INTERNAL COMBUSTION ENGINE-REFORMER INSTALLATION

Abstract
A method of operating an internal combustion engine-reformer installation having an internal combustion engine and a reformer, includes predetermining at least one parameter of the internal combustion engine, calculating a desired amount of fuel for the reformer on the basis of the at least one parameter, feeding the desired amount of fuel to the reformer, reforming fuel to give a synthesis gas in the reformer, and feeding the synthesis gas to the internal combustion engine. A synthesis gas pressure of the synthesis gas downstream of the reformer is measured, and the synthesis gas pressure is taken into consideration when calculating the desired amount of fuel.
Description
BACKGROUND OF THE INVENTION

The present invention concerns a method of operating an internal combustion engine-reformer installation having the features of the classifying portion of claim 1 and such an internal combustion engine-reformer installation having the features of the classifying portion of claim 8.


In the operation of an internal combustion engine—in particular a gas engine—it may be advantageous for at least a part of the fuel to be reformed into a synthesis gas prior to combustion. That means that endothermic and exothermic reactions take place in a so-called reformer, in which a hydrogen-bearing synthesis gas is obtained from the fuel. The addition of that hydrogen-bearing gas to the combustion mixture makes it possible for example to improve the ignition characteristics or to reduce the production of unwanted emissions.


Installations in which both an internal combustion engine and also a reformer are integrated are known in the state of the art, in which respect for example mention should be made of U.S. Pat. No. 6,508,209 B1.


Admittedly the regulation of a reformer on the basis of a predetermined ratio of steam to carbon or oxygen to carbon is known. It will be noted however that these regulation concepts are designed for a production of synthesis gas, that is as constant as possible. They cannot satisfy the varying needs for synthesis gas of an internal combustion engine. A simple solution to that problem would be to maintain a buffer volume of synthesis gas or to produce synthesis gas to a relatively high extent and burn off the excess. Those solutions however are not appropriate in energy terms and considerably reduce the efficiency of the installation.


A concept for regulating an internal combustion engine-reformer installation was disclosed in US 2004/0050345 A1. In that case the desired amount of fuel which is fed to the reformer is determined on the basis of the injection amount of the internal combustion engine.


A disadvantage in that respect is that upon a change in the operating point of the internal combustion engine the amount of synthesis gas provided is not that which is required at the time but that which corresponds to the operating point prior to the change. In the case of changes in load which in practice occur frequently the result of this is that significantly too much or too little synthesis gas is delivered to the internal combustion engine.


SUMMARY OF THE INVENTION

The object of the invention is to provide an open or closed loop control method for an internal combustion engine-reformer installation, which makes it possible for precisely the amount of synthesis gas that is required at the time by the internal combustion engine to be afforded by the reformer. In addition the invention seeks to provide that there is provided an internal combustion engine-reformer installation which allows such a method to be carried out.


That object is attained by a method having the features of claim 1 and by an internal combustion engine-reformer installation having the features of claim 8.


That is effected in that the pressure of the synthesis gas is measured in the synthesis gas line which supplies the synthesis gas from the reformer to the internal combustion engine and that synthesis gas pressure is then used to determine the desired amount of fuel which is fed to the reformer. In other words the invention provides that the pressure in the synthesis gas line is constantly held at a level acceptable to the internal combustion engine.


Further advantageous embodiments of the invention are defined in the appendant claims.


In addition various parameters of the internal combustion engine can be used to calculate the desired amount of fuel. In particular a charge pressure or a power output of the internal combustion engine are suitable for that purpose as they are often already measured in any case in the course of control of the internal combustion engine.


For particularly accurate regulation or control, a reformer transfer function can be used to determine the desired amount of fuel. By means of such a reformer transfer function it is possible to calculate both the composition and also the amount of synthesis gas produced by the reformer. The reformer transfer function can depend on the volume flows and the chemical compositions of the substance flows passing into the reformer. In the simplest case, such a reformer transfer function can be generated by way of a direct measurement of the amount and composition of the synthesis gas produced by the reformer with different entry volume flows and possibly different temperatures.


To keep the chemical conditions in the reformer as optimum as possible desired ratios of steam to carbon and of oxygen to carbon can be predetermined for the reformer, on the basis of the desired conditions a desired amount of air and/or a desired amount of exhaust gas and/or a desired amount of steam are determined and the desired amount of air and/or the desired amount of exhaust gas from the internal combustion engine and/or the desired amount of steam are fed to the reformer.


In this embodiment a reformer transfer function can be used to determine the desired amount of air and/or the desired amount of exhaust gas and/or the desired amount of steam, whereby the ratios in the reformer can be particularly accurately controlled.


In order moreover to be able to determine the composition of the synthesis gas downstream of the reformer with a high level of accuracy an entry temperature of a substance flow into the reformer and/or an exit temperature of a substance flow out of the reformer can be measured, and the entry temperature and/or the exit temperature can be used in determining the desired amount of fuel and/or the desired amount of air and/or the desired amount of exhaust gas and/or the desired amount of steam. In particular the reformer transfer function can depend on the measured temperatures.





BRIEF DESCRIPTION OF THE DRAWINGS

Further advantages and details will be apparent from the Figures and the specific description relating thereto. In the Figures:



FIG. 1 shows the circuitry of an internal combustion engine-reformer installation according to the invention, and



FIGS. 2A-2C show various configurations for closed loop control concepts for determining the desired amount of fuel.





DETAILED DESCRIPTION OF THE INVENTION

In FIG. 1 it is possible firstly to see the reformer 1, the internal combustion engine 3 and the synthesis gas line 8. The reformer is supplied by way of a fuel line 7 with fuel from a fuel reservoir T, by way of an air feed line 9 with air L and by way of a steam feed line 10 with steam D. In addition exhaust gas A of the internal combustion engine 3 is recycled into the reformer 1 by way of the exhaust gas line 11. The control valves 5 which allow the feed of fuel, air, steam and exhaust gas in open or closed loop controlled amounts are arranged in the respective lines and are respectively connected to the open or closed loop control device 4. In the present embodiment those control valves 5 are in the form of volume flow regulating valves. That means that they also include a volume flow measuring device as well as a closed loop control circuit for closed loop controling the volume flows to the desired values which are predetermined by the closed loop control device 4. See in that respect FIG. 2.


Arranged in the synthesis gas line 8 is the pressure measuring device 2 which is connected to the closed loop control device 4. By means of the synthesis gas pressure pact measured by the pressure measuring device 2 the desired amount of fuel Qref as well as the desired amount of air, the desired amount of exhaust gas and the desired amount of steam can be calculated by the closed loop control device 4.


In this embodiment the various substance flows are brought together prior to the feed to the transformer 1. As a result of that it is possible to measure the temperature of the flow into the reformer 1 by a temperature measuring device 12. Likewise a temperature measuring device 12 for measuring the synthesis gas temperature is arranged in the synthesis gas line 8.


Arranged at the engine 3 is a measuring device 9 whereby the charge pressure P2′ and/or the power output P of the engine 3 can be measured.


Calculation of the desired amount of fuel Qref can be effected in various ways.



FIG. 2
a shows the control valve 5, by way of which fuel is fed to the reformer 1, and the internal combustion engine 3. Measurement of the charge pressure p′2 and further parameters of the internal combustion engine is effected at the internal combustion engine 3. The amount of fuel Qcalc required by the internal combustion engine is calculated in the closed loop control circuit R1. Those calculations are known per se in the state of the art. As an example we give the following formula:







Q
calc

=



V
cyl


1
+

λ
·

l
min




·

N
cyl

·

η
vol

·


p
2



T
2



·


T
n


p
n


·

n

2
·
60







In that formula Vcyl denotes the volume per cylinder of the internal combustion engine, Ncyl denotes the number of cylinders, Imin denotes the minimum air volume, ηvol denotes the volumetric efficiency, n denotes the instantaneous revolutions per minute of the internal combustion engine, T′2 and P′2 denote the temperature and the pressure respectively of the combustion mixture and λ denotes the ratio of air to fuel relative to the stoichiometric ratio. In addition Tn, and Pn denote the standard temperature and standard pressure (that is to say Tn=273.15 K and Pn=1.01325 bar). Similar equations based on the power output P of the internal combustion engine or on the charge pressure p′2 and the power output P of the internal combustion engine are known per se to the man skilled in the art.


The pressure pact measured by the pressure measuring device 2 is compared to a reference pressure pref. On the basis of the result of that comparison and the amount Qcal calculated in the closed loop control circuit R1 the desired amount of fuel Qref is calculated in the closed loop control circuit R2. In that respect for example the following equation can be used:






Q
ref=(pref−pact)·γ·Qcalc


Both the reference pressure pref and also the proportionality factor γ are to be empirically determined in the course of calibration of the installation. It is also possible to envisage more complex dependencies so that for example the proportionality factor γ could include a time dependency or the like. Finally the currently prevailing fuel volume flow which is into the reformer is measured in the closed loop control circuit R3, compared to the desired amount of fuel Qref and the fuel volume flow is closed loop controlled by way of the valve 5.


That closed loop control concept can be expanded by using for example a reformer transfer function. Examples of this are shown in FIGS. 2b and 2c. Provided there are additional closed loop control circuits R2′ which precisely make use of that reformer transfer function. The following regulating law is employed in this embodiment:






Q
ref=(xref−xact)·γ′·Q′calc


In that equation γ′ denotes a further proportionality factor, Q′calc denotes the result of the closed loop control circuit R2, xref denotes a desired value of a parameter for the composition of the synthesis gas and xact denotes the evaluation result of the reformer transfer function. In this case the reformer transfer function depends on the instantaneous substance flows into the reformer, the entry and exit temperatures of the reformer and the desired ratios S/C and O/C (steam/carbon and oxygen/carbon).


In this embodiment the reformer transfer function is generated by way of a direct measurement of the amount and composition of the synthesis gas produced by the reformer at different entry volume flows and different temperatures. It is however also possible to ascertain the reformer transfer function by means of a simulation.

Claims
  • 1. A method of operating an internal combustion engine-reformer installation having an internal combustion engine and a reformer, wherein at least one parameter of the internal combustion engine is predetermined,a desired amount of fuel is calculated for the reformer on the basis of the at least one parameter,the desired amount of fuel is fed to the reformer,fuel is reformed to give a synthesis gas in the reformer, andthe synthesis gas is fed to the internal combustion enginecharacterised in that a synthesis gas pressure of the synthesis gas downstream of the reformer is measured and the synthesis gas pressure is taken into consideration when calculating the desired amount of fuel.
  • 2. A method as set forth in claim 1 characterised in that a charge pressure is used as a parameter.
  • 3. A method as set forth in claim 1 characterised in that an engine power output is used as a parameter.
  • 4. A method as set forth in claim 1 characterised in that a reformer transfer function is used to determine the desired amount of fuel.
  • 5. A method as set forth in claim 1 wherein desired ratios of steam to carbon and oxygen to carbon are predetermined for the reformer, characterised in that a desired amount of air and/or a desired amount of exhaust gas and/or a desired amount of steam are determined on the basis of the desired ratios and the desired amount of air and/or the desired amount of exhaust gas from the internal combustion engine and/or the desired amount of steam is fed to the reformer.
  • 6. A method as set forth in claim 5 characterised in that a reformer transfer function is used to determine the desired amount of air and/or the desired amount of exhaust gas and/or the desired amount of steam.
  • 7. A method as set forth in claim 1 characterised in that an entry temperature of a substance flow into the reformer and/or an exit temperature of a substance flow out of the reformer are measured and the entry temperature and/or the exit temperature is used in determining the desired amount of fuel and/or the desired amount of air and/or the desired amount of exhaust gas and/or the desired amount of steam.
  • 8. An internal combustion engine-reformer installation comprising an internal combustion engine,a reformer for reforming a fuel flow to give a synthesis gas,a fuel feed line connected to the reformer to provide the fuel flow,a synthesis gas line connected to the reformer and the internal combustion engine to supply the internal combustion engine with synthesis gas,an open or closed loop control device for calculating a desired amount of fuel having regard to at least one parameter,a measuring device for measuring the at least one parameter, the measuring device being connected to the open or closed loop control device, anda control valve for controlling the fuel flow in the fuel feed line, that is connected to the open or closed loop control device,characterised in that provided in the synthesis gas line is a pressure measuring device for measuring a synthesis gas pressure for taking it into account in the calculation of the desired amount of fuel, that is connected to the open or closed loop control device.
  • 9. An internal combustion engine-reformer installation as set forth in claim 8 characterised in that the at least one parameter includes a charge pressure.
  • 10. An internal combustion engine-reformer installation as set forth in claim 8 characterised in that the at least one parameter includes an engine power output.
  • 11. An internal combustion engine-reformer installation as set forth in claim 8 characterised in that a reformer transfer function can be used for determining the desired amount of fuel.
  • 12. An internal combustion engine-reformer installation as set forth in claim 8 wherein desired ratios of steam to carbon and oxygen to carbon can be predetermined for the reformer, characterised in that a desired amount of air and/or a desired amount of exhaust gas and/or a desired amount of steam can be determined on the basis of the desired ratios and the desired amount of air and/or the desired amount of exhaust gas from the internal combustion engine and/or the desired amount of steam can be fed to the reformer.
  • 13. An internal combustion engine-reformer installation according to claim 12 characterised in that a reformer transfer function can be used to determine the desired amount of air and/or the desired amount of exhaust gas and/or the desired amount of steam.
  • 14. An internal combustion engine-reformer installation as set forth in claim 8 characterised in that there are provided a temperature measuring device for measuring an entry temperature of a substance flow into the reformer and/or a temperature measuring device for measuring an exit temperature of a substance flow out of the reformer, that are connected to the open or closed loop control device, and the entry temperature and/or the exit temperature can be used in determining the desired amount of fuel and/or the desired amount of air and/or the desired amount of exhaust gas and/or the desired amount of steam.
Priority Claims (1)
Number Date Country Kind
1143/2012 Oct 2012 AT national