This invention relates to internal combustion engine vehicles (or hybrid vehicles) having turbochargers, and more particularly to cooling the charge air for such engines.
In modern internal combustion engines, it is important to ensure the temperature of the charge air does not become excessive. Excessive temperatures can lead to reduced charge density and higher combustion temperatures which can affect torque, power and emissions. A cooler airflow is a denser air flow, which provides a more efficient combustion cycle.
In boosted internal combustion engines, excessive heat in the charge air is a possibility. Although turbochargers and superchargers increase charge air density, they also increase the temperature of the air into the engine's intake manifold. A common way to achieve cooling the charge air is the use of a heat exchanger as the charge air leaves the compressor. Such a heat exchanger is referred to synonymously as a charge air cooler (CAC), intercooler, or aftercooler. Increasing demand for improvements in fuel economy and exhaust emissions has made the charge air cooler an important component of most modern forced intake engines.
However, reduction of the intake air temperature with a charge air cooler is limited by the cooling medium temperature of the charge air cooler. The cooling medium is either ambient air or engine coolant. Reduction of intake air temperature is also limited by the efficiency of the charge air cooler.
A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:
The following description is directed to reducing manifold air temperature (MAT) of an internal combustion engine of a vehicle. The intake charge air is over-expanded using an expansion turbine. In addition to the expansion turbine, which is installed in front of the intake manifold, an electrical supercharger and a second charge air cooler are installed before a conventional turbocharger.
One advantage of the MAT cooling system and method described herein is reduction of knock. Reduced knock can lead to increased engine efficiency by better combustion phasing or increased compression ratios. A further advantage is that MAT cooling can lead to lower exhaust temperatures. These results can minimize or eliminate the need for fuel enrichment. Elimination of fuel enrichment can allow for stoichiometric operation over a wider speed-load range and can be beneficial for sizing of exhaust aftertreatment devices. MAT cooling can also directly increase efficiency by increasing air density, reducing pumping losses, and improving volumetric efficiency.
System 100 comprises the installation of an electrical supercharger 11 and secondary charge air cooler 12 upstream of the compressor 13a of turbocharger 13. In addition, an expansion turbine 16 is installed between the engine's main charge air cooler 14 and intake manifold 15a.
The operation of system 100 is based on over-expansion of intake air by expansion turbine 16 immediately prior to entering intake manifold 15a. Expansion turbine 16 may be any turbine device that cools air by expanding it. Expansion turbine 16 receives over-pressurized air and cooled air from compressor 13a and charge air cooler 14, which drives turbine 16 to expand the air to the pressure required for engine 15. This expansion results in cooler air at the proper pressure into the intake manifold 15a.
To ensure that the charge air into intake manifold 15a has sufficient pressure, the over-compression is performed on the intake air entering compressor 13a of turbocharger 13. This over-compression is achieved with supercharger 11 (an electrically driven compressor) and secondary charge air cooler 12.
Despite the energy requirements for the over-compression, system 100 is expected to provide net positive engine efficiency. Referring again to
If engine 15 is part of a hybrid-electric vehicle, the electrical energy of system 100 can be integrated into that architecture. The energy consumption of supercharger 11 and expansion turbine 16 may be coupled or decoupled. Decoupling may provide efficiency improvements. This may provide further efficiency improvements by redirecting the energy to or from the tractive effort, to allow either the supercharger 11 or expansion turbine 16 to operate in a more efficient manner, or to minimize transient inefficiency by load smoothing.
The temperature data is used by controller 41 to determine if the MAT is above a desired threshold. If so, the intake air is deemed to be “too warm” and system 100 is activated. Supercharger 11 and expansion turbine 16 are activated, and as described above, provide a further reduction in the charge air temperature than would be accomplished by the main charge air cooler 14 alone.
Number | Name | Date | Kind |
---|---|---|---|
10801399 | Kotani | Oct 2020 | B2 |
20120210952 | Reuss | Aug 2012 | A1 |
20130098031 | Petrovic | Apr 2013 | A1 |
20140230430 | Krug | Aug 2014 | A1 |
20150361869 | Hotta | Dec 2015 | A1 |
20160195047 | Carter | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
202015102248 | Jun 2015 | DE |
2420152 | May 2006 | GB |
05079334 | Mar 1993 | JP |
2759375 | May 1998 | JP |
Number | Date | Country | |
---|---|---|---|
20220235717 A1 | Jul 2022 | US |