This application is based upon and claims the benefit of priority from prior Japanese Patent Application No. 2005-080696 filed on Mar. 18, 2005, the entire contents of which are incorporated herein by reference.
1. Field of the Invention
The present invention relates to an internal combustion engine provided with a direct injection-type injector for directly injecting fuel into a cylinder of the engine.
2. Related Art
A conventional internal combustion engine (which may be called merely “engine” hereinlater) of this kind is, for example, disclosed in Japanese Patent Laid-open (KOKAI) Publication No. HEI 7-269394 (reference 1) and HEI 11-132076 (reference 2).
In the engine disclosed in the above reference 1 is a direct injection system in which a fuel is directly injected into a cylinder, and a fuel pressure is changed in accordance with an operation condition of the engine. The fuel is injected at a high fuel pressure at a time of a high engine revolution speed and, on the other hand, at a low fuel pressure at a time of low engine revolution speed. According to the change in the fuel pressure, a relationship between a fuel injection period (or fuel injection time) and a fuel injection quantity varies, and in the case of the high fuel pressure, the fuel injection quantity is excessively changed even when there is a small change in the fuel injection period, thereby causing deterioration in the operational performance of the engine.
Then, in such engine, the fuel pressure is set in accordance with an operating condition, and an actual fuel injection time period is calculated by multiplying a correction amount by fuel pressure (CFP) by a basic fuel injection period determined from an intake air mass and an engine revolution speed (which may be called merely engine revolution hereinafter) to thereby set the CFP to be gradually reduced in accordance with the increasing of the fuel pressure.
On the other hand, in the engine disclosed in the above prior art reference 2, a required fuel injection quantity (Qall) is calculated from an engine revolution speed and an engine load (degree of accelerator opening), and the minimum value of this required fuel injection quantity (Qall) is limited to a minimum value (Qmin) set in response to the respective fuel pressures. That is, in a case of the required fuel injection quantity (Qall) being less than the minimum value (Qmin) set in response to the fuel pressure, the fuel injection quantity is stabilized by making coincident this required fuel injection quantity with the minimum value (Qmin), and on the other hand, in a case of the required fuel injection quantity (Qall) being more than the minimum value (Qmin), the required fuel injection quantity is applied as it is as the fuel injection quantity. At this time, an invalid injection period may be set in response to the fuel pressure.
However, in the prior art technology of the reference 1, the correction based on the fuel pressure is carried out by using one coefficient map, by which high precision control of the fuel injection quantity cannot be expected.
Furthermore, the prior art technology of the reference 2 relates to a case where the required fuel injection quantity is in the level of small quantity, and in fact, it is disclosed that “if the required fuel injection quantity (Qall) is less than the minimum value (Qmin), the fuel injection is controlled and limited to the minimum value (Qmin).” The reference 2 merely explains about control and limitation in a local narrow region, and on the other hand, it is also disclosed that the invalid injection period is set in response to the fuel pressure, but such setting method or process is not comprehended from the disclosure even by a person skilled in the art.
According to the above prior art technology, in summary, a highly accurate fuel injection quantity control in an overall operation region or area of the engine cannot be expected.
It is therefore an object of the present invention to substantially eliminate defects or drawbacks encountered in the prior art technology mentioned above and to provide an internal combustion engine capable of carrying out an accurate fuel injection control over an entire operation range or region.
This and other objects can be achieved according to the present invention by providing an internal combustion engine in which a fuel pressure is changed and a fuel injection quantity is controlled in accordance with an engine operating condition when a fuel injection is performed, the internal combustion engine comprising:
a cylinder;
a direct injection injector arranged so as to supply the fuel to the cylinder;
a detection unit for detecting an operating condition of the internal combustion engine; and
a control unit for controlling the fuel injection, including:
In a preferred embodiment of the above aspect of the invention, the required fuel injection quantity (Q) is decided in accordance with the operating condition of the internal combustion engine including at least an engine revolution speed, engine load and a fuel temperature.
The engine load is obtained from at least one of factors of an intake air quantity, accelerator opening and intake pipe negative pressure.
It may be desired that, in a case that the fuel pressure value at the time of fuel injection of the direct injection injector does not exist on a lattice point of the map, the injection characteristic coefficient (Ka) and the invalid injection period (tb) is obtained by interpolating from a neighbor lattice point.
According to the present invention mentioned above, two coefficient maps concerning the injection characteristic coefficient and the invalid injection period are adopted with respect to the fuel pressure, so that the accurate fuel injection period with substantially no error can be obtained and it becomes possible to accurately control the fuel injection quantity over the entire engine operation range.
In addition, according to the present invention, even in the case where the fuel pressure value at the time of injection of the direct injection injector does not exist on the map by which two coefficients or factors with respect to the fuel pressure, the two coefficients can be obtained by interpolated respective value of two coefficients of neighbour lattices to thereby obtain an accurate injection period with no error.
The nature and further characteristic features of the present invention will be made more clear from the following descriptions made with reference to the accompanying drawings.
In the accompanying drawings:
One preferred embodiment according to the present invention will be described hereunder with reference to the accompanying drawings.
With reference to
The fuel is directly injected into the cylinder (combustion chamber) 12 from the DI injector 15 and is then mixed with air in the cylinder 12, and in addition, the fuel is injected into the intake port 13 through the PFI injector 16 and is then mixed with air passing in the intake port 13. The thus mixed fuel is sucked in the cylinder 12 and burnt therein by an ignition of an ignition plug, not shown, at a predetermined timing.
Further, each of the cylinders 12 is also provided with an intake valve 18 for opening or closing the intake port and an exhaust valve 19 for opening or closing the exhaust port, and by opening the intake valve 18, a clean air is introduced into the cylinder 12 (combustion chamber), from a serge tank 20 through the intake port 13.
As shown in
As shown in
When valves (not shown) is opened for a predetermined period (fuel injection period), the injectors 15 and 16 is designed to inject a predetermined amount of fuel that is sent under a predetermined fuel pressure by pumps 31, 32.
These injectors 15 and 16 are connected to an engine control unit (ECU) 35 as “control means” so as to control opening (or closing) timing and opening (or closing) time interval of the respective valves.
A fuel pressure sensor 36 and a fuel temperature sensor 37 incorporated to the DI delivery pipe 23 are connected to the ECU 35, as well as an engine revolution speed sensor 38 for detecting the engine revolution speed and an engine load sensor 39 for detecting the engine load. These sensors 38, 39 and their associated elements constitute a “detection unit”.
As such engine load sensor 39, there may be utilized, for example, a sensor for detecting intake air quantity, a sensor for detecting an accelerator opening, a sensor for detecting an intake pipe negative pressure or the like.
Furthermore, various actuators 40 are also connected to the ECU 35 to thereby control these actuators 40 in response to signals from the ECU 35.
According to the operation of the ECU 35, the fuel pressure is changed in accordance with the engine operating condition at the time of fuel injection and the fuel injection quantity is controlled. For example, as shown in
More specifically, in accordance with information from the respective sensors 36 to 39, a required fuel injection quantity (Q) necessary for the injection into the cylinder 12 is calculated at a “first calculating section” in the ECU 35, and required fuel injection period T is calculated at a “second calculating section” in the ECU 35 from the following expression (1) from the required fuel injection quantity (Q) and an injection characteristic coefficient (Ka) and invalid injection period (tb), both of which are obtained from 2 kinds of maps between a fuel pressure in the DI injector 15 and two factors of the fuel injection characteristic coefficient (Ka) and invalid injection period (tb). The two kinds of maps are incorporated in the ECU 35.
T=Ka×Q+tb (1)
In the above expression (1), the required fuel injection quantity (Q) is determined by the engine operating condition including at least the engine revolution, engine load and fuel temperature. That is, by obtaining the engine revolution speed and the engine load, a fuel injection quantity (Qg) is obtained from the map shown in
Q=Qg×1/d (2)
(d: coefficient of fuel temperature)
For this expression, any one of intake air quantity, accelerator opening and intake pipe negative pressure may be used as the engine load.
The injection characteristic coefficient (Ka) with respect to the fuel pressure of the DI injector 15 is determined based on the map represented by
For example, a value (an) of the injection characteristic coefficient (Ka) with respect to a value of the fuel pressure (Pn) on a lattice point of the map is preliminary determined.
Further, the invalid injection period (tb) with respect to a value of the fuel pressure of the DI injector 15 is determined based on the map represented by
Further, the map of
Herein, the invalid injection period (tb) means the following time or time period. That is, the DI injector 15 injecting the fuel has a time lag To in operation between the time point of the start of application of driving voltage and the time point of the start of valve opening, and also includes a time lag Tc in operation between the time point of the shut-down of the driving voltage and the time point of the valve closing time, the time lag To being longer than the time lag Tc. Accordingly, the time at which the valve is opened is shorter than the time at which the driving voltage is applied. In this connection, the time “To-Tc”, at which the fuel is not injected, is called invalid injection period or time period.
Furthermore, in the case where the fuel pressure value at the time of fuel injection of the DI injector 15 does not exist on a lattice point of the map, by linear interpolation from neighbor lattice points, the injection characteristic coefficient (Ka) and invalid injection period (tb) are obtained.
A “controlling section” in the ECU 35 serves to apply the driving voltage so as to open the DI injector 15 and then to inject fuel.
The operation of the internal combustion engine of the structure mentioned above will be described hereunder with reference to the flowchart of
In the state of the engine operation, signals representing the engine revolution and engine load are fed to the ECU 35 from the sensors 38 and 39, respectively (step S100). In step S101, the fuel pressure in the DI delivery pipe 23 is read in the ECU 35 in response to a signal from the fuel pressure sensor 36. In step S102, the fuel temperature in the DI delivery pipe 23 is fed to the ECU 35 in response to a signal from the fuel temperature sensor 37.
Next, in step S103, the required fuel injection quantity (Q) which is now required for the engine operation is calculated based on the signals from the respective sensors 36 to 39.
In this operation, the fuel injection quantity (Qg) is obtained for example with reference to the map of
In the following step S104, the injection characteristic coefficient (Ka) and invalid injection period (tb) are obtained with reference to the map shown in
After this step, in step S105, the required fuel injection period (T) is calculated by substituting, in the equation (1), the injection characteristic coefficient (Ka) and the invalid injection period (tb) calculated in the step S104 and the required fuel injection quantity (Q) calculated in the step S103.
A signal representing the required fuel injection period (T) is transmitted from the ECU 35 to the DI injector 15, in which the DI injector valve is opened by the time period of (T) to thereby inject the fuel.
According to the injection steps of the internal combustion engine of the present invention, the fuel injection period can be obtained at high precision substantially with no error by adopting two coefficient maps, with respect to the fuel pressure, of the injection characteristic coefficient and the invalid injection period, and it becomes therefore possible to accurately control the fuel injection quantity over the entire operation region or area of the engine.
Furthermore, in the case that the fuel pressure value at the time of fuel injection of the DI injector 15 does not exist as the lattice point on the map determining two coefficients with respect to the fuel pressure, by interpolating two coefficients respectively, the precise injection period can be obtained with no error.
Further, although, in the described embodiment, the engine provided with the DI injectors 15 and the PFI injectors 16 is described, the present invention is not limited to such embodiment, and the present invention may be applied to an internal combustion engine provided only with the DI injectors.
Number | Date | Country | Kind |
---|---|---|---|
2005-080696 | Mar 2005 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3998614 | Schonberger et al. | Dec 1976 | A |
4257375 | Ulrich | Mar 1981 | A |
4373491 | Knapp | Feb 1983 | A |
4526152 | Hideg et al. | Jul 1985 | A |
4694808 | Peters | Sep 1987 | A |
4926821 | Porth et al. | May 1990 | A |
5094210 | Endres et al. | Mar 1992 | A |
5251582 | Mochizuki | Oct 1993 | A |
5265562 | Kruse | Nov 1993 | A |
5460128 | Kruse | Oct 1995 | A |
5566650 | Kruse | Oct 1996 | A |
5608632 | White | Mar 1997 | A |
5694902 | Miwa et al. | Dec 1997 | A |
5894832 | Nogi et al. | Apr 1999 | A |
5924405 | Hashimoto | Jul 1999 | A |
6024064 | Kato et al. | Feb 2000 | A |
6039029 | Nagasaka et al. | Mar 2000 | A |
6058904 | Kruse | May 2000 | A |
6192857 | Shimada | Feb 2001 | B1 |
6340014 | Tomita et al. | Jan 2002 | B1 |
6405704 | Kruse | Jun 2002 | B2 |
6467465 | Lorts | Oct 2002 | B1 |
6539923 | Mengoli | Apr 2003 | B1 |
6637406 | Yamada et al. | Oct 2003 | B2 |
6647465 | Kametani et al. | Nov 2003 | B2 |
6662777 | Tsuchiya | Dec 2003 | B2 |
6827064 | Akagi et al. | Dec 2004 | B2 |
6843219 | Matsuda et al. | Jan 2005 | B2 |
6959693 | Oda | Nov 2005 | B2 |
6961651 | Oshima | Nov 2005 | B2 |
7013874 | Kurayoshi et al. | Mar 2006 | B2 |
7063070 | Mashiki | Jun 2006 | B2 |
7082927 | Miyashita | Aug 2006 | B2 |
7121261 | Kinose | Oct 2006 | B2 |
20010027776 | Amou et al. | Oct 2001 | A1 |
20010047794 | Kato | Dec 2001 | A1 |
20040007209 | Ohtani | Jan 2004 | A1 |
20050205067 | Koide et al. | Sep 2005 | A1 |
20060207567 | Yamaguchi et al. | Sep 2006 | A1 |
Number | Date | Country |
---|---|---|
37 07 805 | Sep 1987 | DE |
0 169 481 | Jan 1986 | EP |
1 096 138 | May 2001 | EP |
1 096 138 | May 2001 | EP |
1 293 653 | Mar 2003 | EP |
1 387 081 | Feb 2004 | EP |
1 396 633 | Mar 2004 | EP |
1 533 518 | May 2005 | EP |
2 009 843 | Oct 2001 | GB |
49-081719 | Aug 1974 | JP |
63-098479 | Jun 1988 | JP |
63-138119 | Jun 1988 | JP |
01-240765 | Sep 1989 | JP |
03-015622 | Jan 1991 | JP |
03-275978 | Dec 1991 | JP |
4-94434 | Mar 1992 | JP |
7-247924 | Sep 1995 | JP |
07-269394 | Oct 1995 | JP |
7-332208 | Dec 1995 | JP |
8-109861 | Apr 1996 | JP |
8-121285 | May 1996 | JP |
8-144889 | Jun 1996 | JP |
09-203357 | Aug 1997 | JP |
10-054318 | Feb 1998 | JP |
10-115270 | May 1998 | JP |
10-141194 | May 1998 | JP |
10-227239 | Aug 1998 | JP |
11-082250 | Mar 1999 | JP |
11-132076 | May 1999 | JP |
11-159424 | Jun 1999 | JP |
11-315733 | Nov 1999 | JP |
11-324765 | Nov 1999 | JP |
11-350966 | Dec 1999 | JP |
2000-97131 | Apr 2000 | JP |
2000-97132 | Apr 2000 | JP |
2000-130234 | May 2000 | JP |
2000-240494 | Sep 2000 | JP |
2001-115919 | Apr 2001 | JP |
2001-164961 | Jun 2001 | JP |
2001-248478 | Sep 2001 | JP |
2002-047973 | Feb 2002 | JP |
2002-048035 | Feb 2002 | JP |
2002-195141 | Jul 2002 | JP |
2002-227697 | Aug 2002 | JP |
2002-317738 | Oct 2002 | JP |
2004-027911 | Jan 2004 | JP |
2004-028024 | Jan 2004 | JP |
2004-270531 | Sep 2004 | JP |
2004-308510 | Nov 2004 | JP |
2006-57594 | Mar 2006 | JP |
WO 0179690 | Oct 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20060212208 A1 | Sep 2006 | US |