1. Field of the Invention
The present invention relates to internal combustion engines, specifically to internal combustion engines with a cylinder and piston having a dual-combustion stroke.
2. Description of the Related Art
In the related art, it has been known to use internal combustion engines to generate mechanical force to cause locomotion or otherwise perform work. Internal combustion engines typically use fossil fuels or other fuels that are of a limited nature. Due to the finite supply of fuel it is important to use such efficiently. Increasing the power to weight ratio of an engine improves efficiency. Reducing friction as well as reducing impulse forces in a combustion cycle increases efficiency. Therefore there is a need for an internal combustion engine configuration which is more efficient, effective, and enhances performance. Some improvements have been made in the field. Examples include but are not limited to the references described below, which references are incorporated by reference herein:
U.S. Pat. No. 5,967,103, issued to Kuperman, discloses a three cycle, two-stroke internal combustion engine from which work can be extracted in two directions. In the preferred embodiment, the inventive two-stroke engine is constructed as a cylinder having a reciprocating piston slidably seated therein, with the piston defining a compression and combustion chamber between the cylinder wall and each side of the piston. The two-stroke engine can provide work in bi-directional fashion from the two combustion chambers acting in phase. A piston rod is provided with reciprocating linear motion, and a mechanical converter is used to change the linear movement to rotational motion providing torque from which rotational power can be extracted for machinery. In an alternative embodiment, the cylinder is shaped with a bottom portion which is split into two sections, in which a bifurcated piston is seated in reciprocating fashion. A piston rod extending through the space between the split cylinder sections is driven with conventional side-to-side linear motion, and is connected to a conventional offset crankshaft, to harness the useful work output of the engine. The two-stroke engine is compact in size and more powerful than a similar 4 or 2-cycle engine, since its dual action makes it equivalent to two combined standard engines. The engine also provides a reduction in overall weight, decreasing the weight-to-power ratio, with an increase in fuel efficiency. Recoil impulses from the torque produced are reduced, increasing the engine life.
U.S. Pat. No. 4,913,100, issued to Eickmann, discloses a double piston engine has a doubly acting piston reciprocably provided in a cylinder arrangement to form two working chambers which periodically increase and decrease their volumes. The invention provides inlet means with supply means for a cleaning flow through the working chambers and inlet means and supply means for a loading flow in excess of atmospheric pressure to the respective chambers. Means are further provided to secure that the loading flow enters the respective working chamber after the closing of the inlet for the cleaning flow. By this arrangement of the invention it becomes possible to operate two cycle engines with turbo-chargers or other loaders. A very powerful engine at compact space and low weight is obtained, while the poisonous gases of two stroke engines are prevented to a high degree.
U.S. Pat. No. 4,414,927, issued to Simon, discloses a two stroke oscillating piston engine comprising cylinder sections provided with feed chambers for additional fresh air. The two outer rings, acting as pistons, draw in fresh air through intake ports and force that air to enter combustion chambers through communication ducts and ports. The middle ring is intended for the fresh gas supply of the combustion chambers. The radial grooves for fresh air are provided at a shorter distance from the ports than the radial grooves for fresh gas. Burnt and expanded gas is first exhausted from the combustion chambers by fresh gas; then the combustion chambers are filled with fresh gas and fresh air. Thus, exhausting unburnt gas together with burnt gas is avoided and improved combustion is provided in the combustion chambers.
U.S. Pat. No. 5,676,097, issued to Montresor, discloses a double-acting, single-cylinder, explosion engine whose peculiarity is to be provided with auxiliary components which permit to optimize the inlet stroke because such auxiliary components are arranged in a way that the gases to be burnt are not inlet by the piston. Such gases are inlet by the auxiliary components. In general the present engine comprises a cylinder in which a piston may run. The median axis of the piston is interested by a through-shaft which is fixed and coaxial to the piston itself. The shaft is divided in two half-shafts having the same size and shape by the piston. The half-shafts comprise pistons which may run in inlet chambers and narrowings or holes, openings, leaks or the like through which the inlet gas passes to reach the respective explosion chambers through heads. The cylinder is provided with exhausts at its median part. The above described engine is connected with at least a connecting rod and is able to do two active bursts during a turn of 360.degree. of the connecting rod.
U.S. Pat. No. 2,070,769, issued to Wurtele, discloses an internal combustion engine.
U.S. Design Pat. No. 494,191, issued to Aketa et al., discloses the ornamental design for an internal combustion engine.
The inventions heretofore known suffer from a number of disadvantages which include unduly complex, limited efficiency, limited power, and/or otherwise fail to increase power to weight ratio as compared to a standard combustion engine.
What is needed is an internal combustion engine that solves one or more of the problems described herein and/or one or more problems that may come to the attention of one skilled in the art upon becoming familiar with this specification.
The present invention has been developed in response to the present state of the art, and in particular, in response to the problems and needs in the art that have not yet been fully solved by currently available internal combustion engines. Accordingly, the present invention has been developed to provide an internal combustion engines with a cylinder and piston having a dual-combustion stroke.
In one embodiment of the invention, there may be an internal combustion engine. The engine may include one or more of the following: a first piston system including one or more of the following: an engine block; a cylinder through the engine block; a piston disposed within the cylinder, the piston including a cavity therein; a stump member disposed within the cylinder and sized to be received by the cavity; a first combustion chamber within the cylinder defined between the piston and the cylinder; a second combustion chamber within the cylinder defined between the piston, the stump member, and the cylinder when the stump member is disposed within the cavity; an inlet port disposed through the engine block orthogonal to a direction of travel of the piston; an outlet port disposed through the engine block orthogonal to the direction of travel of the piston; a camshaft in mechanical communication with the piston of the first piston system; a second piston system in mechanical communication with the camshaft and substantially identical to the first piston system; and a distributor system, including one or more of the following: a distributor; and a spark plug wire having one or more of the following: a first end coupled to the distributor; a second end in direct electrical communication with the first end and in communication with the first combustion chamber; and a third end in direct electrical communication with the first end and in communication with the second combustion chamber of the second piston system.
In one embodiment, the internal combustion engine may be a V-configuration. The inlet port and the outlet port may have unified plumbing.
Reference throughout this specification to features, advantages, or similar language does not imply that all of the features and advantages that may be realized with the present invention should be or are in any single embodiment of the invention. Rather, language referring to the features and advantages is understood to mean that a specific feature, advantage, or characteristic described in connection with an embodiment is included in at least one embodiment of the present invention. Thus, discussion of the features and advantages, and similar language, throughout this specification may, but do not necessarily, refer to the same embodiment.
Furthermore, the described features, advantages, and characteristics of the invention may be combined in any suitable manner in one or more embodiments. One skilled in the relevant art will recognize that the invention can be practiced without one or more of the specific features or advantages of a particular embodiment. In other instances, additional features and advantages may be recognized in certain embodiments that may not be present in all embodiments of the invention.
These features and advantages of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.
In order for the advantages of the invention to be readily understood, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments that are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings, in which:
valves according to one embodiment of the invention;
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the exemplary embodiments illustrated in the drawings, and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and further modifications of the inventive features illustrated herein, and any additional applications of the principles of the invention as illustrated herein, which would occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention.
Reference throughout this specification to “one embodiment,” “an embodiment,” or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “one embodiment,” “an embodiment,” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment, different embodiments, or component parts of the same or different illustrated invention. Additionally, reference to the wording “an embodiment,” or the like, for two or more features, elements, etc. does not mean that the features are related, dissimilar, the same, etc. The use of the term “an embodiment,” or similar wording, is merely a convenient phrase to indicate optional features, which may or may not be part of the invention as claimed.
Each statement of an embodiment is to be considered independent of any other statement of an embodiment despite any use of similar or identical language characterizing each embodiment. Therefore, where one embodiment is identified as “another embodiment,” the identified embodiment is independent of any other embodiments characterized by the language “another embodiment.” The independent embodiments are considered to be able to be combined in whole or in part one with another as the claims and/or art may direct, either directly or indirectly, implicitly or explicitly.
Finally, the fact that the wording “an embodiment,” or the like, does not appear at the beginning of every sentence in the specification, such as is the practice of some practitioners, is merely a convenience for the reader's clarity. However, it is the intention of this application to incorporate by reference the phrasing “an embodiment,” and the like, at the beginning of every sentence herein where logically possible and appropriate.
The mountain engine, new never before designed. Used for maximum power to climb steep grades up the mountain while carrying the maximum weight load allowed by the law.
In the mountain engine's cylinders, are cylinder stumps. These cylinders stumps act as a piston when the actual piston is in the down or bottom position. While in the down or bottom position, the underside of the piston acts as a cylinder; or the bottom half is actually a cylinder in itself. The cylinder stump is fixed and cannot move. It is cast into the engine cylinder and engine block during the casting process. These cylinder stumps resemble the stumps that are left after the cutting down of a tree.
When the piston is in the down position over the stump; this acts in the same manner as top dead center does when in fact it is at the bottom dead center position. When in this position there is the area of squish and can be full of or filled with ignitable mixture or combustible fuel (could be used as gasoline or diesel engine) and caused to detonate (either by spark or pressure) thus blowing the piston up toward the top dead center position. The blowing up of the piston assists in the blowing down of the piston that would be in the ignition phase of the regular firing order on the power stroke from actual top dead center or where ever ignition is to take place in degrees near or after T.D.C. *NOTE* In one embodiment, it is of extreme importance that the timing of the piston to be blown up is exactly the same exact moment of when the piston to be blown down occurs.
In this engine there will be two cylinders firing simultaneously or at the same time at all times instead of one cylinder firing at a time at all times while running. This applies more force or torque and power to the spinning of the crankshaft and possibly delivering twice the driving force, horsepower and torque. Closely resembling the power of two engines operating together in one engine.
As shown in
There shall be described the means for getting a combustible mixture into the bottom squish area or lower combustion chambers 122 of the present invention. This is achieved by the use of a side head 120. The side head 120 is how the combustible mixture gets into the bottom squish area or the lower combustion chambers 122. As shown in
The top of the engine block 124 is machined for the application of a cylinder head 170. The side of the engine block 124 is also machined like the top of the engine block 124 for the application of a cylinder head 120 type of apparatus or a side rack for the letting in and the letting out of fuel mixture or air and exhaust into and out of the lower combustion chambers 122 of the cylinders. As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As illustrated in
Nomenclature of the mountain engine: Cylinder 130 (having an outside diameter), Cylinder floor 136 (having a thickness), Cylinder stump 118 (having a height, outside diameter, inside diameter), Upper combustion chamber 140, Lower combustion chamber 122, Upper squish area 140, Lower squish area 142, Lower cylinder ports 128, Blow-up pistons 112 (having an outside diameter, an inside diameter, a skirt thickness, height).
Shown in
As shown in
Piston travel in cylinder 130 is centralized due to, and in order to have squish area on both ends of the cylinder; upper squish area 140 and lower squish area 142. Producing upper and lower cylinder 130 space in one cylinder 130 or two combustion chambers in one cylinder. Squish areas, 140 and 142, in
It is envisioned that the present invention operates like any other; both gasoline engines and diesel engines. For gasoline, a threaded hole in the side rack or side head for the use of a spark plug would be made. For diesel, a hole in the side rack or side head for the use of a fuel injector would be made. As shown in
To distribute a spark into the side head 120 as well as the top head 170 there is a spark plug wire 186 that split into two wires for a gasoline type engine. In
Looking to
As illustrated in
In building, a user may insert a connecting rod from the bottom through the cylinder stump. A user may insert piston from the top down into the cylinder. A user may keep the piston's connecting rod attachment hole above the deck of the engine block. A user may insert connecting rode into the piston. A user may insert the connecting rod pin or bushing through hole in piston thereby securing the rod to the piston. A user may insert the two rod pin retainer clips, one on each side of the piston where the rod pin is kept through the piston. A user may lower the piston further down into the cylinder. Then connect the connecting rods to the crankshaft properly. During proper operation of piston, the extreme lower end of the piston never goes higher than the top of engine stump to prevent raw fuel and spent gases from entering into the crankcase and to ensure a cylinder/piston relationship between the engine stump (now piston) and the lower end of piston (now cylinder). Thus effectively creating a lower combustion chamber in the lower end of each cylinder.
It is understood that the above-described embodiments are only illustrative of the application of the principles of the present invention. The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiment is to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claim rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
Thus, while the present invention has been fully described above with particularity and detail in connection with what is presently deemed to be the most practical and preferred embodiment of the invention, it will be apparent to those of ordinary skill in the art that numerous modifications, including, but not limited to, variations in size, materials, shape, form, function and manner of operation, assembly and use may be made, without departing from the principles and concepts of the invention as set forth in the claims.