The present invention relates generally to an internal combustion engine having a variable volume prechamber.
Internal combustion engines often emit harmful oxides of nitrogen (“NOx”) during operation. These oxides form when nitrogen and oxygen, both of which are present in the air used for combustion, combine within the main combustion chambers. Typically, the level of NOx formed increases as the peak combustion temperatures within the combustion chambers increase. As such, minimizing the peak combustion temperatures within the main combustion chambers generally reduces the emission of NOx.
For this reason, leaner gas or leaner gaseous fuel mixtures are used for reducing the peak combustion temperatures in the main combustion chambers, thus reducing the amount of harmful NOx emitted. A lean gas or gaseous fuel mixture has a relatively large air-to-fuel ratio when compared to a gas mixture having a stoichiometric air-to-fuel ratio. Accordingly, using more air in the fuel mixture may advantageously lower NOx emissions.
Unfortunately, using a lean air-to-fuel ratio may result in incomplete combustion within the main combustion chamber, especially in engines with large bores, due to the relatively slow rate of flame propagation from a single point ignition source, such as a spark plug. Furthermore, turbulence within the main combustion chamber may extinguish the ignition flame before the lean gas or gaseous fuel combusts. If the ignition flame extinguishes prior to complete combustion, the power output of the engine reduces and the amount of uncombusted fuel emitted increases.
To minimize the occurrence of incomplete combustion, some internal combustion engines incorporate a precombustion chamber, or prechamber. These prechambers may be in fluid communication with the main combustion chambers of the engine via small orifices. Either enriched or non-enriched fuel may be advanced in these prechambers. Ignition of the fuel within the prechamber creates a front of burning fuel that is jetted through the orifices and into the main combustion chamber, thus igniting the lean fuel within the main combustion chamber. The front of burning fuel jetting out of the orifices is generally sufficient to cause complete combustion of the lean fuel within the main combustion chamber.
These prechambers, however, do not have adjustable volumes that may vary as a function of different engine operating conditions.
As engine load changes, it is desirable to vary the volume of the prechamber to control momentum formation and gas jet penetration during combustion. Varying the volume of the prechamber results in more repeatable combustion for lean fuel mixtures, mitigates engine knock, and provides for improved ignition response.
Additionally, it is also desirable to vary the volume of the prechamber based on other engine operating conditions in order to improve engine performance and decrease harmful emissions.
According to one exemplary aspect of the invention, an internal combustion engine is provided. The engine may comprise a piston cylinder formed within an engine block, an engine head secured to the engine block, a primary piston configured to slide within the piston cylinder, a main combustion chamber—which is defined by the primary piston, piston cylinder, and engine head—a variable volume prechamber formed within the engine head and in fluid communication with the main combustion chamber, an ignition device configured to ignite a fuel within the prechamber, and a prechamber piston configured to translate within the prechamber. In this exemplary aspect, translation of the prechamber piston within the prechamber varies the volume within the prechamber. The prechamber may also comprise at least one orifice for providing fluid communication between the prechamber and main combustion chamber.
According to another exemplary aspect of the invention, a method of igniting a fuel within a main combustion chamber of an internal combustion engine is provided. The main combustion engine may comprise a piston cylinder formed within an engine block, an engine head secured to the engine block, a primary piston configured to slide within the piston cylinder, a main combustion chamber—which is defined by the primary piston, piston cylinder, and engine head—a variable volume prechamber formed within the engine head and in fluid communication with the main combustion chamber, an ignition device configured to ignite a fuel within the prechamber, and a prechamber piston configured to translate within the prechamber. In this aspect, the prechamber comprises at least one orifice that provides fluid communication between the prechamber and main combustion chamber, and translation of the prechamber piston within the prechamber varies the volume within the prechamber. The method of igniting the fuel comprises the steps of supplying a fuel and air mixture to the main combustion chamber, compressing the fuel and air mixture within the main combustion chamber during a compression stroke of the primary piston to advance some of the fuel and air mixture into the prechamber via the at least one orifice, igniting the fuel and air mixture in the prechamber with the ignition device, wherein the ignited fuel and air mixture in the prechamber jets into the main combustion chamber via the at least one orifice, and igniting the fuel and air mixture in the main combustion chamber with the jetted ignited fuel and air mixture from the prechamber.
According to yet another exemplary aspect of the invention, a method of operating an internal combustion engine including a main combustion chamber in fluid communication with a prechamber is provided. In this aspect, the method comprises contracting the volume within the prechamber during an increase in engine load.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several exemplary embodiments of the invention and, together with the description, serve to explain the principles of the invention. In the drawings,
Reference will now be made in detail to embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
Referring to
Internal combustion engine 32 also includes an intake manifold 30 and an exhaust manifold 28. Intake manifold 30 provides fluid, such as an air or air/fuel mixture, to a main combustion chamber 2, which is partially defined within cylinder 54.
Internal combustion engine 32 also includes an engine head 8, a spark plug 18, a piston assembly 4, an intake valve assembly 16, and an exhaust valve assembly 14. Piston 4 translates within cylinder 54 to drive a crankshaft (not shown) in a known manner.
Piston 4, cylinder 54, and engine head 8 cooperate so as to define main combustion chamber 2. In particular, a bottom surface of engine head 8, an inner wall of cylinder 54, and a top surface of piston 4 cooperate to define the boundaries of main combustion chamber 2, as shown in
Engine head 8 includes an intake port 12 and an exhaust port 10 defined therein. Intake valve assembly 16 controls the flow of fuel through intake port 12. In particular, intake valve assembly 16 includes valve member 26, a concentric valve spring 42, and rocker arm 44. Valve spring 42 biases valve member 26 to the closed and seated position, as depicted in
When valve 26 is positioned in the open position, intake port 12 is in fluid communication with main combustion chamber 2. In this embodiment, intake port 12 is also in fluid communication with a fuel source via intake manifold 30. When intake valve member 26 is positioned in its open position, fuel is advanced from intake manifold 30, through intake port 12, and into main combustion chamber 2. When valve member 26 is positioned in the closed position, intake port 12 is isolated from main combustion chamber 2. In operation and when valve member 26 is positioned in its open position, fuel advances from intake port 12 into main combustion chamber 2. If valve member 26 is in the closed position, as shown in
As shown in
The volume within prechamber 20 may vary depending on the position of prechamber piston 22. Prechamber piston 22 is mechanically connected to shaft 46, which urges piston 22 up and down, as viewed in
Exhaust valve assembly 14 controls the flow of exhaust gases through exhaust port 10. Exhaust valve assembly 14 includes valve member 24, concentric valve spring 38, and rocker arm 40. Valve spring 38 biases valve member 24 upwardly (as viewed in
When valve member 24 is in the open position, exhaust port 10 is in fluid communication with main combustion chamber 2. When valve member 24 is in the closed position, as depicted in
As depicted in
Spark plug 18 is provided to ignite either enriched or non-enriched fuel within variable volume prechamber 20, which is in fluid communication with main combustion chamber 2. After the fuel in prechamber 20 ignites, a front of burning fuel is jetted or otherwise advanced through orifices 34 of prechamber member 36 and into main combustion chamber 2. The front of burning fuel entering main combustion chamber 2 ignites the fuel within main combustion chamber 2, thereby driving piston 4 downward (as viewed in
As shown in
Spark plug 18 may be a typical J-gap spark plug, rail plug, extended electrode, or laser plug, for example. Spark plug 18, in the exemplary embodiment of
In the embodiment depicted in
Now referring to
One difference between the embodiment of
In one embodiment of
Once fuel (enriched or non-enriched) advances into prechamber 20, engine control module 60 selectively generates an output signal that causes spark plug 18 to create a spark in spark plug gap 48. The spark ignites the fuel within prechamber 20, which causes a front of burning fuel to jet through orifices 34 and into main combustion chamber 2. The front of burning fuel entering main combustion chamber 2 ignites the fuel within chamber 2, thereby driving piston 4 downward, as viewed from
Now referring to
Encapsulating spark plugs 62, such as multi-jet encapsulated spark plugs or multi-torch encapsulated spark plugs, have plug combustion chambers 78 defined therein. Both the center electrode 64 and ground electrodes 68 are positioned within plug combustion chamber 78. Encapsulated spark plug 62 also has at least one orifice 66 that provide fluid communication between plug combustion chamber 78 and variable volume prechamber 20.
As discussed above with
It should be understood, however, that an encapsulated spark plug 62 may also be used with the embodiment of
In one embodiment that includes an encapsulated spark plug 62, the volume of plug combustion chamber 78 is about 0.1% to about 10% of the volume of prechamber 20.
As shown in
Engine control module 60 is electrically coupled to pressure transducers 58 and 56. Pressure transducer 56 measures the pressure within prechamber 20 and pressure transducer 58 measures the pressure within main combustion chamber 2. Once measured by transducers 56 and 58, electric signals 72, which correspond to the measured pressures, are sent to engine control module 60.
Referring to
Once fuel advances into main combustion chamber 2, prechamber 20, and plug combustion chamber 78 (if used), engine control module 60 (shown in
If an encapsulated spark plug 62 is used in this embodiment, generation of a spark ignites the fuel within plug combustion chamber 78, causing a first front of burning fuel to jet or otherwise advance through orifices 66 and into prechamber 20. This first front of burning fuel ignites the fuel within prechamber 20, thereby causing a second, larger front of burning fuel to jet or otherwise advance through orifices 34 and into main combustion chamber 2, which ignites the fuel in chamber 2 thus urging piston 4 downward.
Referring to
Before, after, or during the advancement of fuel into main combustion chamber 2, fuel may also advance from fuel source 86 to prechamber 20 via prechamber intake valve 52. In one embodiment, engine control module 60 (shown in
Once fuel advances into main combustion chamber 2, prechamber 20, and plug combustion chamber 78 (if used), engine control module 60 (shown in
As with the embodiment of
Referring now to
In one embodiment, pressure transducers 56 and 58 measure the pressure within prechamber 20 and main combustion chamber 2, respectively. Engine control module 60 receives these measured pressures via electronic control signals 72 for controlling prechamber piston 22 position via controller 76.
In another embodiment, the temperature in prechamber 20 is measured by measuring device 92. Measuring device 92 may be any known temperature-measuring device, such as a resistance-temperature-detector, for example. An electronic signal 94 may then be sent to engine control module 60 from device 92. Engine control module 60 may then control the position of piston 22 via controller 76 based on the temperature within prechamber 20.
Controller 76 receives input from engine control module 60 via electronic control signal 74 for positioning prechamber piston 22. Controller 76 may control prechamber piston 22 with any known method, including hydraulically, mechanically, electrically, or pneumatically, for example.
In at least one embodiment, controller 76 raises prechamber piston 22 upward, as viewed from
In one embodiment, control module 60 sends signal 74 to controller 76 for raising prechamber piston 22 upward on receipt of an increase in engine speed or engine load. In this embodiment, controller 60 receives electronic control signal 90, which relays the measured engine speed or engine load from measuring device 88. Measuring device 88 may be any device used to measure engine speed or engine load.
As engine speed (or load) increases, controller 76 raises prechamber piston 22 upward, as viewed from
Now referring to
In this embodiment, spark plug 18 or 62 ignites at about 20 degrees before TDC 84 and during compression stroke 80, as shown in
As depicted in
In the embodiment depicted in
The temperature of prechamber 20 during compression stroke 80 and expansion stroke 82 is depicted in
Raising the temperature in prechamber 20, as discussed above, may advantageously improve flame ignition stability. Some leaner fuel mixtures will not ignite within prechamber 20 if the temperature within prechamber 20 is too low.
It will be apparent to those skilled in the art that various modifications and variations can be made in the disclosed internal combustion engine 32, 50, and 70 with variable volume prechamber 20 without departing from the scope or spirit of the invention. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only.