controlling apparatus being characterized in that: the signal extracting device sets a predetermined detection zone from a period within the stroke of the internal combustion engine from a first spark discharge commencement until after a last spark discharge completion, and extracts a signal in the detection zone; and the signal diagnosing device determines a state of ignition using parameters included in the extracted signal in the predetermined detection zone, and controls the internal combustion engine in response to the determination.
According to an internal combustion engine ignition controlling apparatus that has an ignition diagnosing function according to the present invention, because whether spark discharge is being performed normally can be detected, faults can be repaired due to notification of abnormalities, and because target engine efficiency can be achieved, a contribution can consequently be made to fuel depletion problems and environmental protection.
Embodiment 1 of the present invention will now be explained with reference to the drawings.
The high voltage that is generated by the ignition coil 2 is transmitted to the spark plug 3, and a spark discharge that is due to dielectric breakdown between the spark plug electrode and ground is generated by this high voltage, giving rise to ignition and combustion of a combustible gas mixture inside a combustion chamber. Accompanying this spark discharge operation, a bias device 103 that is inside the ignition coil 2 generates a bias voltage, a constant voltage of approximately 100 V, for example, for detecting ions that are formed together with the combustion of the combustible gas mixture inside the combustion chamber, and supplies it to the spark plug 3 after completion of the spark discharge. In addition to a spark discharging function, the spark plug 3 also includes a probing function for detecting ions, and detects the ions that are formed together with the combustion of the combustible gas mixture by applying the bias voltage between the spark plug electrode and ground.
The ions that are detected by the spark plug 3 flow from the spark plug 3 through the bias device 103 inside the ignition coil 2 as an electric current signal. Hereinafter, this electric current signal will be called “the ion current”. The ion current is also amplified by the bias device 103 inside the ignition coil 2, and is transmitted to a signal extracting device 104 inside the ECU 1.
The signal extracting device 104 converts the input ion current into an ion signal that is in voltage form so as to enable processing by a microcomputer, and extracts various information such as signal generation magnitude, timing of generation and completion, period, etc., for example. A signal diagnosing device 105 performs an ignition diagnosis based on the extracted information. This diagnostic method will be described below.
The signal extracting device 104 also controls the rate at which the ion current is converted into the voltage signal. Consider when the ion signal is passed through an analog-to-digital (ND) converter for processing by the microcomputer. The signal extracting device 104 converts the ion current into a voltage value between 0 V and 5 V using the A/D converter, but since the ion current increases at high rotation, for example, if the conversion rate is constant, 5 V may be exceeded in the voltage conversion and the signal may become saturated at 5 V. Consequently, the signal extracting device 104 has a function that monitors the saturation state of the signal, and modifies the current/voltage conversion rate to adjust the signal so as not to become saturated if it determines that the saturated state is being reached frequently, or alternatively in response to operating conditions such as engine rotational speed, load, etc., based on preverified matching results. The signal extracting device 104 may also be set so as to switch the conversion rate when the applied voltage for detecting the ion current changes significantly, for example, when the ignition signal is in a “High” state and in a “Low” state.
If the compression ratio is increased in order to increase thermal efficiency of the internal combustion engine, the voltage required for spark discharge (dielectric breakdown across the spark plug) increases. Because of this, it is necessary to inject more energy into the ignition coil, and inevitably the spark discharge time is also longer, and has nominal characteristics of approximately 2 to 3 msec, for example. The ion signal cannot be detected during this spark discharging period. In contrast to that, since combustion speed is extremely fast in abnormal combustion, generation of the ion signal, which represents the combustion state in the vicinity of the center electrode of the spark plug 3, is also extremely abrupt and short, sometimes being generated and completed within 2 msec from main ignition, and it may not be possible to distinguish between a misfire state and an abnormal combustion state. In other words, one major problem has been that abnormal combustion detection that is especially required in internal combustion engines of this kind that have a high compression ratio is obstructed by characteristics of the spark discharge and cannot be achieved. However, the above problem can be solved by applying multiple ignition as described above, and recommencing passage of the primary current to terminate the spark discharging period forcibly.
Let us return to the explanation of
Next, details of the diagnostic processing in the signal diagnosing device 105 will be explained using the flowchart in
At S301 in
At S301, if it is determined that the above implementation conditions 1 are not being met (N), proceed to S302, and set CNT1 to 0, at S303 set CNT2 to 0, and at S304 maintain the previous diagnostic result, then end. CNT1 and CNT2 are counters, and are incremented when ignition is abnormal, and are decremented when normal. Details will be described below.
If it is determined at S301 that the implementation conditions 1 are being met (Y), then proceed to S305 and find the maximum value of the signal in zone P1 from final ignition as A and the maximum value of the signal in zone P2 from first ignition as B, respectively. Here, final ignition indicates timing 210 in the example in
Proceed to S306 and if value A is greater than or equal to a comparison level P3 (N), then determine that there is a possibility that ignition is abnormal, proceed to S307, and increment CNT1. At S306, if value A is smaller than the comparison level P3 (Y), then proceed to S308, and further compare value B with a comparison level P4. If value B is less than or equal to the comparison level P4 (N), then assume there is a possibility that ignition is abnormal, proceed to S307 and increment CNT1 in a similar manner, and then proceed to S315. If value B is greater than the comparison level P4 at S308 (Y), then determine that there is a possibility that ignition is normal, proceed to S309, and decrement CNT1. The comparison levels P3 and P4 may be set to variables or map values that are determined in response to rotational speed, load, and the rate at which the ion current is converted into the voltage signal, etc.
Here, a clip that has upper and lower limits is predisposed on the counter CNT1. The lower limit is set to 0, and the upper limit is set to a value such as 10, for example. If the upper limit of the clip is set so as to be large, it becomes harder to return to normal state determination, enabling the setting to be made safer. It is also preferable if the amount of increment and the amount of decrement of CNT1 described above can be set separately. In
Proceed to S310. At S310, once again perform a determination of the implementation conditions, and a determination of the multiple ignition implementation conditions. In conditions in which multiple ignition is not being implemented, or in which the interval from the first ignition to the final ignition is short and the spark discharging period is extremely short, for example, cases in which short-interval multiple ignition is implemented only once when operating conditions are at high rotational speed or heavy load where the voltage required for spark discharge increases significantly, or cases in which the interval from the first ignition to the commencement of passage of current of the second ignition is set so as to be just long enough that spark discharge time does not force termination and the interval from the commencement of passage of current of the second ignition to the second ignition is set so as to be short, when consideration is given to various kinds of irregularities, there is a possibility that there may be an erroneous determination because position C at which a signal is generated as described below is generated at a timing that is close to when multiple ignition might be either abnormal or normal, and it is assumed that a determination will not be implemented in such cases (N), proceed to S303 and continue as above. If the conditions are met at S310 (Y), then proceed to S311, and find the position C at which the signal is generated in zone 219 from the first ignition to the final ignition (P3, a third detection zone). For example, in the example in
Assuming that a BTDC (before top dead center) direction is a forward direction of the timing, if the value C at S312 is less than a comparison level P5, that is, on a retarded side (N), then determine that there is a possibility that multiple ignition is abnormal, and proceed to S313, and increment CNT2. If (Y) at S312, determine that there is a possibility that multiple ignition is normal, proceed to S314, decrement CNT2, and then proceed to S315. Here, upper and lower limit clips may also be disposed on the counter CNT2 in a similar manner to CNT1, and the amounts of increment or decrement, the upper and lower clip values, and the comparison level P5 may also be set as variables or map values that are determined in response to rotational speed and load.
At S315, if CNT1 is greater than a comparison value P6 (Y), then proceed to S316, determine that ignition has failed, that is, that ignition is not being generated at all at the instructed timing, then end. If (N) at S315, proceed to S317, and if CNT1 is greater than or equal to a comparison value P7 (N), then proceed to S304, maintain the previous determined result, then end. If (Y) at S317, proceed to S318, and if CNT2 is greater than a comparison value P8 (Y), proceed to S319, determine that multiple ignition has failed, that is, ignition is generated, but it is not multiple ignition as instructed, then end. If (N) at S318, proceed to S320, and if CNT2 is greater than or equal to a comparison value P9 (N), proceed to S304, maintain the previous diagnosis and end, and if (Y) at S320, proceed to S321, determine that ignition is normal, and end. The comparison values P6 through P9 may also be set as variables or map values that are determined in response to rotational speed and load.
The state of ignition is diagnosed as described above, and if it is determined that the state of ignition is ignition failure, then the ECU 1 cancels fuel injection instructions to the fuel injection device 4. In other words, the ECU 1 issues an instruction such that fuel is not supplied to the cylinder that is subject to ignition failure until a determination that ignition is normal is issued. Because it is necessary to determine whether ignition has been restored to normal, instructions to the ignition coil 2 continue to be issued as per normal.
If the state of ignition is multiple ignition failure, then the ECU 1 prohibits preignition detection processing such as that described above and performs control to maintain an operating state in which abnormal combustion such as preignition is reliably prevented such as ensuring that load is not increased, delaying closing timing of intake air valve timing, making the air-fuel ratio of the air-fuel mixture richer, delaying fuel injection timing, etc., for example.
A method in which misfire diagnosis results from a misfire detecting means are added to the ignition diagnosing method that is shown in Embodiment 1 will be explained based on
If it is determined at S306 in
All other processing is similar to that in
By using a misfire detection determination as in Embodiment 2, ignition system diagnostic precision can be further improved, enabling false diagnosis to be prevented.
Embodiment 3 will be explained based on
With reference to the timing chart in
First, at S551, check whether the diagnostic zone is present. The diagnostic zone (
In comparison with zone 211 (P2) zone in
By the operation thus far, a count that is generated each time the signal is switched off can be counted as CNT3. Specifically, an impulse signal generation count can be counted that looks like 505 (FLG) and 506 (CNT3) that are shown in
On reaching a diagnostic zone end point 507, in accordance with the flowchart in
According to Embodiment 3, whether multiple ignition is implemented as intended can be diagnosed precisely.
According to the apparatus of the present invention, because the state of spark discharge in an internal combustion engine can be diagnosed and appropriate actions can be performed based on the diagnostic results, direct discharge of unused fuel into the atmosphere is prevented, and damage to catalysts that purify exhaust gases can be prevented, and because target engine efficiency can be achieved, etc., a contribution can consequently be made to environmental protection.
Because an ignition diagnosing apparatus according to the present invention can be mounted to automobiles, motorcycles, outboard motors, and other special machines, etc., that use an internal combustion engine, and can reliably perform ignition function diagnosis, the internal combustion engine can be operated efficiently, enabling a contribution to be made to fuel depletion problems and environmental protection.
Number | Date | Country | Kind |
---|---|---|---|
2010-088777 | Apr 2010 | JP | national |