This disclosure is generally related to combustion engines, including internal combustion spark-ignition engines and compression-ignition engines. More particularly, it concerns an internal combustion engine that employs dual processes for compression and expansion of an air-fuel mixture.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Modern combustion engines are generally of the spark-ignition type and the compression-ignition type. During operation, the efficiency of a combustion engine depends on many factors, including volumetric and thermodynamic efficiency. In order to enhance the former, designers have for decades provided engines with forced induction devices including turbo-chargers and super-chargers, which are predominantly mere add-ons to a basic engine design. While relatively easy to service, these devices can be problematic and are limited from several aspects inherent to their design.
An internal combustion engine includes a compressor cylinder, at least one power cylinder and an expander cylinder. Each cylinder has a respective bore and piston slidably disposed therein, valved inlet port, and valved outlet port. Each respective piston is operatively connected to a crankshaft. The outlet port of the compressor cylinder is provided with a passage through which gas expelled from the compressor cylinder is directed to the inlet port of the at least one power cylinder. The outlet port of the at least one power cylinder is provided with a passage through which gas expelled from the at least one power cylinder is directed to the inlet port of the expander cylinder. The engine further includes a camshaft operatively connected to the crankshaft sufficient to cause the valves present on the inlet ports and the outlet ports of the compressor cylinder and the expander cylinder to each undergo one open-closed cycle for every revolution of the crankshaft, and to cause the valves present on the inlet port and the outlet port of the at least one power cylinder to each undergo one open-closed cycle for every two revolutions of the crankshaft.
One or more embodiments will now be described, by way of example, with reference to the accompanying drawings, in which:
In one embodiment, the present disclosure provides a four-cylinder internal combustion engine comprising a two-stroke compressor cylinder, a two-stroke expander cylinder, and a pair of four-stroke power cylinders. Referring to the drawings, provided only as exemplary illustrations of the disclosure and not for construing same as being delimited thereby,
Upon being forced out of compressor cylinder 3, the compressed gases are directed to the inlet of a power cylinder, which power cylinder comprises a piston that is connected to a crankshaft, which in some embodiments is the same crankshaft as is the piston of the compressor cylinder 3. The power cylinder is equipped with at least one inlet valve and at least one outlet valve, with these valves being actuated to have timing events effective to enable the power cylinder to operate in conventional 4-stroke fashion, i.e., having one power stroke and one exhaust stroke for every two rotations of the crankshaft. In one embodiment, there is a single power cylinder. In another embodiment, such as that shown in
During the compression stroke C1 (
A second compression stroke C2 is shown in
The compression stroke C2 is followed by an expansion stroke E1 (
Following the power stroke of the power cylinder, the piston present in the power cylinder travels upwards in its bore, expelling the substantially-combusted gases within it confines to the expander cylinder through its open outlet valve. During the upward travel of the piston in the power cylinder bore in this second expansion stroke E2 (
During the second expansion stroke E2, the outlet valve of the power cylinder is open and its inlet valve is closed, allowing the gas present in the power cylinder to be forced/expanded into the expander cylinder through the open inlet valve of the expander cylinder, its outlet valve being closed. In one embodiment, the expansion cylinder is dimensioned with respect to the power cylinder such that this gas will be expanded to a pressure that is about one bar pressure. In another embodiment, the expansion cylinder is dimensioned with respect to the power cylinder such that this gas will be expanded to a pressure that is above atmospheric pressure by any amount in the range of between about 0.05 bar and about 0.5 bar, including all ranges therebetween.
Finally, exhaust stroke F occurs as shown in
Thus, an engine as provided herein in one embodiment comprises an internal combustion engine in which the compression and expansion processes are performed in two stages, which occur in a combination of two separate cylinders. During the first stage of compression, the gas is compressed from a relatively larger compressor cylinder into a relatively smaller power cylinder, with a power cylinder undergoing a conventional 4-stroke cycle. The second expansion stage occurs between a power cylinder and a larger expander cylinder, which expansion enables increased thermodynamic efficiency by recovery of chemical energy and of heat that is otherwise lost when not operating according to this disclosure. Moreover, the presence of an expander cylinder as used herein affords an increased number of operating variables, advantage of which can be taken towards reducing engine emissions through temperature control during compression.
In
One benefit of an engine as described is that it is possible to recuperate heat from the expander cylinder by means of a heat exchanger, and utilize this heat by transferring it to the intake gas of the power cylinder in a heat recuperation process. In conventional combustion engines, this thermal energy is essentially wasted, being incapable of doing any pressure*volume work. By recuperating the otherwise-wasted heat to the gas inducted for combustion, the thermodynamic efficiency of an engine according to the disclosure is higher than engines not incorporating this feature. This is illustrated more clearly in
In an alternative operating mode, the heat exchanger mentioned above is used to cool the gases comprising the intake charge for the power cylinder(s). Such compression cooling, when employed, is beneficial towards reducing any present tendencies towards pre-ignition in spark-ignition engines or spark-assisted compression engines.
While the foregoing description has been provided in reference to an engine comprising four cylinders, it can now be appreciated by one of ordinary skill in the art after having considered this specification that the disclosure inherently and readily provides additional engines according to its teachings which are configured to exist in eight-cylinder configuration, a twelve-cylinder configurations or substantially any configurations comprising an integral multiple of the four cylinders described (i.e. groupings of one compressor cylinder, two power cylinders and i=one expander cylinder), by use of conventional casting and machining techniques generally known and employed in the engine block and component manufacturing arts.
By controlling the relative ratios of the swept volumes of the pistons in their travel within the bores of cylinders in which they are disposed, i.e., the cylinder's effective displacements, it is readily possible when providing an engine in accordance with this disclosure to provide a wide range of possible compression ratios of the power cylinder, thus controlling volumetric and thermodynamic efficiency. A compressor cylinder of an engine according to some embodiments of the disclosure is dimensioned relative to a power cylinder so that the ratio of the displacement of a compressor cylinder to that of a power cylinder is any ratio in the range of between about 5:1 to about 1.1:1, including all ratios and ranges of ratios therebetween. The expander cylinder is dimensioned with respect to the power cylinder in an engine according to some embodiments of the disclosure so that the ratio of the displacement of the expander cylinder to that of the power cylinder is any ratio in the range of between about 5:1 to about 1.1:1, including all ratios and ranges of ratios therebetween. In some embodiments, the displacements of the expander and compressor cylinders are substantially equal. In one alternate embodiment, the displacement of the compressor cylinder is greater than that of the expander cylinder. In another embodiment, the displacement of the compressor cylinder is less than that of the expander cylinder. In some embodiments, the ratio of displacement of the expander cylinder to that of the compressor cylinder is any ratio in the range of between about 5:1 to about 1:5, including all ratios and ranges of ratios therebetween. Owing to the wide variability in displacement volumes of the cylinders present, a wide range of compression ratios may be provided, giving higher pressure ratios capabilities and higher thermodynamic efficiencies than turbo-charger or super-charger equipped engines. This is augmented in part at least by the provision that during operation of an engine according to the disclosure, the transfer of the gas from one cylinder to another during the compression process introduces the ability to transfer heat to or from the charge gas during the closed portion of the compression process.
An engine as provided herein may be operated using any combustible fuel, which include without limitation the conventional fuels: hydrogen, aliphatic hydrocarbons, aromatic hydrocarbons, oils, waxes, diesel fuels, gasolines, and oxygenated fuels including alcohols, ethers and esters, and including mixtures of the foregoing. In alternate embodiments an engine according to the disclosure may also be operated using non-conventional fuels, which include without limitation powdered coal, waste oils and bio-mass derivatives.
In preferred embodiments the combustible fuel is provided to the combustion chamber of the power cylinder. In alternate embodiments, the combustible fuel is provided to a location adjacent to the inlet valve of the power cylinder that ensures its admission into the power cylinder during operation.
In other alternate embodiments, a combustible fuel is provided to the expander cylinder or a location adjacent its inlet valve that ensures its admission into the expander cylinder during operation. Embodiments where a combustible fuel is fed to the expander cylinder can be advantageously used as an after-burner to reduce emissions and gain efficiency increases.
In further alternate embodiments, the combustible fuel is provided to the compressor cylinder. In alternate embodiments, the combustible fuel is provided to a location adjacent to the inlet valve of the compressor cylinder that ensures its admission into the compressor cylinder during operation.
In some alternate embodiments an aftertreatment solution is caused to be admitted to the expander cylinder, including without limitation solutions of urea and other known reductants useful for lowering particulant emissions and/or nitrogen oxide emissions from the engine. Known reductants include solutions of organic nitrogen compounds and inorganic nitrogen compounds. Such advantageous use of reductants lessen the burden presented to emissions-treatment systems or devices located downstream of the expander cylinder, for motorized vehicles or other manufactures desirously possessed of emissions-treating equipment.
Further increases in efficiency of an engine according to any embodiments provided may be effected by providing a layer of a thermally-insulating material on any portion of an engine according to the disclosure, for example the gas transfer port disposed between a power cylinder and an expander cylinder, the gas transfer port disposed between a power cylinder and a compressor cylinder, the expander cylinder itself, and the power cylinder itself. In one embodiment the insulation is any suitable ceramic material, which may be provided in the form of a coating to the interior surfaces or exterior surfaces of the ports, cylinders, pistons, or any other portion of an engine as provided herein. However, any other suitable thermally-insulating material known in the art may be employed.
The disclosure has described certain preferred embodiments and modifications thereto. Further modifications and alterations may occur to others upon reading and understanding the specification. Therefore, it is intended that the disclosure not be limited to the particular embodiment(s) disclosed as the best mode contemplated for carrying out this disclosure, but that the disclosure will include all embodiments falling within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1176252 | Schenker | Mar 1916 | A |
1634468 | Muller | Jul 1927 | A |
1771335 | Karpes | Sep 1927 | A |
1690080 | Seng et al. | Oct 1928 | A |
2255925 | Heylandt | Sep 1941 | A |
2534590 | Gerhardt | Dec 1950 | A |
2621473 | Naccache | Dec 1952 | A |
3220392 | Cummins | Nov 1965 | A |
3896775 | Melby | Jul 1975 | A |
4202300 | Skay | May 1980 | A |
4487020 | Dineen | Dec 1984 | A |
4565167 | Bryant | Jan 1986 | A |
4663938 | Colgate | May 1987 | A |
4917054 | Schmitz | Apr 1990 | A |
5199262 | Bell | Apr 1993 | A |
5542382 | Clarke | Aug 1996 | A |
6286467 | Ancheta | Sep 2001 | B1 |
6553977 | Schmitz | Apr 2003 | B2 |
6698405 | Bigi | Mar 2004 | B2 |
7117827 | Hinderks | Oct 2006 | B1 |
20060011154 | Scuderi et al. | Jan 2006 | A1 |
20070017477 | Zajac | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
4441590 | Feb 1996 | DE |
19630520 | Apr 1997 | DE |
959233 | Nov 1999 | EP |
WO 03058043 | Jul 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20100300385 A1 | Dec 2010 | US |