This application claims priority to German Patent Application 10 2012 206 500.8, filed Apr. 19, 2012, which is hereby incorporated by reference in its entirety.
The present invention relates to an internal combustion engine having at least one camshaft which comprises two shafts, namely an inner and an outer shaft which are in each case firmly connected to cams and which, moreover, are rotatable relative to each other, according to the preamble of the claim 1. The invention further relates to a motor vehicle provided with such an internal combustion engine.
From DE 10 2005 040 934 A1, a generic internal combustion engine having an adjustable camshaft is known, wherein the camshaft has two shafts, namely an inner and an outer shaft which are in each case firmly connected to cams and which are rotatable relative to each other. For generating the relative movement, a hydraulic adjusting device is provided at one end of the camshaft. In order to enable an installation space as small as possible for feeding the hydraulic fluid necessary for operating the hydraulic adjusting device, the hydraulic fluid is fed to the hydraulic adjusting device via a suitably formed counter bearing.
Generic internal combustion engines with adjustable camshafts are well known, wherein in the internal combustion engine of the above paragraph known from the prior art, feeding the hydraulic fluid to the hydraulic adjusting mechanism requires installation space that should not be underestimated.
The present invention is therefore concerned with the problem of proposing for an internal combustion engine of the generic kind an improved embodiment which in particular enables installation-space-optimized supply to at least two phase adjusters of a camshaft.
This problem is solved according to the invention by the subject matters of the independent claims. Advantageous embodiments are subject matter of the dependent claims.
The present invention is based on the general idea of feeding an oil supply to two phase adjusters of an adjustable camshaft through a counter bearing designed as a slide bearing and to provide in the slide bearing only three oil channels instead of four, as done until now. For this purpose, the internal combustion engine according to the invention thus has a camshaft comprising two shafts, namely an inner and an outer shaft which are in each case firmly connected to cams and are rotatable relative to each other. Such camshafts are usually designates as cam-in-cam camshafts. For generating a relative rotation between the two shafts and between the outer shaft and a crankshaft, two phase adjusters are provided that are arranged along the camshaft at the end side thereof. Adjacent to the phase adjusters, the outer shaft is mounted in a stationary counter bearing designed as a slide bearing. According to the invention, oil supply to the phase adjusters takes place via the counter bearing with a first oil channel that runs from the slide bearing through the outer shaft into the inner shaft, and in the inner shaft via an axial bore to a valve that acts on the phase adjuster of the inner shaft with corresponding oil flows. Via a second oil channel that runs from the slide bearing through the outer shaft and further between the outer shaft and the inner shaft to the phase adjuster of the outer shaft, said phase adjuster is acted on by a first oil flow that enables a rotation of the outer shaft in a first direction, for example, a counterclockwise direction. Via a third oil channel that runs from the slide bearing through the outer shaft and further between the outer shaft and the inner shaft into an oil guiding sleeve to the phase adjuster of the outer shaft, said phase adjuster is acted on by a second oil flow that effects an opposite rotation of the outer shaft, thus, for example, in clockwise direction. By supplying the phase adjuster adjusting the inner shaft via only a single oil channel, namely the first oil channel, which downstream of the valve is divided into two oppositely acting directions, the previously required fourth oil channel can be eliminated, as a result of which the counter bearing can be built significantly more compact in particular in the axial direction. At the same time, the oil supply for the two phase adjusters via the camshaft can be configured in a comparatively simple and cost-effective manner, wherein the phase adjuster of the inner shaft, which phase adjuster is arranged in the axial direction on the front side of the camshaft, is supplied with oil through a bore in the inner shaft. In addition, in this region there is space enough to accommodate the valve. With this improved oil supply according to the invention, the oil that is already present in the slide bearing configured according to the invention can be used not only for lubricating, but in addition also for controlling the two phase adjusters.
In an advantageous refinement of the solution according to the invention, the first oil channel between the outer shaft and the inner shaft is sealed with respect to the second oil channel by sealing rings. Such sealing rings allow a relative rotation between the inner shaft and the outer shaft; however, they completely seal the first oil channel with respect to the second oil channel, wherein the sealing rings can be configured as usual sealing rings made from plastic.
Expediently, the valve for switching the phase adjuster for the inner shaft is designed as an electromagnetic valve. Such electromagnetic valves, on the one hand, switch extremely precisely and thus enable an extremely exact engine control and, on the other, they are comparatively inexpensive, which is of advantage for a cost-effective and economical production of the internal combustion engine according to the invention.
Expediently, two axial shoulders are arranged adjacent to the slide bearing on the outer shaft and support the camshaft in the axial direction on the slide bearing. Here, the two axial shoulders are formed like rings which are connected to the outer shaft in a rotationally fixed manner and are fixed on the outer shaft, axially adjacent to the slide bearing. The two axial shoulders thus enable an axial mounting of the camshaft at the slide bearing so that a separate axial bearing such as, for example, a thrust washer, the installation of which is complicated and the production of which is expensive, can be eliminated.
In an advantageous refinement of the solution according to the invention, sealing rings are arranged between the outer shaft and the slide bearing, which sealing rings seal the individual oil channels with respect to each other. Such sealing rings can be designed in the same manner as the sealing rings between the outer and the inner shafts and serve for bordering the individual oil flows or oil channels. Such sealing rings, for example, can again be made of plastic but also of metal, and in particular together with the two axial shoulders, they enable a labyrinth sealing that prevents excessive oil discharge from the slide bearing into the cylinder head.
In a further advantageous embodiment, the slide bearing has circumferentially extending ring grooves for each oil channel. This has the great advantage that, purely theoretically, only a single through-opening per ring groove or oil channel has to be provided since the oil flow, extending from the slide bearing, spreads throughout the ring groove and therefore is in fluid connection to the following oil channel in each rotational position of the camshaft or the outer shaft via the through-opening in the outer shaft. Of course, it is also possible that two, in particular two opposing through-openings are provided in the camshaft, that is, in the outer shaft of the camshaft, whereby a particularly continuous oil supply is made possible.
Further important features and advantages of the invention arise from the sub-claims, from the drawings, and from the associated description of the figures based on the drawings.
It is to be understood that the above-mentioned features and the features still to be explained hereinafter are usable not only in the respective mentioned combination but also in other combinations or alone without departing from the context of the present invention.
Preferred exemplary embodiments of the invention are illustrated in the drawings and are explained in more detail in the following description, wherein identical reference numbers refer to identical, or similar, or functionally identical components.
In the figures, schematically,
According to the
Between the outer shaft 4 and the inner shaft 3, the first oil channel 10 is sealed with respect to the second oil channel 12 by means of sealing rings 18, as illustrated according to
When viewing the
Adjacent to the slide bearing 8, two axial shoulders 22 and 22′ are arranged on the outer shaft 4, which shoulders support the camshaft 2 in the axial direction on the slide bearing 8. The individual oil channels 10, 12, 16 run substantially parallel in the slide bearing 8, as illustrated according to
The oil guiding sleeve can be configured as a simple sheet metal part and thus can be inexpensive.
With the camshaft 2 according to the invention and in particular with the internal combustion engine 1 provided therewith, a cam-in-cam camshaft 2 comprising two phase adjusters 6, 7 can be supplied with oil in an installation-space-optimized manner, and therefore, the oil flow path in the camshaft 2 and/or in the slide bearing 8 can be implemented in a comparatively simple and cost-effective manner.
Number | Date | Country | Kind |
---|---|---|---|
102012206500.8 | Apr 2012 | DE | national |