The invention relates to an internal-combustion engine with a hydraulic device for rotation angle adjustment of a camshaft relative to a crankshaft, including a rotor with an impeller form, which is rotationally fixed to the camshaft by means of a central fastener, and a stator, which rotates synchronously with a drive wheel driven by the crankshaft, wherein, on both sides of the impeller blades of the rotor, there are pressure chambers, which are each limited by radial walls of the stator and which can be filled with and emptied of hydraulic fluid by means of a hydraulic system. The hydraulic fluid is guided, on one hand, via an annular gap between the rotor and central fastener, and on the other hand, through channels running essentially in the axial direction in its hub and through radial channels into the pressure chambers.
From DE 100 49 494 A1, an internal-combustion engine with a generic hydraulic device for adjusting the rotation angle of a camshaft is known, which can change the phase position of a camshaft relative to a crankshaft. This device consists of a rotor and a stator, of which the first, formed as an impeller, surrounds the camshaft, to which it is mounted with an axial central fastener and rotates synchronously with it. The stator is sealed by two axial side walls so that it is sealed tight against a pressurized medium, surrounds the rotor and rotates synchronously with a drive wheel driven by the crankshaft. Radial walls in the stator permit only a limited rotation angle of the rotor and form with the rotor several pressure chambers, which can be filled with hydraulic fluid. The hydraulic fluid, which is from the lubricating oil circuit of the internal-combustion engine, is guided via first and second radial bore holes or via first and second axial channels of the camshaft into first and second bore holes or first and second channels of the rotor and from there into the pressure chambers.
However, one disadvantage for this known device is that the axial bore holes in the camshaft must agree in number, position, and shape with those of the rotor in order for the device to be able to adjust this camshaft. For any application to a different type of internal-combustion engine, for which this agreement is not the case, these prerequisites must be fulfilled, i.e., either a modified camshaft or a device adapted to the camshaft for adjusting the rotation angle must be used. This increases the production costs, in particular, the production of special sintered parts can become necessary.
Therefore, the invention is based on the objective of designing an internal-combustion engine with a hydraulic device for adjusting the rotation angle of a camshaft relative to a crankshaft, such that the device can be mounted on its camshaft with simple means without additional modification expense, even if the axial bore holes of the rotor and the camshaft do not agree in shape, number, and arrangement.
According to the invention, the objective is solved by a hydraulic device for rotation angle adjustment of a camshaft relative to a crankshaft of an internal-combustion engine having a rotor with an impeller form, which is rotationally fixed via an axial central fastener to the camshaft, a stator, which rotates synchronously with a drive wheel driven by the crankshaft, and on both sides of the impeller blades of the rotor, there are pressure chambers, which are each limited by radial walls of the stator and which can be filled with and emptied of hydraulic fluid by means of a hydraulic system, wherein the hydraulic fluid is guided, on one hand, via an annular gap between the rotor and the central fastener and, on the other hand, by essentially axial channels and radial channels into the pressure chambers, such that the first, axial channels formed as coaxial bore holes in the camshaft open into a groove of the rotor running in the circumferential direction and are guided by the radial bore holes, which are adapted in number, shape, and arrangement to the rotor formed as an impeller, outwards into first pressure chambers. In addition, the rotor has radial through holes, which do not intersect the groove and which are adapted on their side in number, shape, and arrangement to the rotor, for supplying the second pressure chambers, which are complementary to the first pressure chambers, with hydraulic fluid from the second channels of the camshaft. The rotor has a direct connection to the end of the camshaft, so that an external sealing effect is realized.
If the second channels of the camshaft are formed such that they allow the hydraulic fluid to flow directly around the axial central fastener, it is guaranteed by the configuration of the rotor with the groove that the hydraulic fluid is guided from the axial, first, and second channels of the camshaft into first and second, radial bore holes of the rotor, which lie in two different sectional planes, and thus the first and second pressure chambers can be charged separately with hydraulic fluid.
If fluid does not flow directly around the central fastener through the second channels within the camshaft, this type of flow can still be realized if a ring-shaped intermediate element is inserted into a recess, which is then necessary and which is adapted to the dimensions of the intermediate element, in the rotor on the end. The groove of the rotor is then covered by the intermediate element.
The intermediate element has axially extending through recesses, which agree with the first axial channels of the camshaft in number and arrangement, so that the hydraulic fluid can be guided out of the first axial channels of the camshaft through the intermediate element into the annular groove and from there through the radial bore holes into the first pressure chambers. In addition, the intermediate element has radially extending recesses, such that they can receive the hydraulic fluid from the second, axial channels of the camshaft and guide it to the inner opening of the intermediate element, so that it flows around the axial central fastener of the device and can be led via the radial through holes of the rotor into the second pressure chambers.
Furthermore, the intermediate element has a bore hole for receiving an element for radial orientation, which guarantees both the alignment of the intermediate element to the rotor and also the alignment of the entire hydraulic device for the rotation angle adjustment relative to the camshaft. It is especially advantageous to form the element for radial orientation as an axial alignment pin of the rotor.
Another feature of the rotor is that its annular groove preferably has a width, which is as large as possible, which is greater than the groove depth, and which is greater than a diameter of the axial recesses of the intermediate element. This guarantees that all of the first axial channels emerging from the end of the camshaft open into the annular groove of the rotor independent of their arrangement and number. However, it has proven effective that the amount of flow of hydraulic fluid for fault-free operation is then also sufficient if the annular groove and the axial recesses only partially overlap.
The hydraulic device formed according to the invention for rotation angle adjustment of a camshaft relative to a crankshaft for an internal-combustion engine thus has the advantage, relative to the devices known from the state of the art, that it can be equipped through the use of the rotor with the annular groove and, if necessary, a simple intermediate element adapted to the device with a device for adjusting the rotation angle, for which the number and/or arrangement of the axial channels for supplying hydraulic fluid does not agree with those of the camshaft of the internal-combustion engine. Through the intermediate element, which is economical to produce, the device can be used in many different internal-combustion engines without requiring expensive adaptations of the device.
The invention is described in more detail in the following with reference to an embodiment and is shown schematically in the associated drawings.
In the drawings:
a is a cross section through the rotor in a plane, in which first, radial channels emerge from a groove,
b is a cross section through the rotor in a plane, in which second, radial channels lie,
a is a top view of an enlarged detail representation of an intermediate element,
b is a longitudinal section through the intermediate element along the section line VIb—VIb in
From
The setup of the intermediate element 9, which is spatially fixed by the receiving recess 12 for receiving the element 11 for radial orientation, can be seen from the
The shown device 1 with the groove 11 running in the circumferential direction has proven to be especially advantageous, because the structural form of the entire device 1, possibly in connection with the intermediate element 9, can be realized independent of the channels of the camshaft supplying the hydraulic fluid. Instead of producing an adapted device for each camshaft 2, it is sufficient to adapt the intermediate element 9 to be produced economically to the structural shape of the camshaft 2. If the hydraulic fluid in the camshaft 2 is already guided into the region around the axial central fastener 6, the intermediate element 9 and the circular recess 8 can also be eliminated.
This application claims benefit of No. 60,495,421 filed Aug. 15, 2003.
Number | Name | Date | Kind |
---|---|---|---|
5058539 | Saito et al. | Oct 1991 | A |
6675752 | Kunne et al. | Jan 2004 | B1 |
Number | Date | Country |
---|---|---|
09209723 | Aug 1997 | JP |
Number | Date | Country | |
---|---|---|---|
20050034693 A1 | Feb 2005 | US |
Number | Date | Country | |
---|---|---|---|
60495421 | Aug 2003 | US |