1. Field of the Invention
The present invention relates to an internal combustion engine provided with a centrifugal decompressing means for reducing compression pressure to facilitate staring the internal combustion engine by opening a valve included in the internal combustion engine during the compression stroke in starting the internal combustion engine, and a method of adjusting valve lift for decompression.
2. Description of the Related Art
Internal combustion engines provided with a centrifugal decompressing means including a flyweight are disclosed in JP2001-221023A and JP63-246404A. A decompression member included in the decompressing means disclosed in JP2001-221023A or JP63-246404A is a plate-shaped member of a substantially uniform thickness integrally provided with a flyweight and a decompression cam. A support pin supporting the flyweight for swing motion is extended through a middle part of a camshaft substantially perpendicularly to the axis of the camshaft. It is difficult to form the camshaft in a lightweight, hollow member and to form an oil passage through the camshaft when the support pin supporting the flyweight of the decompressing means is extended through the camshaft substantially perpendicularly to the axis of rotation of the camshaft.
An internal combustion engine proposed in JP11-294130A is provided with a decompressing means including a flyweight supported for swing motion by a pin on a camshaft provided with a central oil passage. This prior art internal combustion engine has a camshaft provided with a cam held in contact with a valve tappet, and a central oil passage; and a compressing means including a decompression member having the shape of a plate of a substantially uniform thickness and a function of a flyweight, and a return spring. The decompression member is provided with a protrusion, which corresponds to a decompression cam, formed integrally with a flyweight. The protrusion lifts up the valve tappet in a starting phase of the internal combustion engine to open an exhaust valve. The decompression member is supported for swing motion by a pair of pins placed on the camshaft at positions deviated from the central part provided with the oil passage of the camshaft.
In the decompressing means disclosed in JP11-294130A, the pair of pins are disposed on a diameter of the camshaft, the axis of turning of the decompression member, similarly to those of the decompressing means disclosed in JP2001-221023A and JP63-246404A, is substantially perpendicular to the axis of rotation of the camshaft. Therefore, it is difficult to secure a space in which a fully expanded flyweight included in the decompressing means revolves about the axis of rotation of the camshaft, i.e., to narrow a cylindrical space in which a fully expanded flyweight included in the decompressing means revolves about the axis of rotation of the camshaft, and hence a comparatively large space must be secured for the decompressing means around the camshaft, which increases the size of the internal combustion engine. For example, it is difficult for the prior art supposed to extend the center axis of turning substantially perpendicularly to the axis of rotation of the camshaft to narrow the space necessary for the revolution of the fully expanded decompression member because the prior art needs a long distance between the center axis of swing motion and a position where the cam is in contact with a cam follower, such as a valve tappet or a rocker arm. The wall thickness of the camshaft provided with the central oil passage of the internal combustion engine disclosed in JP11-294130A must be greater than the depth of a hole in which the pin is fitted, and hence the diameter of the oil passage is limited and the oil passage must be formed in a comparatively small diameter.
When the weight of the decompression member is reduced to reduce the weight of the internal combustion engine, it is preferable to increase the distance between the position of the center of gravity of the decompression member at an initial position from which the decompression member starts swinging and the axis of rotation of the camshaft to ensure that a necessary centrifugal force is produced at a predetermined engine speed at which a decompressing operation is stopped. However, the decompressing means disclosed in JP2001-221023A and JP63-246404A need to increase the length of the decompression member to increase the distance between the center of gravity of the decompression member and the axis of rotation of the camshaft, which, sometimes, increases the diameter of a cylindrical space necessary for the fully expanded decompression member to turn around the camshaft.
When the distance between the center of gravity of the decompression member and the axis of rotation of the camshaft is increased in the prior art decompressing means including the plate-shaped decompression member of a substantially uniform thickness, not only the size of the flyweight but also the size of the decompression member must be increased and, eventually, the cylindrical space around the camshaft occupied by the fully expanded decompression member expands. If increase in the size of the decompression member is avoided, additional working steps such as bending a plate, increases inevitably to form the flyweight having the shape of a plate of a substantially uniform thickness such that the weight is concentrated on the flyweight, the flyweight has a complicated shape that requires difficult machining, the difference in operating characteristic between different decompression member increases.
The present invention has been made in view of the foregoing problems and it is therefore an object of the present invention to reduce the diameter of a cylindrical space around a camshaft in which a fully expanded decompression member revolves.
Another object of the present invention is to form a decompressing means in a comparatively small size, facilitating securing a necessary mass for a flyweight, facilitating manufacturing decompressing means respectively having operating characteristics distributed in a narrow range and to suppress noise generation due to collision between a flyweight and a camshaft, by changing the thickness of a component member of the decompressing means.
According to one aspect of the present invention, an internal combustion engine comprises: a crankshaft; a camshaft driven for rotation about its axis of rotation in synchronism with the crankshaft; a valve-operating cam mounted on the camshaft; engine valves controlled for opening and closing by the valve-operating cam; and a decompressing means for opening the engine valve during a compression stroke in a starting phase of the internal combustion engine; wherein the camshaft is a hollow shaft having an axial bore extending along the axis of rotation thereof, the decompressing means includes a flyweight supported for swing motion by a holding part formed on the camshaft, and a decompression cam that operates together with the flyweight to exert a valve-opening force on the engine valve, the axis of swing motion of the flyweight is included in a plane substantially perpendicular to the axis of rotation, and does not intersect the axis of rotation and the bore of the camshaft.
In this internal combustion engine, the bore can be formed in the camshaft provided with the decompressing means, the decompression cam can be disposed at a long distance from the axis of swing motion because the axis of swing motion of the flyweight is spaced diametrically from the axis of rotation of the camshaft and the bore of the camshaft, and the position of the center of gravity of the flyweight is far from a reference plane including the axis of rotation and parallel to the axis of swing motion.
Thus, the present invention has the following effects. The camshaft provided with the decompressing means can be a lightweight, hollow shaft and restriction on the diameter of the bore placed by the holding part on the camshaft is reduced because the axis of swing motion of the flyweight of the decompressing means is included in a plane substantially perpendicular to the axis of rotation of the camshaft and does not intersect the axis of rotation and the bore. A decompressing operation can be stopped by the swing of the flyweight through a small angle because the axis of swing motion is spaced diametrically from the axis of rotation and the bore, and the distance between the axis of swing motion and the decompression cam can be increased accordingly, as compared with a distance necessary when the axis of swing motion is substantially perpendicular to the axis of rotation. A cylindrical space in which the fully expanded decompressing means revolves can be contracted toward the axis of rotation of the camshaft, i.e., the diameter of the cylindrical space in which the fully expanded decompressing means revolves can be reduced, by reducing the maximum swing angle of the flyweight, and hence a comparatively large space does not need to be secured for the decompressing means around the camshaft. Consequently, the internal combustion engine can be formed in a small size. Since the center of gravity of the flyweight can be spaced apart from the reference plane by offsetting the center of swing motion, the weight of the flyweight necessary for generating a necessary centrifugal force can be reduced in proportion to the increase of the distance between the center of gravity and the reference plane, which reduces the weight of the internal combustion engine and suppress the expansion of the cylindrical space in which the fully expanded decompressing means operates.
The decompressing means may include an arm connecting the flyweight and the decompression cam, the flyweight may be a block having a thickness along a diameter of the camshaft greater than that of the arm along a diameter of the camshaft.
Thus, in the decompressing means formed by assembling the flyweight, the concentration of mass on the flyweight can be promoted by forming the flyweight and the arm in different thicknesses, respectively, and forming the flyweight in a thickness greater than that of the arm. Thus, increase in the size of the decompressing means can be suppressed, a mass necessary for the decompressing operation and for stopping the decompressing operation can be easily secured, the center of gravity of the flyweight can be easily spaced apart from the reference plane, and the diametrical expansion of the cylindrical space in which the fully expanded decompressing means operates can be suppressed.
The holding part formed on the camshaft may include projections projecting from the outer surface of the camshaft and respectively provided with holding holes. The holding part may include projections formed on the flyweight, and a pin inserted in the projections and the holding hole. The holding part thus formed is capable of pivotally supporting the decompressing means with reliability.
Preferably, the flyweight, the decompression cam and the arm are formed integrally in a single structure by metal injection. Although the flyweight, the decompression cam and the arm respectively having different thicknesses are united together, the flyweight, the decompression cam and the lever can be formed in a high dimensional accuracy. The respective operating characteristics of the thus manufactured decompressing means are distributed in a narrow range, and the decompressing means having a stable operating characteristic can be easily manufactured.
The crankshaft is disposed with its axis of rotation vertically extended, the camshaft is provided in its outer surface with a cut part for receiving the flyweight therein, and the decompressing means may be provided with a return spring capable of exerting a resilient force on the flyweight to set the flyweight at an initial position in the cut part.
Thus, in the vertical internal combustion engine having the crankshaft disposed with its axis of rotation vertically extended, the flyweight is held at the initial position with a part thereof in contact with the camshaft by the resilience of the return spring in an engine speed range for decompressing operation including the stoppage of the camshaft.
Thus, the fully expanded decompressing means operates in a narrow space around the camshaft, a comparatively large space does not need to be secured around the camshaft for the decompressing means, and hence the internal combustion engine can be formed in a small size. Moreover, the flyweight of the decompressing means can be stably held without being affected by gravity, and noise generation due to collision between the flyweight and the camshaft caused by vibrations can be suppressed.
A second cut part for receiving the arm connecting the flyweight and the decompression cam, and the decompression cam may be formed in the outer surface of the camshaft, and the arm may be provided with a contact protrusion that comes into contact with the camshaft to define a full-expansion position for the fully expanded flyweight. The second cut part may be provided with a step with which the contact part comes into contact. Thus, the position for the fully expanded decompressing means can be surely defined.
The second cut part may have a bottom surface along which the arm slides when the flyweight swings. Thus, the operation of the decompressing means is stabilized because the bottom surface guides the arm when the decompressing means swings.
According to another aspect of the present invention, a decompressing lift adjusting method of adjusting decompressing lifts respectively for a first internal combustion engine and a second internal combustion engine respectively having different output characteristics, and respectively comprising fuel feed devices, camshafts, valve-operating cams formed on the camshafts, engine valves controlled for opening and closing by the valve-operating cams, starting devices, and decompressing means respectively provided with decompression cams capable of projecting radially outward from base circles including the heels of the valve-operating cams to open the engine valves during a decompressing operation; wherein the respective decompressing means of the first internal combustion engine and the second internal combustion engine are identical in characteristic quality, and the diameter of the base circle including the heel of the valve-operating cam of the first internal combustion engine and that of the base circle including the heel of the valve-operating cam of the second internal combustion engine are different from each other.
The decompressing lift adjusting method does not need different types of decompressing means respectively for different types of internal combustion engine, and is capable of setting different decompressing lifts, which is effective in reducing the cost of the internal combustion engine.
In this specification, the expression, ‘substantially perpendicular’ is used for expressing both an exactly perpendicularly intersecting condition and an approximately perpendicularly intersecting condition. Terms, ‘diametrical direction’ and ‘circumferential direction’ signify a direction parallel to a diameter of the camshaft and a direction along the outer surface of the camshaft, respectively, unless otherwise specified.
An internal combustion engine provided with decompressing mechanisms in a preferred embodiment of the present invention will be described with reference to
Referring to
A piston 6 is fitted for reciprocating sliding motions in each of the cylinder bores 2a and is connected to a crankshaft 8 by a connecting rod 7. The crankshaft 8 is installed in a crank chamber 9 and is supported for rotation in upper and lower plain bearings on the cylinder block 2 and the crankcase 3. The crankshaft 8 is driven for rotation by the pistons 6 driven by combustion pressure produced by the combustion of an air-fuel mixture ignited by spark plugs. The phase difference between the pistons 6 fitted in the two cylinder bores 2a corresponds to a crank angle of 360°. Therefore, combustion occurs alternately in the cylinder bores 2a at equal angular intervals in this internal combustion engine E. A crankshaft pulley 11 and a rewind starter 13 are mounted in that order on an upper end part of the crankshaft 8 projecting upward from the crank changer 9.
Referring to
As shown in
A drive shaft 25 connected to a lower end part of the crankshaft 8 extends downward through the support block 20 and the extension case 21, and is connected to a propeller shaft 27 by a propelling direction switching device 26 including a bevel gear mechanism and a clutch mechanism. The power of the internal combustion engine e is transmitted through the crankshaft 8, the drive shaft 25, a propelling direction switching device 26 and the propeller shaft 27 to a propeller 28 fixedly mounted on a rear end part of the propeller shaft 27 to drive the propeller 28 for rotation.
The outboard motor 1 is detachably connected to a hull 30 by a transom clamp 31. A swing arm 33 is supported for swing motions in a vertical plane by a tilt shaft 32 on the transom clamp 31. A tubular swivel case 34 is connected to the rear end of the swing arm 33. A swivel shaft 35 fitted for rotation in the swivel case 34 has an upper end part provided with a mounting frame 36 and a lower end part provided with a center housing 37. The mounting frame 36 is connected elastically through a rubber mount 38a to the support block 20. The center housing 37 is connected elastically through a rubber mount 38b to the extension case 21. A steering arm, not shown, is connected to the front end of the mounting frame 36. The steering arm is turned in a horizontal plane for controlling the direction of the outboard motor 1.
Further description of the internal combustion engine E will be made with reference to
Each valve-operating cam 45 has an intake cam part 45i, an exhaust cam part 45e, and a cam surface 45s common to the intake cam part 45i and the exhaust cam part 45e. The intake rocker arm 47 has one end part provided with an adjusting screw 47a in contact with the intake valve 42 and the other end provided with a slipper 47b in contact with the cam surface 45s of the intake cam part 45i of the valve-operating cam 45. The exhaust rocker arm 48 has one end provided with an adjusting screw 48a in contact with the exhaust valve 43 and the other end provided with a slipper 48b in contact with the cam surface 45s of the exhaust cam part 45e of the valve-operating cam 45. The cam surface 45s of the valve-operating cam 45 has a heel 45a of a shape conforming to a base circle for keeping the intake valve 42 (exhaust valve 43) closed, and a toe 45b that times the operation of the intake valve 42 (exhaust valve 43) and determines the lift of the intake valve 42 (exhaust valve 43). The valve-operating cams 45 rotate together with the camshaft 15 to rock the intake rocker arms 47 and the exhaust rocker arms 48 to operate the intake valves 42 and the exhaust valves 43.
As shown in
The upper journal 50a is supported for rotation in an upper bearing 55a held in the upper wall of the cylinder head 4, and a lower journal 55b is supported for rotation in a lower bearing 55b held in the lower wall of the cylinder head 4. Each shaft part 52 has a cylindrical surface 52a having the shape of a circular cylinder of a radius R smaller than the radius of the heel 45a of a shape conforming to the base circle. The pump-driving cam 53 is formed on the shaft part 52. The pump-driving cam 53 drives a drive arm 56 supported for swinging on the rocker shaft 46 for swing motion to reciprocate the drive rod included in the fuel pump in contact with the drive arm 56.
A lubricating system will be described. Referring to
The discharge port, not shown, of the oil pump 18 is connected through oil passages, not shown, formed in the cylinder head 4 and the cylinder block 2, and an oil filter, not shown, to a main oil passage, not shown, formed in the cylinder block 2. A plurality of branch oil passages branch from the main oil passage. The branch oil passages are connected to the bearings and sliding parts including the plain bearings supporting the crankshaft 8 of the internal combustion engine E. One branch oil passage 61 among the plurality of branch oil passages is formed in the cylinder head 4 to supply the lubricating oil to the sliding parts of the valve train and the decompressing mechanisms D in the valve gear chamber 14 as shown in
The oil pump 18 sucks the lubricating oil into a pump chamber 81d formed between an inner rotor 18b and an outer rotor 18c through the oil strainer 58, the suction pipe 59, the oil passages 60a and 60b from the oil pan 57. The high-pressure lubricating oil discharged from the pump chamber 18d flows through the discharge port, the oil filter, the main oil passage and the plurality of branch passages including the branch passage 61 to the sliding parts.
Part of the lubricating oil flowing through the oil passage 61 opening into the bearing surface of the upper bearing 55a flows through an oil passage 62 formed in the upper journal 50a and opening into the bore 54. The oil passage 62 communicates intermittently with the oil passage 61 once every one turn of the camshaft 15 to supply the lubricating oil into the bore 54. The bore 54 serves as an oil passage 63. The lubricating oil supplied into the oil passage 63 flows through oil passages 64 opening in the cam surfaces 45s of the valve-operating cams 45 to lubricate the sliding surfaces of the slippers 47a of the intake rocker arms 47 and the valve-operating cams 45 and to lubricate the sliding surfaces of the slippers 48b of the exhaust rocker arms 48 and the valve-operating cams 45. The rest of the lubricating oil flowing through the oil passage 63 flows out of the oil passage 63 through an opening 54a to lubricate the sliding parts of the lower bearing 55b and the lower journal 50b, and the sliding parts of the lower Thrust-bearing part 51b and the lower bearing 55b, and flows into the valve gear chamber 14. The oil passages 64 does not need to be formed necessarily in parts shown in
The rest of the lubricating oil flowing through the oil passage 61 flows through a small gap between the upper journal 50a and the upper bearing 55a to lubricate the sliding parts of the Thrust-bearing part 51a and the upper bearing 55a, flows into the valve gear chamber 14. The lubricating oil flowed through the oil passages 61 and 64 into the valve gear chamber 14 lubricates the sliding parts of the intake rocker arms 47, the exhaust rocker arms 48, the drive arm, and the rocker shaft 46. Eventually, the lubricating oil flowing through the oil passage 61 drops or flows down to the bottom of the valve gear chamber 14, and flows through return passages, not shown, formed in the cylinder head 4 and the cylinder block 2 to the oil pan 57.
As shown in
Referring to
More concretely, the cut part 66 is formed by cutting a part of the lower end part 45e1 of the exhaust cam part 45e and a part near the exhaust cam part 45e of the shaft part 52 such that the distance d1 (
As shown in
Referring to
The return spring 90 extended between the pair of projections 68a and 68b has one end 90a engaged with the flyweight 81, and the other end 90b (
The flyweight 81 has a weight body 81c, and a pair of flat projections 81a and 81b projecting from the weight body 81c and lying on the outer side of the projections 68a and 68b, respectively. The projections 81a and 81b extend from the weight body 81c toward the pin 71. The projections 81a and 81b have a thickness t3, i.e., thickness along the axis L2 of swing motion shown in
Thus, in supporting the flyweight 81 on the camshaft 15, holes 84 of the projections 81a and 81b, the holes 70 of the projections 68a and 68b and the return spring 90 are aligned, and then the pin 71 provided with a head 71a is inserted from the side of the projection 81b in the holes 84 and 70 through the return spring 90. An end part 71b of the pin 71 projecting from the other projection 81a is pressed to hold the pin 71 in the holes 84 and 70. Thus, the decompression member including the flyweight 81 is supported for swing motion on the camshaft 15. When the decompression member 80 swings, the pin 71 turns together with the decompression member 80 in the holes 70 of the holding part 69.
The axis L2 of swing motion aligned with the axis of the pin 71 is included in a plane P4 (
As best shown in
Referring to
In an initial state where the decompression cam 82 is separated from the slipper 48b and the camshaft 15 is stopped, the contact protrusion 81c5 is in contact with the middle bottom surface 67a (
When the decompression member 80 is at the initial position, the distance between a flat part 81c4a (
The decompression cam 82 formed at the extremity of the arm 83 has a cam lobe 82s (
While the decompression cam 82 is in contact with the slipper 48b of the exhaust rocker arm 48 to open the exhaust valve 43, load placed by the resilience of the valve spring 44 on through the exhaust rocker arm 48 on the decompression cam 82 is born by the bottom surface 66a. Consequently, load that is exerted on the arm 83 by the exhaust rocker arm 48 during the decompressing operation is reduced and hence the thickness t1 of the arm 83 may be small.
The operation and effect of the embodiment will be described.
While the internal combustion engine E is stopped and the camshaft 15 is not rotating, the center G of gravity of the decompression member 80 is on the side of the reference plane) 3 with respect to the axis L2 of swing motion, and the decompression member 80 is in an initial state where a clockwise torque, as viewed in
The crankshaft 8 is rotated by pulling a starter knob 13a (
After the engine speed has exceeded the predetermined engine speed, the torque produced by the centrifugal force acting on the decompression member 80 exceeds the torque produced by the resilience of the return spring 90. If the decompression cam 82 is separated from the slipper 48b of the exhaust rocker arm 48, the decompression member 80 starts being turned clockwise, as viewed in
Since the axis L2 of swing motion of the flyweight 81 of the decompressing mechanism D is included in the plane P4 substantially perpendicular to the axis L1 of rotation of the camshaft 15 and does not interest the axis L1 of rotation and the oil passage 63, i.e., the bore 54, the bore 54 can be formed in the camshaft 15 provided with the decompressing mechanisms D to from the camshaft 15 in a lightweight member, the diameter of the bore 54 is not limited by the pin 71 supported on the camshaft 15 and the bore 54 can be formed in a comparatively big diameter. Thus, the lubricating oil sufficient for lubricating the valve mechanism and the decompressing mechanisms D installed in the valve gear chamber 14 can be supplied through the oil passage 63, i.e., the bore 54. If the camshaft 15 is formed by casting, a core for forming the bore 54 having a comparatively big diameter can be formed more easily than a core of a small diameter for forming an oil passage of a comparatively small diameter because the bore 54 has a comparatively big diameter.
Since the axis L2 of swing motion is separated radially from the axis L1 of rotation and the bore 54, the distance between the axis L2 of swing motion and the decompression cam 82 is longer as compared with that when the axis L2 of swing motion intersects the axis L1 of rotation substantially perpendicularly. Therefore, the flyweight 81 needs to turn only through a small angle to stop the decompressing operation. Since the maximum swing angle of the flyweight 81 is small, the cylindrical space in which the fully expanded decompressing mechanism D can be radially contracted, a comparatively large space does not need to be secured for the decompressing mechanism D around the camshaft 15 and, consequently, the internal combustion engine E can be formed in a comparatively small size. Since the axis L2 of swing motion is spaced radially from the axis L1 of rotation, the position of the center of gravity of the flyweight 81 and hence the center G of gravity of the decompression member 80 can be easily spaced far from the reference plane P3. Since the distance between the position of the center G of gravity of the decomposition member 80 and the axis L1 of rotation is thus increased, the weight of the flyweight 81 for generating a necessary centrifugal force can be reduced accordingly, the internal combustion engine E can be formed in lightweight construction, and the radial expansion of the cylindrical space necessary for the revolution of the fully expanded decompression member 80 and the decompressing mechanisms D can be suppressed.
Since the pin 71 pivotally supporting the flyweight 81 is supported on the holding part 69 including the radial projections 68a and 68b, the distance between the axis L2 of swing motion and the decompression cam 82 can be increased as compared with that in a state where the axis L2 of swing motion is on the shaft part 52 of the camshaft 15, which also enables reducing the maximum swing angle and contributes to contracting the cylindrical space in which the fully expanded decompression member 80 revolves.
The decompressing mechanism D has the arm 83 connecting the flyweight 81 and the decompression cam 82, and the weight body 81c of the flyweight 81 is a block of the thickness t2 in the radial direction greater than the thickness t1 of the arm 83 in the radial direction. Therefore, in the decompression member 80 integrally provided with the flyweight 81, the decompression cam 82 and the arm 83, the respective thicknesses of the weight body 81c of the flyweight 81 and the arm 83 are adjusted such that the thickness of the weight body 81c is big as compared with that of the arm 83 to concentrate the mass of the flyweight 81 on the weight body 81c. Thus, the increase in the size of the decompression member 80 can be suppressed, the distance between the center of gravity of the flyweight 81 having a necessary mass and the reference plane P3 can be easily increased, and the radial expansion of the cylindrical space in which the fully expanded decompression member 80 revolves can be suppressed.
Although the weight body 81c of the decompression member 80 is a block, the flat projections 81a and 81b and the arm 83 are formed in flat shapes of a thickness smaller than the thickness t2 of the weight body 81c. The flat projections 81a and 81b and the arm 83 have necessary rigidity, the masses of the projections 81a and 81b can be reduced to the least possible extent, and the mass can be concentrated on the weight body 81c. Thus, the increase in size of the decompression member 80 can be suppressed and the centrifugal force that acts on the weight body 81c can be in creased. Since the projections 81a and 81b and the arm 83 extend in different directions, respectively from the weight body 81c, the projections 81a and 81b, and the arm 83 can be individually designed. Thus, increase in size of the projections 81a and 81b that support only the weight body 81c can be suppressed as compared with the size of a part supported on a pin and supporting a flyweight and an arm of a conventional decompression member, which contributes to the concentration of the mass on the weight body 81c, and to the suppression of increase in size of the flyweight 81 and the decompression member 80.
Load produced by the resilience of the valve spring 44 and placed through the exhaust rocker arm 48 on the decompression cam 82 is born by the bottom surface 66a. Thus, the load placed on the arm 83 by the exhaust rocker arm 48 during the decompressing operation can be reduced. Therefore, the thickness t1 of the arm 83 may be small, and the arm 83 can be formed in a small weight. Since the axis L2 of swing motion does not intersect the axis L1 of rotation and the bore 54, and the flyweight 81 is received in the cut part 67, the enlargement of the weight body 81c in a radial direction can be suppressed, the weight body 81c can be extended along the axis L2 of swing motion to a position on the opposite side of the arm 83 with respect to the axis L1 of rotation, and the opposite end parts 81c2 and 81c3 can be extended nearer to the reference plane P3 than the middle bottom surface 67a of the cut part 67, which further facilitates the concentration of the mass on the flyweight 81 of the decompression member 80.
Although the flyweight 81, the decompression cam 82 and the arm 83 have different thicknesses, respectively, the flyweight 81, the decompression cam 82 and the arm 83 can be integrally formed in a high dimensional accuracy by metal injection. Therefore, the difference in operating characteristic between the decompressing mechanisms D is small, and the decompressing mechanisms D capable of stably exercising the operating characteristic can be easily manufactured.
Since the cut part 67 capable of receiving the flyweight 81 therein is formed near the axis L1 of rotation in the camshaft 15, the cylindrical space for the revolution of the fully expanded decompressing mechanism D extends around the axis L1 of rotation of the camshaft 15 in the vertical internal combustion engine E, a comparatively large space does not need to be secured around the camshaft 15 for the decompressing mechanism D, and the internal combustion engine E can be formed in a small size. Moreover, since the decompressing mechanism D has the contact protrusion 815c that comes into contact with the camshaft 15 to define the initial position of the flyweight 81 received in the cut part 67, and the return spring 90 for applying a resilient force to the flyweight 81 to press the flyweight 81 toward the initial position, the flyweight 81 is received in the cut part 67 near the axis L1 of rotation. Therefore, the flyweight 81 can be held at the initial position with the contact protrusion 81c5 in contact with the camshaft 15 by the resilience of the return spring 90, can be held stably without being affected by gravity at the initial position, and generation of noise due to collision between the flyweight 81 and the camshaft 15 caused by vibrations can be suppressed regardless of the positional relation of the initial position of the flyweight 81 with the axis L2 of swing motion while the camshaft 15 is stopped and while the internal combustion engine E is operating at engine speeds in an engine speed range for the decompressing operation.
A decompressing mechanism in a modification of the decompressing mechanism D in the foregoing embodiment will be described. Only parts of the decompressing mechanism in the modification different from those of the decompressing mechanism D in the foregoing embodiment will be described.
In the foregoing embodiment, the pin 71 is inserted slidably in the holes 70 of the holding part 69. The pin 71 may be slidably inserted in the holes 84 and may be fixedly pressed in the holes 70, and the flyweight 81 (or the decompression member 80) may be swingably supported on the pin 71. The flyweight 81 can be pivotally supported by the pin 71 on the camshaft 15 provided with the bore 54, and most part of strain developed in the camshaft 15 by the combination of the pin 71 with the camshaft 15 by press fitting can be absorbed by the holding part 69 including the projections 68a and 68b projecting radially outward from the camshaft by pressing the pin 71 supporting the flyweight 81 in the holding part 69 including the projections 68a and 68b projecting radially outward from the camshaft 15. Consequently, the deformation of the camshaft 15 and that of the cam surface 45s of the valve-operating cam can be suppressed, the abrasion of the sliding parts of the camshaft 15 and the valve-operating cam 45 attributable to such deformations can be reduced, and the durability of the camshaft 15 and the valve-operating cam 45 can be improved.
Although the decompression member 80 of the decompressing mechanism D of the foregoing embodiment is a single member integrally including functional parts, the decompressing mechanism D may include individual members including a flyweight, a decompression cam and an arm, at least one of those members may be a different member, and the flyweight, the decompression cam and the arm may be joined together by fixing means. The holding part 69 may include a single projection instead of the pair of projections 68a and 68b.
Although the intake valve 42 and the exhaust valve 43 are operated for opening and closing by the single, common valve-operating cam 45 in the foregoing embodiment, the intake valve 42 and the exhaust valve 43 may be controlled by a valve-operating cam specially for operating the intake valve 42 and a valve-operating cam specially for operating the exhaust valve 43, respectively. The intake valve 42 may be operated by the decompressing mechanism D instead of the exhaust valve 43.
Although the center G of gravity of the decompression member 80 is nearer to the reference plane P3 than the axis L2 of swing motion and the decompression member 80 is held at the initial position by the return spring 90 in the foregoing embodiment, the center G of gravity of the decompression member 80 may be farther from reference plane P3 than the axis L2 of swing motion, the decompression member 80 may be held at the initial position by a torque produced by its own weight, and the return spring 90 may be omitted.
Although the camshaft 15 is provided with the oil passage 63 in the foregoing embodiment, a hollow camshaft having a bore 54 not serving as an oil passage may be used. The present invention is applicable also to a horizontal internal combustion engine having a crankshaft having a horizontal axis of rotation. The present invention is applicable not only to the internal combustion engine for the outboard motor, but also for general-purpose internal combustion engines for driving generators, compressors, pumps and such, and those for vehicles. The present invention is applicable to single-cylinder internal combustion engines and multiple cylinder internal combustion engines provided with three or more cylinders.
Although the internal combustion engine in the foregoing embodiment is a spark-ignition engine, the internal combustion engine may be a compression-ignition engine. The starting device may be any suitable starting device other than the rewind starter, such as a kick starter, a manual starter or a starter motor.
Although the axis L2 of swinging motion is at a distance greater tan the radius R of the shaft part 52 from the reference plane P3 in the foregoing embodiment, the distance may be shorter than the radius R, or the axis L2 may be at a distance equal to the radius R, corresponding to a location at the outer surface of the shaft part 52 as shown in
A method of adjusting the decompression lift of the internal combustion engine provided with the foregoing decompressing mechanism will be described hereafter.
The decompressing means for an internal combustion engine disclosed in JP2001-221023A mentioned at the beginning of this specification has a decompression cam having a cam lobe radially protruding from the base circle including the heel of the exhaust cam, the cam lobe comes into contact with the slipper of a rocker arm for operating the exhaust valve to lift up the exhaust valve by a lift (hereinafter, referred to as “decompression lift”) for decompression.
In manufacturing different types of internal combustion engines respectively having different output characteristics, it is a usual procedure, for manufacturing the internal combustion engines at low manufacturing costs, to design the internal combustion engines in the same piston displacement, to use engine component parts in common to the internal combustion engines, and to provide the internal combustion engines with different fuel feed devices, respectively.
Although force necessary for operating the starting device is reduced and operability is improved if decompression lift is increased to increase compression pressure reducing rate, the reduction of compression pressure deteriorates the ignitability of the air-fuel mixture compressed in the cylinder and deteriorates the startability of the internal combustion engine. When the same decompression lift is set for different internal combustion engines respectively having different maximum outputs, the decompression lift is determined so as to conform to the internal combustion engine having a high maximum output in view of insuring satisfactory startability of the internal combustion engines. Consequently, the starting device of the internal combustion engine having a low maximum output requires a high operating force, considering its output capacity. The operator of a machine provided with such an internal combustion engine will have a feeling of wrongness.
Therefore, it is desirable to determine different decompression lifts for internal combustion engines having different output characteristics, respectively, taking into consideration the startability of the internal combustion engines and the operability of the starting devices.
However, since different types of decompressing means must be used respectively for different types of internal combustion engines to use different types of decompressing means having, for example, decompression cams of different designs, the costs of the internal combustion engines increase. Since the decompressing means includes comparatively small parts and it is difficult to identify the decompressing means, the different types of decompressing means needs very troublesome product management.
A decompression lift adjusting method capable of solving such problems will be described. When this decompression lift adjusting method is employed, an internal combustion engine provided with a decompressing mechanism capable of achieving a decompressing operation for operating a valve for a suitable decompression lift can be manufactured at low manufacturing costs.
A decompression lift adjusting method according to the present invention will be described below.
Suppose that two internal combustion engines, namely, a first internal combustion engine E1 and a second internal combustion engine E2, are provided with decompressing mechanisms of the same type, and the decompressing mechanisms are controlled by the decompression lift adjusting method of the present invention. The two internal combustion engines E1 and E2 are the same in piston displacement and have different output characteristics, respectively. Both the internal combustion engines E1 and E2 are intended to be used on outboard motors. The basic construction of the first internal combustion engine E1 is the same as that of the foregoing internal combustion engine E. As shown in
The second internal combustion engine E2 will be described mainly with reference to
The second internal combustion engine E2 is incorporated into an outboard motor of the same construction as the outboard motor 1 including the first internal combustion engine E1. Only the carburetor 95 and the camshaft 115 (
The intake passage of the carburetor 95 of the second internal combustion engine E2 is small as compared with that of the first internal combustion engine E1, the respective open times of an intake valve 42 and an exhaust valve 43 operated for opening and closing by a valve-operating cam 145 are short, and the respective lifts of the intake valve 42 and the exhaust valve 43 are small in the second internal combustion engine E2, so that the maximum output of the second internal combustion engine E2 is lower than that of the first internal combustion engine E1. The venturi tube of the carburetor of the second internal combustion engine E2 has a throat of a sectional area smaller than the sectional area S (
Referring to
The cam profile of the cam surface 145s of the valve-operating cam 145 formed by machining a workpiece for forming the camshaft is different from that of the valve-operating cam 45 of the first internal combustion engine E1. More concretely, in the valve-operating cam 145 of the second internal combustion engine E2, the diameter of a base circle including a heel 145 formed on the valve-operating cam 145 is smaller than that of the base circle including the heel 45a of the valve-operating cam 45. The working angle and the height of the toe of the valve-operating cam 145 are smaller than the working angle and the height of the toe 45b, respectively. Consequently, the respective opening times of the intake valve 42 and the exhaust valve 43 of the second internal combustion engine E2 are shorter than those of the intake valve 42 and the exhaust valve 43 of the first internal combustion engine E1, and the respective lifts of the intake valve 42 and the exhaust valve 43 of the second internal combustion engine E2 are smaller than those of the intake valve 42 and the exhaust valve 43 of the first internal combustion engine E1.
The diameter of the base circle including a heel 145a included in the valve-operating cam 145 is smaller than that of the base circle including the heel 45a of the valve-operating cam 45. Therefore, as shown in
The respective decompressing mechanisms D of the first internal combustion engine E1 and the second internal combustion engine E2 are the same in all the particulars. The same decompressing mechanism can be applied to the internal combustion engines E1 and E2 of different output characteristics, namely, internal combustion engines E1 and E2 of different types, by forming the heel 45a of the valve-operating cam 45 of the first internal combustion engine E1 and the heel 145a of the valve-operating cam 145 of the second internal combustion engine E2 such that the heels 45a and 145a are included in the base circles of different diameters, respectively. Since the camshafts 15 and 115 are formed by machining specially for the internal combustion engine E1 and E2, respectively, the proper decompression lifts can be determined for the internal combustion engine E1 and E2 by forming the heels 45a and 145a respectively included in base circles of different diameters for the valve-operating cams 45 and 145, which is not a factor that increases the costs. Consequently, the internal combustion engine E1 and E2 provided with the decompressing mechanisms D capable of providing proper decompression lifts for the decompressing operation can be manufactured at a low cost, and the decompressing mechanisms D are easy to manage.
The diameter of the base circle including the heel 145a of the valve-operating cam 145 of the second internal combustion engine E2, in which the ignitability of the air-fuel mixture compressed in the cylinder of the second internal combustion engine E2 in the starting phase of the second internal combustion engine E2 is better than that in the first internal combustion engine E1, is smaller than that of the base circle including the heel 45a of the valve-operating cam 45 of the first internal combustion engine E1. Although the decompression lift and the reduction of compression pressure in the second internal combustion engine E1 are greater than those in the first internal combustion engine E1, satisfactory startability of the second internal combustion engine E2 is insured because the ignitability of the air-fuel mixture in the second internal combustion engine E2 is satisfactory, and the operability of the wind starter 13 is improved significantly. In the first internal combustion engine E1, which is inferior in the ignitability of the air-fuel mixture to the second internal combustion engine E2, the decompression lift is smaller than that of the second internal combustion engine E2 and the compression pressure is higher than that in the second internal combustion engine E2. Therefore, the first internal combustion engine E1 has improved startability, and the operability of the rewind starter 13 is improved by a degree not as high as that in the second internal combustion engine E2 though. Therefore, the startability of the first internal combustion engine E1 is improved, the operability of the rewind starter 13 of the first internal combustion engine E1 is improved. Since the operability of the rewind starter 13 of the second internal combustion engine E2 is improved greatly, the startability of the second internal combustion engine E2 is satisfactory or improved. Thus, the internal combustion engine E1 and E2 provided with the rewind starters 13 having improved operability can be obtained.
The sectional area of the throat of the venturi tube of the carburetor of the second internal combustion engine E2 whose maximum output is lower than that of the first internal combustion engine E1 is smaller than the sectional area S of the throat of the venturi tube of the carburetor of the first internal combustion engine E1. The fuel is atomized satisfactorily by the carburetor having the venturi tube having a small throat diameter of the second internal combustion engine E2 whose maximum output is low and hence the ignitability of the air-fuel mixture produced by this carburetor is satisfactory. Thus, the first internal combustion engine E1 having excellent startability and capable of providing a high maximum output is often used on comparatively large devices, while the second internal combustion engine E2 provided with the rewind starter 13 excellent in operability is often used on comparatively small devices in which the high operability of the rewind starter is important.
The principal engine parts of the first internal combustion engine E1 and the second internal combustion engine E2 are interchangeable, the internal combustion engine E1 and the second internal combustion engine E2 have the same piston displacement, and the camshaft 15 of the first internal combustion engine E1 and the camshaft 115 of the second internal combustion engine E2 are interchangeable. Thus, the further reduction of the costs of the internal combustion engines E1 and E2 respectively having different output characteristics is possible.
A fuel injection device may be used instead of the carburetor as the fuel feed device. Different spark plugs may be used or a desired number of spark plugs may be used for one combustion chamber to enhance the ignitability of the air-fuel mixture in the combustion chamber. Although the principal engine parts and the camshafts 15 and 115 of the internal combustion engines E1 and E2 in the foregoing embodiment are interchangeable, only some of those may be interchangeable.
Number | Date | Country | Kind |
---|---|---|---|
2002-029878 | Feb 2002 | JP | national |
2002-029879 | Feb 2002 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
2850002 | Hovel | Sep 1958 | A |
3395689 | Kruse | Aug 1968 | A |
4394851 | Greier et al. | Jul 1983 | A |
4898133 | Bader | Feb 1990 | A |
5443044 | VanRens | Aug 1995 | A |
5809958 | Gracyalny | Sep 1998 | A |
5823153 | Santi et al. | Oct 1998 | A |
6755168 | Schneider et al. | Jun 2004 | B2 |
Number | Date | Country |
---|---|---|
1 247 951 | Sep 2002 | EP |
63-246404 | Oct 1988 | JP |
11-294130 | Oct 1999 | JP |
11294130 | Oct 1999 | JP |
2001-221023 | Aug 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20030145820 A1 | Aug 2003 | US |